
Physics Letters B 745 (2015) 48–51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Light-cone gravity in dS4

Sudarshan Ananth ∗, Mahendra Mali

Indian Institute of Science Education and Research, Pune 411008, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 March 2015
Accepted 6 April 2015
Available online 17 April 2015
Editor: M. Cvetič
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1. Introduction

Attempts to unite quantum mechanics and the general theory 
of relativity result in divergences which are difficult to treat. In this 
context, the resemblance of perturbative gravity to gauge theory 
is particularly striking. Specifically, the KLT relations [1] equate 
tree-level scattering amplitudes in pure gravity to the square of 
tree-level amplitudes in Yang–Mills theory. Over the past decade, 
our understanding of these relations and their origin has improved 
greatly. In particular, the Lagrangian origin of this connection is 
now well established [2]. At the lowest interaction order – the cu-
bic vertex – we now possess a plethora of interesting perturbative 
links between interacting theories of arbitrary spin [3] (making the 
cubic KLT relations merely one in a family).

Almost all these perturbative ties have been derived on flat 
spacetime backgrounds so it is natural to ask whether these re-
lations or their equivalents exist in curved spacetime backgrounds. 
While it is not clear what the stringy origin would be for a Yang–
Mills ∼ gravity link in curved spacetime, the question itself is 
interesting and well posed within the framework of quantum field 
theory.

This paper is a companion paper to our earlier formulation 
of pure gravity on an AdS4 background [4]. Although the differ-
ences in treatment from the anti-de Sitter case are not significant, 
we feel the closed form result for the light-cone gravity action in 
de Sitter will prove extremely useful in studies using perturbative 
quantum field theory (particularly in the context of cosmology). 
This closed form and the vertices that result from its expansion 
are also essential in the investigations of the perturbative ties de-
scribed above. Thus, in this paper, we formulate pure gravity in 
light-cone gauge, on a dS4 background.
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On a tangential note, the surprising ultraviolet behavior of 
N = 8 supergravity is thought to stem from the better-than-
expected behavior of pure gravity in the ultraviolet regime [5]. This 
motivates our study of pure gravity on various backgrounds, its na-
ture and the detailed structure of its Lagrangian in terms of the 
physical degrees of freedom.

Our approach in this paper is similar in spirit to [4,6]. We make 
suitable gauge choices and eliminate the unphysical degrees of 
freedom using the light-cone constraint relations. This will result 
in a closed form expression for the action of pure gravity in a de 
Sitter background. We also provide a perturbative expansion of this 
action to first order in the gravitational coupling constant (the cu-
bic interaction vertex).

2. Einstein gravity

The Einstein–Hilbert action, describing pure gravity, reads

SEH =
∫

d4x L = 1

2κ2

∫
d4x

√−g(R− 2�), (1)

where g = det gμν , R is the scalar curvature, � the cosmological 
constant of dS4 and κ2 = 8πG , the gravitational coupling constant.

This theory has been studied previously, in light-cone gauge, 
on both AdS4 and flat backgrounds [4,6]. In this paper, we for-
mulate pure gravity in dS4 characterized by a cosmological con-
stant, �. This will involve changes from both the flat spacetime
and anti-de Sitter approaches referred to above and we comment 
on these departures as and when they occur.

2.1. De Sitter space

De Sitter spacetime is a maximally symmetric Lorentzian space 
with positive (constant) curvature [7]. It is a solution of the equa-
tion
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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Rμν − 1

2
gμν + �gμν = 0, (2)

with cosmological constant �. De Sitter space is a hyperboloid em-
bedded in a five dimensional Minkowski space.

