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Engineering properties of municipal solid waste (MSW) depend largely on the waste’s initial composition
and degree of degradation. MSWs in developing countries usually have a high kitchen waste content
(called HKWC MSW). After comparing and analyzing the laboratory and field test results of physical
composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for
HKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings were
obtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field ca-
pacities of decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gas
permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3)
compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorter
duration and a lower potential capacity; (4) the primary compression feature for decomposed HKWC
MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of
HKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changes
significantly with time and strain. Based on the differences of engineering properties between these two
kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high
leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope
stability problem, and corresponding advice for the management and design of HKWCMSW landfills was
recommended.
� 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by

Elsevier B.V. All rights reserved.
1. Introduction

Landfill is the principal treatment of municipal solid waste
(MSW) because it is both low cost and sorting-free (Chen et al.,
2010a; EPA, 2013). The design and security service of landfills
have been challenged due to the complicated behaviors and un-
known aspects of MSW’s geotechnical properties (Machado et al.,
2010). The design and stability assessment of slopes relate to the
shear strength, hydraulic conductivity and vertical compressibility
of the MSW. The leachate collecting system design is influenced by
water content, field capacity, and hydraulic conductivity of the
MSW. Additionally, the design of the landfill gas (LFG) collection
and air injection system depends on the gas permeability of the
MSW and the potential LFG capacity. It is difficult to fully charac-
terize the engineering properties of MSW as the heterogeneous
ones, but it is important to understand the basic behaviors and key
.
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engineering properties of MSW to enable the effective manage-
ment and design of MSW landfills (Dixon and Jones, 2005).

Developed countries have performed numerous studies onMSW
engineering properties. Landva and Clark (1990) carried out a
research on the stability of landfills and explored the behaviors of
MSW, including composition, unit weight, permeability,
compressibility and shear strength. Gabr and Valero (1995) con-
ducted a geotechnical testing program to evaluate the waste prop-
erties (such as specific gravity of solids, water and organic contents,
and composition) and the engineering properties such as perme-
ability, compressibility and shear strength of aged MSW retrieved
from the Pioneer Crossing Landfill located in Pennsylvania, USA.

In terms of hydraulic conductivity of MSW, Powrie and Beaven
(1999) and Beaven (2000) used a large-scale compression cell to
study the relationships between MSW’s hydraulic conductivity and
density, effective porosity, and effective stress. Many researchers
(Landva and Clark, 1990; Shank, 1993; Jain et al., 2005; Reddy et al.,
2009a,b,c; Beaven et al., 2011) implemented field tests to measure
the field hydraulic conductivity of MSW.

With respect to MSW’s gas permeability, a short-term air in-
jection test was conducted by Jain et al. (2005) at New River
Regional Landfill in Florida, USA to investigate and evaluate the
impact of waste depth and the effect of leachate recirculation on air
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permeability. Additionally, gas flow and transport models were
used to estimate the gas diffusivity and permeability of MSW (Jung
et al., 2011; Larson et al., 2012).

Considering the difference of compressibility betweenMSWand
soil, Wall and Zeiss (1995) studied the effects of MSW’s biodegra-
dation on settlements. They also constructed landfill test cells to
model both compression and decomposition over extended pe-
riods. Manassero et al. (1996) summarized the mechanisms
resulting in the compression of MSW and analyzed the factors
affecting the magnitude of settlement. Researchers maintained
substantial interests in the compressibility of MSW and conducted
various laboratory tests or numerical modeling (Landva et al., 2000;
Hossain et al., 2003; Reddy et al., 2009b,d; Bareither et al., 2012a).

To gain insight into the shear strength of MSW, direct simple
shear, direct shear and triaxial tests were conducted, and the effects
of waste composition, confining stress, loading rate, degradation,
samples size and strain on shear strength were explored in the past
several years (Vilar and Carvalho, 2004; Harris et al., 2006;
Kavazanjian, 2008; Zekkos et al., 2010; Reddy et al., 2009a,d;
Bareither et al., 2012b).

Researchers in developing countries also conducted a vast
number of studies on MSW. Based on the drilled MSW samples
originating from the Qizishan Landfill in China, Zhan et al. (2008a,b)
and Chen et al. (2009) measured WSM parameters such as
composition, unit weight and void ratio, and explored engineering
properties of MSW such as shear strength and compressibility. Wu
et al. (2012a,b) conducted short-term air and water injection tests
at a landfill in Beijing, and obtained the field air permeability and
hydraulic conductivity of MSW. Machado et al. (2010) conducted a
number of tests at two Brazilian landfills, and evaluated the pa-
rameters such as water and organic contents, composition,
permeability and shear strength.

These studies revealed that the engineering properties of MSW
depend not only on the waste’s composition, but also on its degree
Table 1
Physical compositions of fresh MSWs and their initial water content (by wet basis, %).

Landfill/Country Organic fractions

Kitchen waste Paper and cardboard Textiles and leathe

SQL/Chinaa 62.63 10.89 4.18
CCL/Chinab 50.31 12.81 1.66
SLL/Chinac 70 8 2.8
BL/Brazild 49.7 15.1 3.5
MCL/Brazild 42.9 19.7 4.5
OHL/USAe 6.9 24.6 5.8
NJL/USAf 18.6 26.7 0
SSL/Canadag 10.5 58 5.25
Chinah 55 9.9 3
USAi 13.6 35.5 4.6
Canadaj 27 26 2
UKk 25 31 5
Francel 28.6 26.8 5.7

Note: Others include glass, ash, stone, brick and miscellaneous items; NA e not availabl
a SQL denotes the Suzhou Qizishan Landfill (Zhang, 2007).
b CCL denotes the Chengdu Chang’an Landfill (Xue et al., 2008).
c SLL denotes the Shanghai Laogang Landfill (Gao et al., 2000).
d BL denotes the Bandeirantes Landfill and MCL denotes the Metropolitan Center Land
e OHL denotes the Orchard Hills Landfill (Reddy et al., 2009a).
f NJL denotes the New Jersey Landfills, average data from all of 21 New Jersey Landfills

2005).
g SSL denotes the Spyhill Sanitary Landfill, average composition of waste streams in w

fractions (Saint-Fort, 2002).
h Chen et al. (2010a).
i Staley and Barlaz (2009), average data of characterization studies in 11 states, and IW
j Assamoi and Lawryshyn (2012).
k Patumsawad and Cliffe (2002).
l Francois et al. (2007), food and garden wastes were considered as kitchen waste.

m Lan (2012).
of degradation (Dixon and Langer, 2006; Zhan et al., 2008a; Chen
et al., 2009; Machado et al., 2010; Zekkos et al., 2010; Bareither
et al., 2012a,b). MSWs from developed and developing countries
are significantly different; for example, Chinese MSW contains
largely kitchen waste with the content of over 50% (Chen et al.,
2010a), which is called high kitchen waste content (HKWC) MSW.
However, kitchen waste only accounts for 20% or less of the USA
MSW (Staley and Barlaz, 2009), which belongs to the low kitchen
waste content (LKWC) MSW. Furthermore, the kitchen waste de-
grades faster than the other compositions of MSW, which con-
tributes to the differences of engineering properties between
HKWC and LKWC MSWs.

