Weighted inequalities for negative powers of Schrödinger operators ${ }^{\sim}$

B. Bongioanni, E. Harboure *, O. Salinas

Departamento de Matemática, Facultad de Ingeniería Química, Universidad Nacional del Litoral, and Instituto de Matemática Aplicada del Litoral, Santa Fe, Argentina

A R T I C L E I N F O

Article history:

Received 15 February 2008
Available online 3 July 2008
Submitted by R.H. Torres

Keywords:

Schrödinger operator
BMO
Fractional integration
Weights

Abstract

In this article we obtain boundedness of the operator $(-\Delta+V)^{-\alpha / 2}$ from $L^{p, \infty}(w)$ into weighted bounded mean oscillation type spaces $B M O_{\mathcal{L}}^{\beta}(w)$ under appropriate conditions on the weight w. We also show that these weighted spaces also have a point-wise description for $0<\beta<1$. Finally, we study the behaviour of the operator $(-\Delta+V)^{-\alpha / 2}$ when acting on $B M O_{\mathcal{L}}^{\beta}(w)$.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the Schrödinger operator on \mathbb{R}^{d} with $d \geqslant 3$,

$$
\mathcal{L}=-\Delta+V
$$

where $V \geqslant 0$ is a function satisfying, for some $q>\frac{d}{2}$, the reverse Hölder inequality

$$
\left(\frac{1}{|B|} \int_{B} V(y)^{q} d y\right)^{1 / q} \leqslant \frac{C}{|B|} \int_{B} V(y) d y
$$

for every ball $B \subset \mathbb{R}^{d}$. The set of functions with the last property is usually denoted by $R H_{q}$.
It is well known that negative powers of the Schrödinger operator can be expressed in terms of the heat diffusion semigroup generated by \mathcal{L} as

$$
\mathcal{I}_{\alpha} f(x)=\mathcal{L}^{-\alpha / 2} f(x)=\int_{0}^{\infty} e^{-t \mathcal{L}} f(x) t^{\alpha / 2} \frac{d t}{t}, \quad \alpha>0
$$

For each $t>0$ the operator $e^{-t \mathcal{L}}$ is an integral operator with kernel $k_{t}(x, y)$ having a better behaviour far away form the diagonal than the classical heat kernel. Some useful properties of k_{t} where obtained in [3,4,6]. As a consequence $\mathcal{I}_{\alpha} f$ turns out to be finite a.e. even if f belongs to L^{p} with p greater than the critical index d / α. Particularly, in [1] the authors proved that \mathcal{I}_{α} maps $L^{d / \alpha}$ into an appropriate substitute of L^{∞} denoted by $B M O_{\mathcal{L}}$ which in fact is smaller than the classical BMO space of John-Nirenberg.

[^0]In this work we extend and improve their result by analysing the behaviour of \mathcal{I}_{α} on weighted weak L^{p} spaces with $p \geqslant d / \alpha$ for a suitable class of weights. In order to do that we introduce a family of spaces $B M O_{\mathcal{L}}^{\beta}(w)$ that includes, as a particular case, the space $B M O_{\mathcal{L}}$. We point out that in the case of $w \equiv 1$ and $p=d / \alpha$, we obtain a better result than that in [1] since L^{p} is strictly contained in weak L^{p}.

It is worth mentioning that for $w \equiv 1$ the spaces $B M O_{\mathcal{L}}^{\beta}$ are the duals of the H^{p}-spaces introduced in [2] and [4], as it can be easily checked from the atomic decomposition given there. For $\beta=0$ such representation was already pointed out in [1].

We also study the behaviour of \mathcal{I}_{α} on $\mathrm{BMO}_{\mathcal{L}}^{\beta}(w)$ proving that, under appropriate conditions on the weight, they are transformed into $B M O_{\mathcal{L}}^{\beta+\alpha}(w)$. In proving such result we give a point-wise characterization of our spaces $B M O_{\mathcal{L}}^{\beta}(w)$ when $0<\beta<1$, which we believe to be of independent interest.

Finally, we remark that when the potential V belongs to $R H_{d / 2}$, as it is the case of the Hermite differential operator, the classes of weights for which we prove our boundedness results coincide with those obtained in [5] for $V=0$.