Consider a five-dimensional Minkowski spacetime with metric 
ηMN ≡ (−1, 1, 1, 1, 1) and coordinates ξ0, ξ1, ξ2, ξ3, ξ4. The in-
variant interval reads

ds2 = −(dξ0)2 + (dξ1)2 + (dξ2)2 + (dξ3)2 + (dξ4)2, (3)

with ξ M ∈ (−∞, +∞), M = 0 . . . 4. De Sitter space is the hypersur-
face

−(ξ0)2 + (ξ1)2 + (ξ2)2 + (ξ3)2 + (ξ4)2 = l2 = H−2, (4)

where we have related the radius of de Sitter space l to the Hubble 
constant H = l−1. A solution of (4) is

−(H ξ0)2 + (H ξ4)2 = 1 − (H xi)2 e2Ht,

(H ξ1)2 + (H ξ2)2 + (H ξ3)2 = (H xi)2 e2Ht, (5)

with

H ξ0 = sinh (H t) + (H xi)
2

2
eHt,

H ξ i = H xieH t,

H ξ4 = − cosh (H t) + (H xi)
2

2
eHt, (6)

where xi ∈ (−∞, +∞), i = 1, 2, 3 and t ∈ (−∞, +∞). In terms of 
these new coordinates, the induced metric is

ds2 = −(dt)2 + e2Ht{(dx1)2 + (dx2)2 + (dx3)2}. (7)

Our choice of coordinates in (6) impose the following constraint

−ξ0 + ξ4 = − 1

H
eHt ≤ 0 	⇒ ξ0 ≥ ξ4, (8)

implying that we are only covering one half of the de Sitter space 
(expanding Poincaré patch of dS). Within this patch, we define 
conformal time by

Hη = e−Ht, (9)

which modifies the metric (7) to

ds2 = 1

H2η2
(−dη2 + (dx1)2 + (dx2)2 + (dx3)2). (10)

Note that the conformal time runs from η = +∞ (t = −∞) to 
η = 0 (t = +∞). We work in this expanding Poincaré patch of dS4
but we could equally well have worked with the other patch (con-
tracting patch of dS).

3. Light-cone formulation of pure gravity on dS4

We start with the metric of (10) which reads

g(0)
μν = 1

H2η2
ημν , (11)

where ημν = (−1, 1, 1, 1, ) is the four-dimensional Minkowski 
metric. We now introduce light-cone coordinates, xμ ≡ (x+, x−, xi)

where

x± = η ± x3

√ , (12)

2

and i = 1, 2 label the transverse directions. The coordinate x+ is 
now the evolution parameter. In terms of these coordinates, the 
Minkowski metric is ηL.C.

μν (which is off-diagonal for the +, − co-
ordinates and diagonal for the i directions). We also define

X = x+ + x−. (13)

Our metric now reads

g(0)
μν = 2

H2 X2
ηL.C.

μν . (14)

The cosmological constant of dS4 is

� = 3H2. (15)

3.1. Light-cone action

We now proceed to gauge fix the Einstein–Hilbert action and 
derive a closed form expression for the action in terms of the phys-
ical degrees of freedom in the theory. We start with the light-cone 
gauge choices

g−− = g−i = 0, i = 1,2. (16)

Note that these choices are consistent with g(0)
μν since η−− =

η−i = 0. The fourth (and final) gauge choice will be made shortly. 
The other components of the metric are parametrized as follows.

g+− = − 2

H2 X2
eφ,

gi j = 2

H2 X2
eψγi j. (17)

φ, ψ are real and γi j is a real, symmetric and unimodular matrix 
describing the two physical degrees of freedom in the theory.

In light-cone gauge, a subset of the equations of motion Rμν −
1
2 gμνR = −� gμν represent constraint relations which may be 
solved. The key difference in dealing with constraint relations in 
dS4, as opposed to both AdS4 and flat space [4,6] stems from the 
fact that X in (17) depends on ∂− . Since constraint relations al-
ways contain ∂− we will need integrating factors to solve them. 
A listing of some useful formulae used in the following is pre-
sented in Appendix A. The first constraint relation reads R−− = 0
and combined with (17) implies that

∂−φ ∂−ψ − ∂−2ψ − 1

2
(∂−ψ)2 − 2

X
∂−φ + 1

4
∂−γ kl∂−γkl = 0

(18)

This constraint is exactly solvable if we make the following (fourth) 
gauge choice

φ = 1

2
ψ. (19)