Because the HKWC MSWs in developing countries are different
from the LKWC MSWs in developed countries, the management or
design principles used in developed countries may not be entirely
applicable to landfills in developing countries. Therefore, a sys-
tematic comparison of the engineering properties between HKWC
and LKWC MSWs should be performed, which is valuable for the
design of HKWC MSW landfills.

In this paper, laboratory and field testing results of physical
composition, hydraulic properties, gas generation, gas perme-
ability, and mechanical properties for HKWC and LKWC MSWs are
compared and analyzed. This work reveals the differences of en-
gineering properties between HKWC and LKWC MSWs. Based on
these findings, geo-environmental issues in HKWC MSW landfills
are analyzed, and corresponding advice for the management and
design of HKWC MSW landfills is recommended.

2. Physical and chemical components of fresh MSW

2.1. Physical composition of fresh MSW

Physical compositions of fresh MSWs from landfills in China,
Brazil, USA and Canada are summarized in Table 1, as well as the
Inorganic fractions Initial water content (IWC)

r Wood Plastics Metals Others

0.86 18.59 0.24 2.61 61m

0.79 12.47 0.33 21.63 58m

0.89 12 0.12 6.19 56m

4.1 20.9 5.6 1.1 NA
5.2 18.7 1.5 7.5 50

11.7 11 4.4 35.6 31
13.5 8.9 4 28.3 18
8.5 4.9 3.35 9.5 9
2 15 0.5 14.6 52m

3.4 13.2 6.9 22.8 18
2 8 1.5 33.5 NA
0 8 23 32 32
3.3 11.1 4.1 20.4 NA

e.

fill (Machado et al., 2010).

, and IWC was estimated based on the water content of sorted fractions (Hull et al.,

inter and summer, and IWC was estimated based on the water content of sorted

C was estimated based on the water content of sorted fractions.



Table 3
Chemical components of organic fractions in freshMSW (by dry basis, %) (Chen et al.,
2014).

Component Rapidly degradable
components

Slowly degradable
components

Others (inert
components)

Fast
cellulose

Sugar Fat Protein Slow
cellulose

Lignin

Kitchen
waste

15 60 5 5 0 2 13

Paper 30.5 0 0 0 37.5 15.5 16.5
Wood 15 0 0 0 38.8 32.6 13.6
Textiles 15 0 0 0 38.8 32.6 13.6
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typical compositions of MSWs from UK and France. Herein physical
compositions include organic fractions and inorganic fractions.

SQL, CCL and SLL are representatives of Chinese landfills in
warm and humid climates. As shown in Table 1, kitchen waste
content of MSWs from these three Chinese landfills exceeds 50%,
and the average value in China is as high as 55%, followed by the
content of plastics, which is generally more than 12%. Machado
et al. (2010) reported on two Brazilian landfills, BL in Sao Paulo
and MCL in Salvador. Similar to the Chinese MSWs, MSWs from
these two Brazilian landfills contained most kitchen waste, which
made up over 40% of MSWs, with a plastics content of over 18%.

However, the physical compositions of MSWs from developed
countries are different. MSWs from typical USA landfills, such as
OHL in Illinois and NJL consist primarily of paper and cardboard,
comprising over 24%. The kitchen waste content is less than 19%,
which is about one-third the content of MSWs from Chinese and
Brazilian landfills; instead, the content of wood is higher (over 11%).
The paper and cardboard content of MSW from SSL, a Canadian
landfill, is even greater than that of MSWs fromUSA landfills, which
reaches as high as 58%. In regard to the scale of the country, the
paper and cardboard content of USA MSW is over 35%, while the
kitchen waste content is only 13.6%. The contents of paper and
cardboard of MSWs from Canada, UK and France are similar,
ranging from 26% to 31%, and the kitchen waste content ranges
from 25% to 28.6%, which is approximately one-half the content of
Chinese and Brazilian MSWs.

As listed in Table 1, the contents of kitchen waste in MSWs from
both China and Brazil are over 40%, while the contents of kitchen
waste in MSWs from USA, Canada, UK and France are less than 40%.
According to the statistical results, the kitchen waste comprises
40%e85% of the MSWs in developing countries, while it accounts
for 6%e30% of theMSWs in developed countries (Chen et al., 2010a,
2014). In this paper, based on the content of kitchen waste, the
MSW has been divided into two categories, which are HKWC and
LKWC MSWs, and 40% is suggested as the threshold value of the
kitchen waste content. The engineering properties of MSWs that
belong to a certain category exhibit a similar trend, which will be
discussed in more details in the following sections.

The difference of the IWC between HKWC and LKWC MSWs is
great, due to the differences in physical compositions. Table 2
shows the water content of organic fractions. As the typical water
content of kitchen waste is 70%, the water in MSW comes largely
from the kitchen waste, thus the IWC of HKWC MSWs is higher
than that of the LKWC MSW as shown in Table 1. For instance, the
average IWC of MSWs from the three Chinese landfills in Table 1 is
58.3%, which is at least three times the average value of the MSWs
from OHL, NJL and SSL.

2.2. Chemical components of fresh MSW

Cellulose, lignin, fat, sugar, and protein are the primary
degradable components of organic fractions in MSW. The
Table 2
Water contents of organic fractions (by wet basis, %).

Organic fractions Water content

Range Typical value

Kitchen waste 50e80 70
Yard waste 30e80 60
Paper 4e10 6
Cardboard 4e8 5
Textiles 6e15 10
Leather 8e12 10
Wood 15e40 20

Note: Data from Tchobanoglous et al. (1993) and He (2011).
proportion of individual chemical components in each organic
fraction is given in Table 3 (Barlaz, 1998; He et al., 2003; IPCC, 2006;
Chen et al., 2014). Sugar is the primary chemical component of
kitchen waste, which accounts for 60% by dry basis. For paper, its
major chemical component is rapidly and slowly degradable cel-
lulose, with a total content of 68%. The main chemical components
of wood are slowly degradable cellulose and lignin, and their total
content is 71.4%. Textiles have the same chemical components as
wood.

On the basis of the typical water contents in Table 2, the organic
fractions in Table 1 and chemical components in Table 3, the indi-
vidual chemical component proportion in the fresh MSW is the
sum of chemical component proportion in each organic fraction:

mj ¼
Xn

i¼1

Mið1�WiÞxi (1)

where mj is the wet proportion of individual chemical components
in MSW (%), j is the number of chemical components, Mi is the wet
proportion of individual physical compositions in MSW (%), i is the
number of physical compositions, Wi is the water content of indi-
vidual physical compositions (%), and xi is the dry proportion of
individual chemical components in each physical composition (%).

Fig. 1 shows the proportions of chemical components of fresh
HKWC and LKWC MSWs by the same wet basis. The total average
proportion of rapidly degradable components in fresh HKWC
MSWs is 18.6%, higher than the average value in fresh LKWCMSWs,
which is 15.35%. As a rapidly degradable component, sugar is the
main substance in fresh HKWC MSW. The average proportion rea-
ches 9.92% in fresh HKWC MSW, but is only 2.16% in fresh LKWC
Fig. 1. Chemical components of different MSWs.