This article is organized as follows. In Section 2 we introduce the family of spaces $B M O_{\mathcal{L}}^{\beta}(w)$ and we prove some basic properties. In particular the aforementioned point-wise description is given in Proposition 4 . The remaining two sections contain the main results: Section 3 is devoted to the analysis of \mathcal{I}_{α} acting on $L^{p, \infty}(w)$ while Section 4 deals with the boundedness on $B M O_{\mathcal{L}}^{\beta}(w)$.

2. $\mathrm{BMO}_{\mathcal{L}}^{\beta}(\boldsymbol{w})$ spaces

For a given potential $V \in R H_{q}$, with $q>\frac{d}{2}$, we introduce the function

$$
\rho(x)=\sup \left\{r>0: \frac{1}{r^{d-2}} \int_{B(x, r)} V \leqslant 1\right\}, \quad x \in \mathbb{R}^{d}
$$

Due to the above assumptions $\rho(x)$ is finite for all $x \in \mathbb{R}^{d}$. This auxiliary function plays an important role in the estimates of the operators and in the description of the spaces associated to \mathcal{L} (see [1,3,4,7]).

The following propositions contain some properties of ρ that will be useful in the sequel.

Proposition 1. (See [7, Lemma 1.4].) There exist C and $k_{0} \geqslant 1$ such that

$$
\begin{equation*}
C^{-1} \rho(x)\left(1+\frac{|x-y|}{\rho(x)}\right)^{-k_{0}} \leqslant \rho(y) \leqslant C \rho(x)\left(1+\frac{|x-y|}{\rho(x)}\right)^{\frac{k_{0}}{k_{0}+1}} \tag{1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{d}$.
Throughout this work, we denote $w(E)=\int_{E} w$ for every measurable subset $E \subset \mathbb{R}^{d}$, and $C B=B(x, C r)$, for $x \in \mathbb{R}^{d}, r>0$ and $C>0$.

Proposition 2. (See [2].) There exists a sequence of points $\left\{x_{k}\right\}_{k=1}^{\infty}$ in \mathbb{R}^{d}, so that the family $B_{k}=B\left(x_{k}, \rho\left(x_{k}\right)\right)$, $k \geqslant 1$, satisfies
(1) $\bigcup_{k} B_{k}=\mathbb{R}^{d}$.
(2) There exists N such that, for every $k \in \mathbb{N}$, $\operatorname{card}\left\{j: 4 B_{j} \cap 4 B_{k} \neq \emptyset\right\} \leqslant N$.

We denote by $L_{\text {loc }}^{1}$ the set of locally integrable functions of \mathbb{R}^{d}. For $\eta \geqslant 1$ and w a weight, i.e. $w \geqslant 0$ and $w \in L_{\text {loc }}^{1}$, we say that $w \in D_{\eta}$ if there exists a constant C such that

$$
w(t B) \leqslant C t^{d \eta} w(B),
$$

for every ball $B \subset \mathbb{R}^{d}$ and $t \geqslant 1$.
It is easy to see that a weight w belongs to $D=\bigcup_{\eta \geqslant 1} D_{\eta}$ if and only if it satisfies the doubling condition

$$
w(2 B) \leqslant C w(B) .
$$

For $\beta \geqslant 0$ we define the space $B M O_{\mathcal{L}}^{\beta}(w)$ as the set of functions f in $L_{\text {loc }}^{1}$ satisfying for every ball $B=B(x, R)$, with $x \in \mathbb{R}^{d}$ and $R>0$,

$$
\begin{equation*}
\int_{B}\left|f-f_{B}\right| \leqslant C w(B)|B|^{\beta / d}, \quad \text { with } f_{B}=\frac{1}{|B|} \int_{B} f, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B}|f| \leqslant C w(B)|B|^{\beta / d}, \quad \text { if } R \geqslant \rho(x) . \tag{3}
\end{equation*}
$$

Let us note that if (3) is true for some ball B then (2) holds for the same ball, so we might ask to (2) only for balls with radii lower than $\rho(x)$.

