opportunity cost. These issues informed the development of a new checklist, which was subsequently applied. Critical appraisals of cost-effectiveness studies should consider the aforementioned issues to conclude on their quality and potential to inform decision-making. More research is needed to how quantify the opportunity costs of complex interventions, particularly when multiple sectors are affected.

PRM257 THE VACCINE PORTFOLIO MANAGEMENT MODEL AS AN EFFICIENCY TOOL FOR JAPAN
Scheerou N1, Van Vlaenderen I2, Morika Y3, Topachovskyi O4, Standaert B3
1Kenya Biopharma c/o GSK Vaccines, Warsaw, Belgium, 2CHESS in Health, Ternat, Belgium, 3Japan Vaccine Co. Ltd., Tokyo, Japan, 4Digital Health Outcomes, Kiev, Ukraine, 5GSK Vaccines, Warsaw, Belgium

Health authorities may face a variety of options when deciding upon expanding their national pediatric immunization programs, ranging between an ad-hoc vaccine selection and an integrated multi-year program to achieve efficiency goals. The vaccine portfolio management model allows the comparison of these two options over a fixed period of time. This optimization model is based on disease burden, vaccine impact and associated costs which are balanced against available vaccination business opportunities. An example public health priorities. Potential targets consist of reduction in disease events, or GP visits, or hospital occupancy rates, or deaths, or disease management cost. The model determines the optimal combination of vaccines selected per year, resulting in achieving the targeted public health outcome at the lowest annual budget. The financial results are then compared with those obtained after an ad-hoc selection of vaccines. The model was adapted for Japan in children up to 5 years old considering vaccines against pneumococcal disease, rotavirus, mumps and influenza disease based on published data. As an exemplary objective function we selected the reduction in hospital occupancy rates by 35% over a 5-year period. The portfolio model indicates that the optimal strategy consists of vaccinating against rotavirus, influenza, and mumps at 90% coverage and 55% vaccine coverage against pneumococcal disease, requiring an annual budget of 331 million EUR. In case of a lower budget, the vaccine selection would prioritize first rotavirus, followed by influenza, then mumps and pneumococcal vaccine (depending on the available budget) to reduce hospital occupancy rates to a maximum extent. With an ad-hoc selection of vaccine introduction, the budget required to achieve the same objective function may increase by more than 10% each year compared with the previous vaccine, and in an anonymous multi-layered capture approach to collect de-identified, publication-worthy clinical and resource utilization data in a probability sample of patients with a rare disease (pulmonary non- small cell lung cancer (PNTM)) with a new use of an old methodology (Delphi expert survey). METHODS: First-round studies in France, Germany, Italy, Spain, and the United Kingdom were conducted on a blinded physician panel “bilateral physician specialty proportion survey” to determine the probability of physician selection by specialty (2,585 participating physicians), a nationally representative chart review with participating physicians to determine target patients by region (619 physicians - 1,429 patients) and a Delphi strategy to estimate national target populations (by six internationally recognized PNTM experts) to gain consensus on annual prevalence of PNTM for each target country. A second-round of survey and use of the collaborative estimation process is currently being completed consisting of a chart review with physicians of a nationally representative sample (n=30 per country) in a treatment refractory sub-group of PNTM patients to capture country specific treatment patterns and disease-related costs. “Refactory” is defined as at least one year of no clinical or functional improvement despite 6 months of treatment. RESULTS: We developed a rigorous methodology to identify a sub-group population to address the gap of actual disease prevalence by country. Publication reviewers have consistently and consequently confirmed the first-round epidemic model methodology with their respective required scientific standards. CONCLUSIONS: Observational chart surveys in rare diseases that obtain a probability sample, a requirement for sample validity, can be used to provide essential disease-related metrics to populate market access and reimbursement evaluation procedures.

PRM261 A CONCEPTUAL SEARCH FILTER TO IDENTIFY REAL-WORLD EVIDENCE
Ogden K1, Thompson JC2, Halfpenny NJ2, Scott DA3
1ICON, San Francisco, CA, USA, 2ICON Health Economics, Oxford, UK, 3ICON Health Economics

OBJECTIVE: Systematic reviewers utilise filters to focus searches of electronic databases to identify specific study designs. Established, tested search filters are available from groups which regularly conduct reviews such as the Cochrane Group, SIGN and CADTH. Although studies in the real-world are not new, novel phrases such as real-world evidence (RWE) are increasingly used to identify observational studies. Currently available search filters for observational and non-randomised studies do not adequately capture newer terms used. We have thus developed a method to identify frequently used MeSH terms in RWE studies and a search filter to include these terms. METHODS: A PubMed (MEDLINE) search for RWE stated in the title/abstract was conducted. Articles with “real-world” and/or “outcome reporting” were chosen for inclusion in the search filter. RESULTS: The MEDLINE search identified 179 studies reporting RW and either data, evidence or research in the title or abstract were selected. Case Reports, Comment, Editorial, Letter, News were removed. MeSH terms associated with articles were analysed and frequency counted; those relating to study design or outcome reporting were chosen for inclusion in the search filter. RESULTS: The MEDLINE search identified 179 studies reporting RW and either data, evidence or research in the title of the 179, 151 were publication types of interest. The most commonly used related to RWE (Real-World Evidence) (n=30), “Evidence-based Medicine” (n=17), “Retrospective Studies” (n=15), “Databases, Factual” (n=14), and “Time Factors” (both n=14). A search strategy was developed combining MeSH and free-text terms to identify RWE. CONCLUSIONS: For a systematic review, we validated search filters to ensure they are retrieving relevant studies; as new terminologies such as RWE are introduced to describe study design, reviewers need to adapt search filters. The method proposed allows searches to be adapted as terminologies are introduced and become more established.

PRM262 METHODOLOGICAL GUIDELINES FOR ECONOMIC DRUG EVALUATION STUDIES IN PORTUGAL: MAJOR GAPS AND NEW TOPICS IN THE STUDIES EVALUATED BETWEEN 2010 AND 2014
Garcia MC1, Caldeira S, Fernandes C, Teixeira M
1INFARMED, I.P., Lisbon, Portugal

The most frequently used MeSH terms related to RWE identified were ‘Treatment Outcome’ (n=30), ‘Evidence-based Medicine’ (n=17), ‘Retrospective Studies’ (n=15), “Databases, Factual” (n=14), and “Time Factors” (both n=14). A search strategy was developed combining MeSH and free-text terms to identify RWE. CONCLUSIONS: For a systematic review, we validated search filters to ensure they are retrieving relevant studies; as new terminologies such as RWE are introduced to describe study design, reviewers need to adapt search filters. The method proposed allows searches to be adapted as terminologies are introduced and become more established.