Fig. 2. In-situ water content of different MSWs.
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MSW. By contrast, the proportion of fast cellulose in fresh LKWC
MSW is as high as 12.83%, higher than that in HKWCMSW, which is
7.03%. Compared with sugar, for which the primary metabolite is
acetic acid during the hydrolysis and acidification stages, the
anaerobic degradation of cellulose is more complex and slower. The
anaerobic degradation processes in HKWC and LKWC MSWs are
influenced by the proportion and degradation characteristic of each
chemical component. Rapid accumulation of organic acid may be
thus induced in the HKWC MSW landfill.

It takes a longer time for slow cellulose and lignin to decompose.
The total average proportion of these two substances in LKWC
MSWs is 27.01%, higher than that in HKWCMSWs, which is 10.45%.
The average proportion of slow cellulose in LKWC MSWs is 17.62%,
but it is only 6.59% in HKWC MSWs.

It is noted that the total average proportion of rapidly degrad-
able components is higher than that of slowly degradable compo-
nents for HKWC MSW; however, the total average proportion of
slowly degradable components is higher than that of rapidly
degradable components for LKWC MSW. Hence, there are differ-
ences in gas generation and settlement between HKWC and LKWC
MSWs.

3. Hydraulic properties of MSW

Hydraulic properties of MSW are important for landfill design.
The IWC of MSW and its water-holding capacity determine the
leachate production and thus the design of an effective leachate
collecting system (Oweis et al., 1990). Waste hydraulic conductivity
influences leachate pressure distribution in the waste body, which
in turn affects the magnitude and distribution of effective stresses
and shear strength (Dixon and Jones, 2005).

3.1. Water content of MSW

Ten boreholes in the diameter of 150mmwere drilled in the first
phase waste body at CCL, with depths ranging from 19.5 m to
58.5 m. Nine MSW samples were taken from depths of 3.1e46.5 m,
and the corresponding fill agewas 1e16 years. In order to represent
all ages of waste deposited with landfill, 5 boreholes in the diam-
eter of 90e130 mm were drilled to the bottom of the first phase
waste body at SQL, with depths ranging from 25 m to 38 m, and the
corresponding fill age was 0.1e10.8 years. A total of 84 MSW
samples were taken using heavy-wall samplers at an interval of 1 m
or 2 m (Zhan et al., 2008a). The fill ages of MSW samples were
determined according to the borehole logs and the records of the
landfill operation. MSW samples were dried in an oven at a tem-
perature of 60e70 �C until the weight kept stable. The water con-
tent (by wet basis) of each sample was then calculated.

The water content of MSW samples from CCL changed from 35%
to 54%, and from 22.6% to 62.4% for MSW samples from SQL. As
shown in Fig. 2, the water content of the MSW samples from CCL
and SQL decreases with the overburden depth. It is noted that the
IWC of fresh MSW from CCL and SQL is 58% and 61%, respectively.
The water content of decomposed HKWCMSW is much lower than
the IWC. A similar trend occurred in the Brazilian landfill. Machado
et al. (2010) obtained 4e9 year-old MSW samples using excavators
and drilling machines from MCL, a HKWC MSW landfill in Brazil.
The samples were dried in an oven at a temperature of 70 �C. The
water content was then measured, which ranged from 38.9% to
47.4%, lower than its IWC (50%).

On the contrary, an increasing tendency of water content with
increasing depths occurs in the LKWCMSW landfill, as observed by
Zornberg et al. (1999) at a Southern California Landfill (called SCL,
Fig. 2). Additionally, the water content of decomposed LKWC MSW
is relatively higher than its IWC. Hull et al. (2005) selected 13
boreholes with diameter of 91 mm at a Burlington County Landfill
(called BCL) in New Jersey and MSW samples of 0.75e11.5 years old
were excavated. Comparedwith the IWC (18%), thewater content of
the individual sample was higher, changing from 18.8% to 41.6%.

3.2. Field capacity of MSWs

Based on the water retention curve (WRC) of the MSW, the field
capacity (FC) is defined as the volumetric water content corre-
sponding to a suction of 10 kPa, suggested by Qian et al. (2001a,b).
For HKWC MSW, Zhan et al. (2008b) used the pressure plate
method to obtain the WRC for landfill wastes from SQL at depths
from 3m to 28mwith the fill ages of 3e10 years. TheMSW samples
were shredded to a size less than 20 mm and recompacted to a dry
density close to the corresponding in-situ dry density. Wu et al.
(2012b) excavated MSW samples from a Beijing Landfill at depth
between 1 m and 25 m, with the fill ages of 3e10 years old; large
rocks (greater than 40 mm in diameter) were taken out and
recompacted to achieve theWRC usingmodified Tempe cells. Based
on the typical composition of fresh MSW in Hangzhou, Wei (2007)
measured the WRCs of fresh artificial MSW samples using the
pressure plate method and the Tempe cell method; and the sam-
ples were then recompacted to different void ratios. For LKWC
MSW, Breitmeyer and Benson (2011) utilized the pressure plate
method to obtain the WRC of 4 month-old MSW samples derived
from an operating landfill in Southern Wisconsin. The waste was
shredded to a size less than 25 mm and recompacted with different
compaction energies to three different densities.

The FC of HKWC and LKWC MSWs obtained through laboratory
tests is summarized in Table 4. As shown in the table, the degree of
compaction, overburden loading and waste composition all influ-
ence the FC of WSWs. In particular, the degradation of organics has
a significant effect on the FC of HKWC MSW because it increases
with the fill age.

Some researchers utilized larger lysimeters with loading devices
to measure the FC of MSW directly (Zornberg et al., 1999; De
Velásquez et al., 2003; Lan, 2012). Zornberg et al. (1999)
measured the FC of relatively older waste from a landfill in Los
Angeles County, USA; the equivalent depth ranged from 15.2 m to
61 m, and the FC of MSW changed from 47.4% to 53% using volu-
metric relationships.

Based on the statistics, the FC of decomposed HKWCMSW lies in
the range of decomposed LKWC MSW FC. It should be pointed out
that the FC of decomposed HKWC MSW is less than its IWC; on the
contrary, the FC of decomposed LKWCMSW is greater than its IWC.



Table 4
Field capacity of MSWs based on the WRC.