Now (18) simplifies to

1

4
∂−γ kl∂−γkl − ∂−2ψ − 2

X
∂−φ = 0, (20)

which when multiplied by an integrating factor (X) results in

ψ = 1

4

1

∂−

[
1

X

1

∂−
(X∂−γ kl∂−γkl)

]
, (21)

where 1
∂− is defined following the prescription in [8]. Notice the 

difference in structure here (21) from the analogous results in AdS4
and flat space [4,6].
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We now move to the second constraint: R−i = 0. With use of 
an integrating factor, 1

X2 , this yields

g−i = H2 X2e−φ 1

∂−

[
X2γ i jeφ−2 ψ 1

∂−

{ 1

X2
eψ

(1

4
∂−γ kl∂ jγkl

− 1

2
∂−∂ jφ − 1

2
∂−∂ jψ + 1

2
∂ jφ∂−ψ − 2

X
∂ jφ

)
+ 1

2X2
∂l

(
eψγ kl∂−γ jk

)}]
. (22)

Having determined these components of the metric, we turn to the 
action

S =
∫

d4xL = 1

2κ2

∫
d4x

√−g
(

2g+−R+− + gij Ri j − 2�
)

,

(23)

which written out explicitly reads

S =
∫

d4x
1

H2 X2
eψ

(
24

X2
+ 4∂+∂−φ − 2∂+ψ∂−ψ − ∂+γ i j∂−γi j

)

− 1

H2 X2
eφγ i j (2∂i∂ jφ + ∂iφ∂ jφ − 2∂iφ∂ jψ

− 1

2
∂iγ

kl∂ jγkl + ∂iγ
kl∂kγ jl

)

− 4

H2 X2
eφ−2ψγ i j 1

∂−
Ri

1

∂−
R j − 8

H4 X4
eψeφ�, (24)

where

Ri = 1

X2
eψ

(1

4
∂−γ kl∂iγkl − 1

2
∂−∂iφ − 1

2
∂−∂iψ

+ 1

2
∂iφ∂−ψ − 2

X
∂iφ

)
+ 1

2X2
∂l

(
eψγ kl∂−γik

)
. (25)

While obtaining this expression, boundary terms have been
dropped. This closed form of the action (24) is valid in both 
patches of de Sitter.

3.2. Perturbative expansion

We now expand the action in (24) to first order in the gravita-
tional coupling constant. We parametrize γi j as follows.

γi j = (eH )i j,

with

H =
(

h11 h12
h12 h22

)
. (26)

h22 = −h11 ensures that this matrix is traceless. ψ in terms of 
these fluctuations is

ψ = −1

4

1

∂−

[
1

X

1

∂−
(X ∂−hij∂−hij)

]
+O(h4). (27)

We re-scale the h field according to

h → 1√
2κ

h. (28)

We now present the kinetic and cubic interaction vertices in the 
action (24).

S2 =
∫

d4xL2, (29)

where
L2 = 1

2H2 X4

1

∂−
(X∂−hij∂−hij) − 1

2H2 X3

∂+
∂−

(X∂−hij∂−hij)

+ 1

H2 X2
∂+hij∂−hij + 1

2H2 X2

∂i∂i

∂−

[
1

X

1

∂−
(X∂−h jk∂−h jk)

]

− 1

2H2 X2
∂ih jk∂ih jk + 1

H2 X2
∂ih jk∂ jhik

+ 3

H2 X4

1

∂−

[
1

X

1

∂−
(X∂−hij∂−hij)

]

− 1

H2 X2

1

∂−

(
1

X2
∂ j∂−hij

)
1

∂−

(
1

X2
∂k∂−hik

)
. (30)

From (19) and the last term in (24), it is obvious that the cosmo-
logical constant � (15) is always accompanied by ψ . Thus, given 
the structure of (27), � only contributes to interaction vertices in-
volving an even number of fields.