MSW type Reference Depth (m) Age (yr) Specific gravity Void ratio Dry density (g/cm3) Field capacity
(volumetric ratio, %)

HKWC MSW Zhan et al. (2008b) 3e8 3 NR 2.65 0.41 32.4
14e16 6 NR 2.16 0.61 36.5
24e28 10 NR 1.78 0.72 41.3

Wu et al. (2012b) 1e4 3 1.51 1.9 0.52 31.5
11e14 6 1.88 1.64 0.71 34.8
22e25 10 2.14 1.25 0.95 36.9

Wei (2007) Artificial MSW samples Fresh NR 2 NR 36.6
2 NR 36.7
3 NR 39.2
3 NR 41.1
4 NR 46

KWC MSW Breitmeyer and Benson (2011) NR 0.33 1.32e1.36 1.5 0.561 24.1
1.13 0.632 27.9
0.69 0.795 20.3

Note: NR e Not reported.
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Hence, there is a difference of leachate production between HKWC
and LKWC MSWs.
3.3. Permeability coefficient of MSW

The permeability coefficient of MSW is one of the key parame-
ters in the design of a leachate control system, a gas collection
system and a leachate recirculation system particularly for biore-
actor landfills. A number of researchers have conducted laboratory
tests (triaxial permeability test and constant head test) and field
tests (water injection test, infiltrating test and pumping test) to
determine the permeability coefficient of MSW.

The primary factors that affect the hydraulic conductivity ofMSW
include waste composition, degree of compaction and overburden
pressure. Fig. 3 illustrates three representativeMSWbulkunitweight
profiles, suggested by Zekkos et al. (2006) from the hyperbolic MSW
unit weight model; the recommended curves present low, typical,
and high compaction efforts in landfills from left to right, respec-
tively. On the basis of weight and dimensions (i.e. diameter and
height) of eachMSWsample, the bulk unitweight ofMSWs fromCCL
and SQL is determined and summarized in Fig. 3. According to the
distribution of the bulk unit weight along the depth, it can be
observed that the compaction efforts of these two Chinese landfills
are mostly in the range of low and typical compaction efforts.

Triaxial permeability tests and pumping tests were performed
to measure the permeability coefficients of MSWs from SQL and
CCL. Four MSW specimens from CCL and three from SQL were
carefully cut from integral, undisturbedMSWs. The size of theMSW
Fig. 3. Variation of bulk unit weight with depth.
specimens used in the laboratory test was 160 mm in height and
100 mm in diameter. The corresponding burial depth ranged from
4.2 m to 29.2 m for MSW specimens from CCL, and from 5.5 m to
26 m for MSW specimens from SQL. Loads were later applied to the
MSW specimens to simulate the in-situ overburden pressure after
they were saturated.

The permeability coefficient obtained through laboratory tests
on MSW specimens from SQL ranged from 3.56 � 10�8 m/s to
4.81 � 10�6 m/s and from 8.09 � 10�8 m/s to 3.92 � 10�6 m/s for
MSW specimens from CCL. A pumping test was also conducted at
SQL, and the permeability coefficient of 2.4 � 10�6e5.5 � 10�6 m/s
was obtained for MSW at depths between 15.5 m and 17.5 m
Machado et al. (2010) also performed infiltration tests to measure
the permeability coefficient of MSWat BL, a Brazilian landfill. It was
found that the magnitude of permeability coefficient ranged from
10�5 m/s to 10�8 m/s between placement and buried depth of 30m.

Permeability coefficients of HKWC and LKWC MSWs have been
collected and shown in Fig. 4. Comparing the results of laboratory
tests with those of field tests at SQL, the permeability coefficient
obtained through the laboratory tests was an order of magnitude
smaller than that from the field test at a similar depth, which was
caused by the anisotropy of MSWand the advantaged stream in the
landfills (Zhan et al., 2014). The magnitude of the permeability
coefficient of the HKWC MSWs ranged from 10�5 m/s to 10�8 m/s
between placement and buried depth of 30 m, while it was from
10�3 m/s to 10�8 m/s for LKWC MSWs at the same depth range.
Compared to LKWC MSWs, the permeability coefficient of the
HKWC MSWs is lower by over an order of magnitude.
Fig. 4. Variation of permeability coefficient with depth (Bleiker et al., 1993; Jain et al.,
2006; Olivier et al., 2009).



Table 5
Potential CH4 generation capacity of fresh MSWs, L0 (by wet basis).

MSW type Reference City/Country Model L0 (m3/t)

HKWC MSW Sun et al. (2015) Beijing/China IPCC 50
Zhang and Wang (2013) Beijing/China IPCC 43.3
Sun et al. (2012) Beijing/China Scholl-Canyon model 61.2
Gao et al. (2006) Hangzhou/China IPCC 56
Du (2006) China IPCC 68
Zheng et al. (2009) China IPCC 65.4
Burklin and Lloyd (2009) China EPA 56e70a/28e42b

LKWC MSW Ogor and Guerbois (2005) France EPA, GasSim, ADEME and IPCC 44e170
Thompson et al. (2009) Canada Scholl-Canyon model 90e128
Amini et al. (2012) Florida/USA EPA 56e77
Amini et al. (2013) USA EPA 64e163
Alexander et al. (2005) USA EPA 96e100c/170d

a With the condition of coal ash content<30% (non-coal-based landfill).
b With the condition of coal ash content>30% (coal-based-landfill).
c Based on the set of inventory defaults.
d Based on the set of Clean Air Act (CAA) defaults.

Table 6
CH4 generation rate of fresh MSWs, k (yr�1), recommended by EPA.

MSW type Reference Country Wet
(bioreactor)

Conventional Arid
area

HKWC MSW Burklin and
Lloyd (2009)

China 0.18 0.11 0.04

LKWC MSW Alexander
et al. (2005)

USA 0.7 0.04a/0.05b 0.02

a Based on the set of inventory defaults.
b Based on the set of CAA defaults.
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4. Gas generation and gas permeability of MSW

The LFG generated by the degradation of organics in MSW is a
source of energy that consists of methane (CH4), carbon dioxide
(CO2), and various toxic trace components (Allen et al., 1997;
Eklund et al., 1998), the emission reduction and utilization of
which have recently attracted researchers’ attention.

4.1. Potential CH4 generation capacity and CH4 generation rate

The potential CH4 generation capacity (L0) and CH4 generation
rate (k) are two key parameters for LFG control and collection.
Table 7
CH4 generation rate of MSWs in the literature.

MSW type Reference City/Country Method desc

HKWC MSW Ma (2013); Zhan et al. (2015) Shanghai/China Pumping tes
collection am

Zhang et al. (2005) Shanghai/China Laboratory te
model and a

Liu et al. (2001) China Laboratory te
model and a

Zhang and Wang (2013) Beijing/China Weighted av
recommende

Sun et al. (2012) Beijing/China Weighted av
recommende

Sun et al. (2015) Beijing/China Estimation b
Beijing

LKWC MSW Ogor and Guerbois (2005) France (4 landfills) Estimation b
model and th

Thompson et al. (2009) Canada (35 landfills) Estimation b
generation ra

Amini et al. (2012) Florida/USA (5 landfills) Back-analysi
amount

Amini et al. (2013) USA (3 landfills) Back-analysi
amount

Wang et al. (2015) USA (11 landfills) Monte Carlo
Tables 5 and 6 list the values of L0 and k recommended by the EPA,
respectively. The EPA LandGEM default value of L0 (by the wet ba-
sis) for fresh Chinese MSW is 56e70 m3/t, which is much lower
than the value recommended by the EPA for fresh USA MSW. In
addition, values of L0 of HKWC and LKWC MSWs in the literature
have also been included in Table 5. Similar to default values, L0
values of fresh HKWC MSWs from China are basically lower than
those of fresh LWKC MSW.

Values of k recommended by the EPA have been provided in
Table 6. The default value of k for the fresh Chinese MSW is
generally higher than that of the fresh USA MSW under the same
conditions except in thewet climate or bioreactor. In addition, k can
be obtained through a back-analysis based on the LFG collection
amounts in laboratory tests and pumping tests, or estimated by the
degradation rate and the proportion of each composition. As listed
in Table 7, the range of k obtained by pumping tests varies widely
from 0.02 yr�1 to 0.2 yr�1, due to the different stages of MSW
degradation. Moreover, the k value obtained in the laboratory is
greater than that from landfills because the recirculation of
leachate has accelerated the degradation of MSW. Values of k
estimated by models such as the EPA LandGEM model, the IPCC
model, the ADEME model and the GasSim model are also included
in Table 7. The range of k varies with the composition of MSW,
climate condition, region and analysis model.
ription k (yr�1)

t, back-analysis based on the EPA LandGEM model and actual LFG
ount

0.02e0.2

st, leachate recirculation, back-analysis based on the EPA LandGEM
ctual LFG collection amount

1.33

st, leachate recirculation, back-analysis based on the EPA LandGEM
ctual LFG collection amount

0.81

erage of degradation rate of each composition of MSW
d by IPCC

0.051

erage of degradation rate of each composition of MSW
d by IPCC

0.081

ased on the composition of MSW and the climate condition of 0.05

ased on the EPA LandGEM model, the ADEME model, the GasSim
e IPCC model

0.04e0.5

ased on the formula between precipitation and methane
te recommended by EPA

0.023e0.056

s based on the EPA LandGEM model and actual LFG collection 0.04e0.13

s based on the EPA LandGEM model and actual LFG collection 0.03e0.23

simulations based on the EPA LandGEM model 0.07e0.09



Fig. 5. Gas permeability of HKWC MSW (after Wei et al., 2007).
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4.2. Gas permeability of MSW

LFG transportation in MSW can be described by the Darcy’s law
as follows:

vG ¼ �kG
mG

vuG
vz

(2)

where vG is the velocity of LFG (m/s); kG is the gas permeability
(m2); mG is the gas viscosities (kg m�1 s�1), which equals
1.8 � 10�5 kg/(m s) at the temperature of 20 �C; uG is the gas
pressure (Pa); and z is the depth (m).

kG is an input parameter for the design of LFG collection system
and air injection system for aerobic bioreactors (Larson et al., 2012).
Using a permeater with an inner diameter of 10 cm and a length of
60 m,Wei et al. (2007) andWei (2007) carried out gas permeability
tests to measure the kG values of MSW samples excavated from SQL
with various degrees of saturation and porosities (e), as shown in
Fig. 5. The measured kG values in the laboratory decline with the
decreasing porosity. In addition, kG falls as the MSW degree of
saturation increases and the trend turns down rapidly when the
degree of saturation is over an inflection point.

Generally, MSW is unsaturated and kG of MSW is dependent on
the intrinsic permeability and relative permeability of the landfill
gas (Bear, 1972):

kG ¼ kikrG (3)

where ki is the intrinsic permeability (m2), and krG is the relative gas
permeability. ki is a fluid flow property related to the nature of a
porous media and is independent of fluid properties, and it can be
measured by injecting water or air through the porous media. For a
completely dry porous media, kG is equal to ki as krG ¼ 1. Thus, as
shown in Fig. 5, when e equals 1.6, 2 and 3, respectively, the range of
ki of HKWCMSWobtained through gas permeability tests is (5.04e
Table 8
Gas permeability, kG, of MSWs in the literature.

MSW type Reference Test description

HKWC MSW Wu et al. (2012a) A short-term air injection test done

LKWC MSW Jain et al. (2005) A short-term air injection test done
Union County, Florida, USA
6.6) � 10�12 m2, (1.01e2.92) � 10�11 m2, and (2.26e3.81) �
10�10 m2, respectively.

Jain et al. (2005) conducted a short-term air injection test at
New River Regional Landfill in Florida, USA; the Baehr and Huit
model was used to estimate the kG value of waste at different
depths. Wu et al. (2012a) performed a similar test at a landfill in
Beijing, and calculated the kG value of waste using the Baehr and
Joss model. The results have been summarized in Table 8. The field
kG value of MSW decreases as the depth increases (or degradation
increases) due to the overburden pressure and finer waste particles
in the deeper layers. Additionally, the kG value of MSW in the
Beijing Landfill is lower than that in the New River Regional Landfill
by about an order of magnitude, caused by higher degree of satu-
ration in the HWKC MSW landfill (Wu et al., 2012a).

5. Compression of MSW

The vertical compression of MSW is a focus of attention. The
settlement during the active life of a landfill will enlarge the storage
capacity of landfill, but will also have an adverse impact on the
integrity of the cover system and the service performances of the
leachate drainage system and the landfill gas collection system
(Qian and Guo, 1995a,b; Oweis, 2006). In a soil mechanics
approach, the instantaneous compression and rapid consolidation
of MSW are defined as the primary compression, and mechanical
creep and compression due to degradation can be combined as the
secondary compression (Manassero et al., 1996).

5.1. Primary compression of MSW

Three MSW specimens were taken at depths from 9.2 m to
28.2 m from the CCL. The diameter was 98 mm for two of the
specimens, and 82 mm for the rest one. The height of specimens
was 200 mm. A total of 62 MSW specimens with diameters ranging
from 79.5 mm to 95 mm and a height of 200 mmwere taken from
SQL, and the corresponding depth was 2.5e32.4 m (Chen et al.,
2009). Compression tests were conducted to obtain the modified
primary compression index (C0

c) of the MSW specimens. After the
compression test, the organic content of each specimen from SQL
was determined byweighting themass loss after having been dried
in an oven at a temperature of 300 �C. It takes about 2 years for
organic content (by the dry basis) to decrease from over 30% to
about 17%, and the C0

c value of HKWC MSW drops gradually to a
stable value (Zhan et al., 2008a).