S3 =
∫

d4x
1√
2
L3, (31)

with

L3 = κ

{
1

H2 X2

1

∂−

(
1

X2
∂−h jk∂ih jk

)
1

∂−

(
1

X2
∂l∂−hil

)

− 3

H2 X2

1

∂−

[
1

X

∂i

∂−
(X∂−h jk∂−h jk)

]
1

∂−

(
1

X2
∂l∂−hil

)

− 1

H2 X2

1

∂−

(
1

X

∂i

∂−

[
1

X

1

∂−
(X∂−h jk∂−h jk)

])

× 1

∂−

(
1

X2
∂l∂−hil

)

+ 2

H2 X2

1

∂−

(
1

X2
∂ jh jk∂−hik

)
1

∂−

(
1

X2
∂l∂−hil

)

− 1

H2 X2

1

∂−

(
1

X2
∂ j∂−h2

i j

)
1

∂−

(
1

X2
∂l∂−hil

)

+ 1

H2 X2
hij

1

∂−

(
1

X2
∂k∂−hik

)
1

∂−

(
1

X2
∂l∂−hil

)}
. (32)

As expected, both the closed form and the perturbative ex-
pansions involve fields tangled with the coordinates (here x+
and x−) and involve conformal-like factors. From these expres-
sions, it would be interesting to understand how to extract ampli-
tudes and other related structures. Clearly, it would interesting to 
extend our work to quartic order in the fields and work out how 
to deal with the time derivatives (∂+) that begin to appear then 
(usually handled using a suitable field redefinition). One interest-
ing but perhaps impractical idea would be to identify a general 
closed form expression for the action describing light-cone gravity 
which may be tuned to the spacetime of our choice: whether flat, 
AdS or dS. Finally, such a closed form expression could prove fruit-
ful in identifying the origin of the better than expected ultraviolet
behavior seen in pure gravity [5].

Appendix A. Useful results

�+++ = 1

2
g+−[2∂+g+− − ∂−g++]

�++− = 0

�+−− = 0

�+
i− = 0

�+
i+ = 1

g+−[∂i g+− − ∂−gi+]

2
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�+
i j = −1

2
g+−∂−gij

�−−− = g+−∂−g+−

�−+− = 1

2
{g+−∂−g++ + g−i[∂−gi+ − ∂i g+−]}

�−++ = 1

2
{g+−∂+g++ + g−−[2∂+g+− − ∂−g++]

+ g−i[2∂+gi+ − ∂i g++]}
�−

+i = 1

2
{g+−∂i g++ + g−−[∂i g+− − ∂−gi+]

+ g− j[∂i g+ j + ∂+gij − ∂ j g+i]}

�−
−i = 1

2
{g+−[∂i g+− + ∂−g+i] + g− j∂−gij}

�−
i j = 1

2
{g+−[∂i g+ j + ∂ j g+i − ∂+gij] − g−−∂−gij

+ g−k[∂i gkj + ∂ j gik − ∂k gi j]}

�i
jk = 1

2
{−g−i∂−g jk + gim[∂ j gmk + ∂k gmj − ∂m g jk]}

�i
− j = 1

2
gik∂−gkj

�i+− = 1

2
gij[∂−g j+ − ∂ j g+−]

�i
+ j = 1

2
{g−i[∂ j g+− − ∂−g+ j] + gik[∂ j g+k + ∂+gkj − ∂k g+ j]}

�i++ = 1

2
{g−i[2∂+g+− − ∂−g++] + gij[2∂+g+ j − ∂ j g++]}

�i−− = 0

�
j
i j = 1

2
{−g− j∂−gij + g jl[∂ j gli + ∂i glj − ∂l gi j]}
Frequently used quantities

g+− = − H2 X2

2
e−φ,

gij = H2 X2

2
e−ψγ i j,

γ i j = (e−H )i j,

gμν gμρ = δν
ρ 	⇒ g++ = g+i = 0,

g+i = −g+−gij g− j,

g++ = − 4

H4 X4
eψ g−− + 2

H2 X2
eφ g−i g+i,

γ i jγi j = 2,

γ i j∂kγi j = γ i j∂−γi j = 0,

√−g = 4

H4 X4
eψeφ.
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