Many studies have been performed to measure C0
c of various

MSWs, and the values of C0
c are then dispersed. Based on the fill age

and the kitchen waste content, MSWs are divided into four cate-
gories: fresh LKWC MSW, aged LKWC MSW, fresh HKWC MSW and
aged HKWC MSW. The distribution of C0

c in each kind of MSW is
shown in Fig. 6. As the fill age increases, the ranges of C0

c for both
LKWC and HKWC MSWs shorten. The average value of C0

c for the
fresh HKWCMSW is 0.295, but it drops to 0.204 for the aged HKWC
MSW. The average value of C0

c for the fresh LKWC MSW is 0.217,
reducing to 0.186 for the aged LKWC MSW, which is close to that of
Depth (m) kG (m2)

at a landfill in Beijing, China 1e4 (18e19.3) � 10�13

11e14 (2.7e3.3) � 10�13

22e25 (1.2e1.4) � 10�13

at New River Regional Landfill, 3e6 (11.1e22.5) � 10�12

6e12 (5.4e10.9) � 10�12

12e18 (3e7.3) � 10�12



M
od

ifi
ed

 p
ri

m
ar

y 
co

m
pr

es
si

on
 in

de
x 

(
)

0.0

0.2

0.4

0.6

0.8
HKWC MSW:
1- Liu et al. (2003)
2- Chen and Ke (2003)
3- Vilar and Carvalho (2004)
4- SQL
5- CCL

14- Oliver and Gourc (2007)
15- Hossain et al. (2003)
16- Wall and Zeiss (1995)
17~20- Bareither et al. (2012a)
21- Reddy et al. (2009b)
22- Stoltz and Gourc (2007)
23~25- Landva et al. (2000)
26- Gabr and Valeo (1995)

LKWC MSW:
6- Reddy et al. (2009a)
7- Reddy et al. (2009c)
8- Stoltz et al. (2010)
9- Rao et al. (1977)
10- Beaven and Powire (1995)
11, 12- Landva et al. (2000)
13- Oliver et al. (2003)

 Fresh 
HKWC
 MSW

26

25

24

23

22

21

20

17 19

18

16

15
14

13

12

11

109

8

7

6
5

43

2

 Aged 
HKWC
 MSW

c

 Aged 
LKWC
 MSW

 Fresh 
LKWC
 MSW

1

Stoltz et al. (2011)

Gabr and Valero (1995)
Oliver (2003)

Reddy et al. (2009b)

Reddy et al. (2009d)
17 20

23 25

Fig. 6. Range of C0
c of MSWs in the literature (Beaven and Powrie, 1995; Chen and Ke,

2003; Liu et al., 2003; Oliver, 2003; Oliver and Gourc, 2007; Rao et al., 1977; Stoltz and
Gourc, 2007; Stoltz et al., 2011).

0

20

40

60

80

100

0 15 30 45 60

LKWC MSW:
Hossain and Haque (2009), 20% 
Reddy et al. (2009b, d), 15%
Singh et al. (2009), 8%
Singh et al. (2009), 21%-25% 
Gabr and Valero (1995), 5% 
Gabr and Valero (1995), 10% 
Gabr and Valero (1995), 20% 
Zekkos et al. (2010), 18.3% 
Bareither et al. (2012b), 22.1% 

HKWC MSW:
Zhan et al. (2008a), 5% 
Zhan et al. (2008a), 10%
Zhan et al. (2008a), 15%
Feng (2005), 5%
Feng (2005), 10%
Feng (2005), 15%
Zhu et al. (2003), 6.5%-9.7%
Zhu et al. (2003), 15%

C
oh

es
io

n 
(k

Pa
)

Strain increasing
10%

5%

Fig. 7. Variation of shear strength indices with strain (Feng, 2005; Hossain and Haque,
2009; Zhu et al., 2003).

W. Gao et al. / Journal of Rock Mechanics and Geotechnical Engineering 7 (2015) 646e658 653
the aged HKWC MSW. The range of C0
c for the fresh LKWC MSW

extends from 0.045 to 0.389, and the range of that of fresh HKWC
MSW is relatively larger, from 0.13 to 0.46. But the range of C0

c for
the aged HKWC MSW (0.082e0.325) is similar to that of the aged
LKWC MSW (0.091e0.28).

5.2. Secondary compression of MSW

Compression generated by degradation is an important feature
of MSW that differs from soil. The secondary compression can be
calculated from the model proposed by Chen et al. (2010b) as
follows:

3s

�
s;tf

�
¼ ��

C0
cN�C0

c0
�
log10ðs=s0Þþ 3dcNðs0Þ

�h
1�exp

�
�cn0tf

�i

(4)

where 3s(s, tf) is the secondary strain of the MSW at a fill age of tf
under the applied load of s; s0 is the pre-consolidation pressure,
which can be chosen as 30 kPa when no test data are available (CJJ
176-2012, 2012); C0

c0 and C0
cN are the modified primary compres-

sion indices of the fresh MSW and the fully decomposed MSWs
respectively, which can be obtained through compression tests of
fresh and fully decomposed MSWs. Based on the data in Fig. 6 and
this model, the modified primary compression index Cc0(tf) for the
MSW with a fill age of tf can be calculated using the following
formula:

C0
c
�
tf
� ¼ C0

c0 þ
�
C0
cN � C0

c0
�h
1� exp

�
�c0tf

�i
(5)

In Eq. (4), 3dcN(s0) is the sum of the ultimate vertical strains of
decomposition compression and mechanical creep under s0. The
value of 3dcN(s0) can be obtained by subtracting the compressive
vertical strain of the fully decomposedMSWunder the applied load
of s0 from that of the fresh MSW. Chen et al. (2010b) conducted a
compression test using HKWCMSW,which lasted for 235 days; and
the strain as a result of decomposition and creep was 20.7%, which
reached the same magnitude as the primary compression (33.6%).
China’s technical code (CJJ 176-2012, 2012) recommends that the
3dcN(s0) value of HKWC MSW is 20%e30%. It is possible that the
long-term settlement could exceed the primary settlement under a
higher content of organics and a suitable biodegradation condition
for the HKWC MSW. For the LKWC MSW, the total decomposition
strain can be in the same order of magnitude as the mechanical
strain during filling and post filling periods (Oweis, 2006), but that
takes longer time to achieve.
In Eq. (4), c0 is the MSW decomposition rate. The c0 value can be
obtained from degradation compression tests performed under a
decomposition condition similar to that in the landfill, and can also
be estimated using the back-analysis of measured long-term set-
tlement data on similar landfills. The value of c0 for HKWC MSW is
generally greater than that for LKWC MSW. The recommended
value using China’s technical code (CJJ 176-2012, 2012) is 0.06e0.18
yr�1 for HKWC MSW. The higher the organic content and the more
suitable the biodegradation conditions, the higher the value of c0.

6. Shear strength of MSW

TheMSW shear strength is important for evaluating the stability
of landfill slopes. The MSW is considered to be a frictional material,
which often gives an increase in shear strength with increasing
stress levels, thus the shear strength of MSW is usually defined by
using the Coulomb failure criterion with two shear strength
indices: the cohesion (c) and the friction angle (4) (Dixon and Jones,
2005).

The shear behavior of MSW typically displays a progressive in-
crease in shear stress with increasing shear displacement, referred
to as the strain-hardening effect of the MSW (Kavazanjian et al.,
1999; Vilar and Carvalho, 2004; Harris et al., 2006; Zhan et al.,
2008a; Bareither et al., 2012a). Additionally, waste compositions
and material properties change as MSW decomposes, which has a
significant influence on shear strength of MSW.

Ten laboratory study cases were selected, of which three cases
were based on Chinese MSW and the rest were based on USA or
Canadian MSWs. The shear strength indices were used in terms of
total stress as MSW is generally unsaturated. Based on the current
data, the friction angle of HKWCMSW is relatively smaller than that
of the LKWC MSW, but the range of cohesion of the HKWC MSW is
similar to that of the LKWC MSW. Shear strength indices of HKWC
and LKWCMSWs in consideration of the effects of strain and fill age
are shown in Figs. 7 and 8, respectively.

6.1. Influence of strain on the shear strength of MSW

As shown in Fig. 7, the quadrant has been divided into different
zones using elliptic loci with the same strain level. As the strain
increases, the elliptic locus expands outwards, and both the friction
angle and the cohesion of the HKWC MSWs increase. According to
the results of Gabr and Valero (1995) and Singh et al. (2009),
increasing strain also leads to an increase in the shear strength
index of the LKWC MSWs.
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6.2. Influence of aging on the shear strength of MSW

In Fig. 8, the quadrant has been divided into different zones
using the radial loci with the same fill age. As the fill age increases,
the radial locus rotates clockwise. For HKWC MSW, the friction
angle increases while the cohesion decreases, but the shear
strength indices of LKWC MSWs do not match this pattern. Reddy
et al. (2011) conducted direct shear tests and triaxial tests under
the consolidated undrained (CU) condition to determine the shear
strength of synthetic MSW at different phases of degradation. The
synthetic MSW was prepared based on the composition of USA
MSW and was degraded in bioreactors with leachate recirculation.
It was observed that an increase in cohesion and a slight decrease in
friction angle present as the waste degrades. The trend is opposite
to that of HKWC MSW herein.

7. Analyses and discussions

As shown in Fig. 1, the proportions of chemical components in
HKWC and LKWC MSWs are quite different, which results in
distinct engineering properties. Eventually, the differences in en-
gineering properties of HKWC MSW lead to unique geo-
environmental issues in HKWC MSW landfills, such as high
leachate production, high leachate mound, low LFG collection ef-
ficiency, large settlement and slope stability problem. The causes of
these geo-environmental issues are analyzed and their effects on
the HKWC MSW landfill management are discussed in the
following sections.

7.1. Leachate production in HKWC MSW landfills

Given the high content of kitchen waste (more than 40%) and
the high water content in kitchen waste (about 70%), the IWC of
fresh HKWC MSW can be over 50%, which is higher than that of
LKWC MSW (less than 35%). Paper, cardboard and fine particles are
easily absorbablematerials that can absorb substantial quantities of
water from precipitation and from other materials, such as kitchen
waste (Hull et al., 2005). The total proportion of compositions in
HKWC MSW is less than that in LKWC MSW, as shown in Table 1.
Therefore, the FC of HKWC MSW is smaller than its IWC, but the FC
of LKWC MSW is higher than its IWC, which indicates that more
intracellular water in kitchenwaste can be released in HKWCMSW
than that in LKWCMSW. Furthermore, the leachate release process
is quicker for HKWC MSW due to the rapid degradation of kitchen
waste. As a result, leachate production is significant in HKWCMSW
landfills. A large quantity of leachate is produced in a HKWC MSW
landfill in Tunisia, despite the negative water balance of the site
(Zairi et al., 2014). According to the pilot-scale landfill experimental
results, a leachate production rate of HKWCMSW can reach as high
as 30% in the first two months (Xu et al., 2014). And field results
show that leachate production for HKWC MSW landfills increases
during the peak rainy seasons (Kularatne, 2015).

Leaching coefficient method is usually used to predict leachate
production in LKWCMSW landfills (Geng and Zheng, 2009; He and
Wu, 2013). However, it will underestimate the production of
leachate in HKWC MSW landfills because it does not consider the
leachate generated from the waste due to compression and
degradation (Pantini et al., 2014). It is especially significant for the
HKWCMSW landfills to predict the leachate production accurately.
Lan et al. (2012) proposed a modified method to consider that.
Compared with the leaching coefficient method, the modified
method gave a better prediction of leachate production.

7.2. Leachate mounds in HKWC MSW landfills

It can be seen from Fig. 4 that the permeability coefficient of
HKWC MSW (10�5e10�8 m/s) is lower by an order of magnitude
than that of LKWC MSW (10�3e10�8 m/s), and declines sharply
with the overburden depth. Given that the compaction effect is
minor, as shown in Fig. 3, the higher kitchen waste content in
HKWC MSW causes the permeability coefficient difference be-
tween HKWC and LKWC MSWs. The pores between solid particles
are compressed and the drainage channel is blocked with organic
degradation. In addition, humus generated by organic degradation,
a material with low permeability, fills the voids in the waste and
decreases the hydraulic conductivity of HKWC MSW.

The low permeability coefficient, which decreases with over-
burden depth, leads to leachate mounds more easily, affecting the
distribution of effective stresses in HKWC MSW landfills. Significant
leachate production for the HKWC MSW and the clogging of the
leachate collection and drainage system (LCDS) also contribute to
high leachate mounds in HKWC MSW landfills. Along with the
landfill process, the leachate level increases and the saturation area in
thewaste also enlarges. High leachatemoundsnot only aggravate the
leakage of leachate, but also threaten the stability of the landfill slope.

The level of the leachate mound depends on a dynamic equi-
librium between water input and output. Measures to control the
water input include reducing the water content of waste through
pre-compression before it is buried, covering the landfill surface to
prevent precipitation infiltration, ensuring the integrity of the liner
system to shield the inflow from the sides and bottom (He et al.,
2010). A more efficient LCDS, such as a three-dimensional
drainage configuration, is needed to guarantee the output of
leachate for the normal operation of HKWC MSW landfills.
Ensuring the performance of LCDS is critically important to reduce
the adverse effects induced by high leachate production of the
HKWC MSW.

7.3. LFG collection efficiency in HKWC MSW landfills

The potential CH4 generation capacity, L0, is influenced by waste
type and composition; the higher the waste cellulose content, the
higher the value of L0 (Alexander et al., 2005). As shown in Fig.1, the
average proportion of cellulose in LKWCMSW is higher than that in
HKWC MSW, thus the L0 value of LKWC MSW is larger than that of
the HKWCMSW. Nutrients and water are two factors that affect the
CH4 generation rate (k) (Alexander et al., 2005). The ratio of total
organic carbon to total nitrogen (C/N) ranging from 22 to 35 in
organic fractions is believed to be the optimal range for anaerobic
digester operation (Kayhanian and Hardy, 1994; Ma et al., 2007).
For LKWC MSW, the typical value of the C/N ratio is 49, which is
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larger than the optimal range as a result of higher proportions of
paper, while the C/N ratio of HKWC MSW is about 20 (Li and Guo,
2005; Sun, 2008). In addition, the water from the HKWC MSW is
sufficient for anaerobic degradation, which leads to a higher k value
for HKWC MSW than that for LKWC MSW.

Since the organic degradation and the overlying loads decrease
the void ratio, and release more leachate for HKWC MSW, a higher
degree of saturation of HKWC MSW can be more easily achieved,
resulting in disconnected travel paths of LFG, thus the field kG value
of HKWCMSW is an order of magnitude smaller than that of LKWC
MSW. The value of kG changes from 10�11 m2 to 10�13 m2 when the
degree of saturation of MSW increases from 0% to 87% based on
Table 8.

In 2012, the MSW quantity treated by landfills in China was as
much as 1.05 � 108 t (National Bureau of Statistics of the People’s
Republic of China, 2013). The potential production of LFG is still
staggering, though the L0 value of HKWCMSW is lower than that of
the LKWCMSW. According to statistic data, before the end of 2008,
26 LFG power projects have been built and put into operation with
the total power capacity of around 56.8 MW, and 2.234 million tons
of carbon dioxide equivalent abatement has been achieved annu-
ally by all of these LFG projects (Chen et al., 2010c). Environmental
impacts decrease significantly in landfills with the utilization of LFG
owing to the combined effects of greenhouse gas (GHG) emission
reduction and electricity generation (Dong et al., 2014). However,
the LFG collection efficiency in most HKWC MSW landfills is low
(Zairi et al., 2014). Zhao et al. (2009) evaluated the current MSW
management with respect to GHG emissions in Tianjin, and
concluded that the release of LFG from landfill contributed 68% to
the total GHG emissions. On one hand, the LFG in the shallow layer
may escape before the waste is covered due to a higher k value for
HKWC MSW; on the other hand, a lower kG value makes it much
more difficult to collect LFG. Increasing the LFG collection efficiency
will reduce the magnitudes of GHG emissions (Niskanen et al.,
2013; Yang et al., 2013).

Applying an enhanced temporary cover will prevent the pre-
cipitation infiltration and LFG leakage, and the LFG collection sys-
tem (LFGCS) is needed soon after MSW is buried. The design of the
final cover layer and its geotechnical and biological behaviors have
an important role in minimizing gas emissions to the atmosphere.
Capillary and methanotrophic final cover layers present lower CH4
flux rates than the conventional layer (Maciel and Jucá, 2011).
Implementing an active drainage system, such as pumping wells,
can lower the leachate level, which is conductive to the flow of LFG,
increase the influence radius of LFG extraction wells and therefore
increase the LFG collection efficiency in HKWC MSW landfills. The
leachate level is suggested to be controlled to be less than 30% of
the total waste thickness to achieve a high LFG collection efficiency
(Zhan et al., 2015).

7.4. Settlement in HKWC MSW landfills

As expected, the primary compression of fresh HKWC MSW is
greater than that of LKWC MSW because of the larger initial void
ratio (Li et al., 2013); the Cc0 value of fresh HKWCMSW ranges from
0.13 to 0.46 as shown in Fig. 6. Given the rapid degradation of
organic fractions in the HKWC MSW, the relative content of rigid
materials like glass and brick is increased, and thus the mechanical
compressibility of decomposed HKWCMSW is similar to that of the
decomposed LKWC MSW.

Organic degradation also makes a great contribution to the total
compression of MSWand is influenced by the mass of organics and
the decomposition conditions. Although the total content of
degradable components in LKWC MSW is generally higher than
that of the HKWC MSW, as shown in Fig. 1, compositions such as
paper, wood and textiles remain for 18 years in absence of water
(Zekkos et al., 2010). In comparison, the compression induced by
degradation of HKWC MSW can reach 20%e30% of the initial fill
height, and may exceed the magnitude of primary compression in
more suitable degradation conditions.

According to the long-term settlementmeasurements, the effect
of degradation on the development of secondary settlement is
changing. In a short time period, there is no significant increase in
the settlement rate due to biodegradation; however, in a long time
the settlement rate will increase as the effects of decomposition
become more significant (Bjarngard and Edgers, 1990; Wall and
Zeiss, 1995; Hossain and Gabr, 2005; Bareither et al., 2013; Xu
et al., 2015).

The total settlement in HKWC MSW landfills is considerably
large and it can result in an advantageous increase in storage ca-
pacity under effective management, which includes the improve-
ment of initial compaction, preferential decomposition conditions
and leachate mound reduction, which would increase the effective
overburden stress (Li et al., 2013).
7.5. Slope stability in HKWC MSW landfills

MSW is a type of strain-hardeningmaterial. Despite the fact that
the values of shear strength indices vary widely, an increase in the
shear strength of both the HKWC and the LKWC MSWs can be
observed as shear strain continues to rise. Nonetheless, organics in
HKWCMSW decrease rapidly and the proportions of inert particles
increase, such as glass, ash and cinder. The shear strength property
of HKWC MSW tends to be similar to that of sand in the process of
degradation, thus the effect of fill age on the shear behavior of
HKWC MSW is more significant than that for the LKWC MSW. A
landfill slope could become unstable tens of years after its
formation.

An evaluation of the shear strength taking into account strain-
hardening effects and aging effects will significantly affect the
design of a safe HKWC landfill slope over both the short and long
time.

In addition, landfill stability can be affected by leachate (Koerner
and Soong, 2000a,b): (1) making the waste heavier; (2) imposing a
hydrostatic head; (3) generating excess pore pressure due to
leachate recirculation; and (4) wetting the interfaces between the
geosynthetic materials and MSW. Several serious landfill slope
instability accidents are related to the leachate within landfills
(Koelsch et al., 2005; Merry et al., 2005; Blight, 2008). Chen et al.
(2010a) calculated that the safety factor for non-lined landfills re-
duces as the ratio of the leachate mound height to the maximum
MSW thickness increases. Decreasing the leachate mound is
absolutely necessary.
8. Conclusions

In this paper, based on the content of kitchenwaste, MSWswere
divided into HKWC and LKWCMSWs. Key engineering properties of
HKWC and LKWC MSWs were analyzed and compared, corre-
sponding management and design principles for HKWC MSW
landfills were proposed:

(1) Discrepancies in engineering properties between HKWC and
LKWC MSWs essentially come from different compositions of
fresh MSWs.

(2) Higher IWC but similar FC quantities result in higher leachate
production for HKWC MSW than that for LKWC MSW. Due to
the occurrence of early and higher leachate production and
lower hydraulic conductivity of MSW in HKWC MSW landfills,
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an effective performance of LCDS is necessary to avoid leachate-
induced issues.

(3) HKWC MSW has a faster generation rate but a shorter duration
and lower potential capacity of LFG than LKWCMSW. The lower
gas permeability of HKWCMSWopposed to that of LKWCMSW
exacerbates the difficulties of LFG collection in HKWC MSW
landfills. An enhanced temporary cover and a timely LFGCS are
necessary to prevent the LFG emission.

(4) The primary compression of decomposed HKWC MSW is
similar to that of decomposed LKWC MSW, but compression
induced by the degradation of HKWC MSW can be greater than
that of LKWCMSW. Correctmanagement, such as improvement
of initial compaction, preferential decomposition conditions
and leachate level reduction, will help to increase the capacity
of HKWC MSW landfills.

(5) MSW shear strength changes with time and strain, which is
particularly significant for HKWC MSW. It is necessary to take
the aging effect and strain-hardening effect into consideration
in order to assess HKWCMSW landfill slope stability and design
for safe landfills.

(6) Based on the engineering properties of HKWC MSW, quanti-
tative calculation methods and the corresponding design re-
quirements need to be developed.
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