The constants in (2) and (3) are independent of the choice of B but may depend on f. A norm in the space $B M O_{\mathcal{L}}^{\beta}(w)$ can be given by the maximum of the two infima of the constants that satisfy (2) and (3) respectively.

The case $\beta=0$ and $w \equiv 1$ was introduced in [1] as a natural substitute of L^{∞} in the context of the semigroup generated by the operator \mathcal{L}. As in that case we can replace condition (3) by the following weaker condition (4) that only takes into account critical balls.

Proposition 3. Let $\beta \geqslant 0$ and $w \in D_{\eta}$. If $\left\{x_{k}\right\}_{k=1}^{\infty}$ is a sequence as in Proposition 2, then a function f belongs to $\mathrm{BMO}_{\mathcal{L}}^{\beta}$ (w) if and only if f satisfies (2) for every ball, and

$$
\begin{equation*}
\int_{B\left(x_{k}, \rho\left(x_{k}\right)\right)}|f| \leqslant C w\left(B\left(x_{k}, \rho\left(x_{k}\right)\right)\right)\left|\rho\left(x_{k}\right)\right|^{\beta}, \quad \text { for all } k \geqslant 1 . \tag{4}
\end{equation*}
$$

Proof. Let f satisfy (4), and let $B=B(x, R)$ be a ball with radius $R>\rho(x)$. From Proposition 2 the set

$$
F=\left\{k: B \cap B_{k} \neq \emptyset\right\}
$$

is finite and

$$
\begin{equation*}
\sum_{k \in F_{B_{k}}} \int_{\bigcup_{k \in F} B_{k}} w \leqslant(N+1) \int w, \tag{5}
\end{equation*}
$$

where N is the constant controlling the overlapping (see Proposition 2).
It is easy to see that for some constant $C, B_{k} \subset C B$ for every $k \in F$. In fact, if $z \in B_{k} \cap B$, from (1),

$$
\begin{aligned}
\rho\left(x_{k}\right) & \leqslant C \rho(z)\left(1+\frac{\left|x_{k}-z\right|}{\rho\left(x_{k}\right)}\right)^{k_{0}} \leqslant C 2^{k_{0}} \rho(z) \\
& \leqslant C 2^{k_{0}} \rho(x)\left(1+\frac{|x-z|}{\rho(x)}\right)^{\frac{k_{0}}{k_{0}+1}} \leqslant C 2^{k_{0}} \rho(x)\left(1+\frac{R}{\rho(x)}\right) \\
& \leqslant C 2^{k_{0}+1} R,
\end{aligned}
$$

then

$$
\begin{aligned}
\int_{B}|f| & \leqslant \sum_{k \in F_{B \cap B_{k}} \int|f| \leqslant \sum_{k \in F_{B_{k}}}|f|} \quad \leqslant C \sum_{k \in F} w\left(B_{k}\right)\left|B_{k}\right|^{\beta / d} \leqslant C|B|^{\beta / d} \sum_{k \in F F_{B_{k}}} \int_{\cup_{k \in F}} w \\
& \leqslant C|B|^{\beta / d} \int_{B_{k}} w \leqslant C|B|^{\beta / d} \int_{C B} w .
\end{aligned}
$$

Since we assumed that w is doubling the last expression is bounded up to a constant by $w(B)|B|^{\beta / d}$.
Corollary 1. A function f belongs to $B M O_{\mathcal{L}}^{\beta}(w)$ if and only if condition (2) is satisfied for every ball $B=B(x, R)$ with $x \in \mathbb{R}^{d}$ and $R<\rho(x)$, and

$$
\begin{equation*}
\int_{B(x, \rho(x))}|f| \leqslant C w(B(x, \rho(x)))|\rho(x)|^{\beta}, \quad \text { for all } x \in \mathbb{R}^{d} . \tag{6}
\end{equation*}
$$

For $\beta>0$ and $w \in L_{\text {loc }}^{1}$, we define

$$
W_{\beta}(x, r)=\int_{B(x, r)} \frac{w(z)}{|z-x|^{d-\beta}} d z .
$$

for all $x \in \mathbb{R}^{d}$ and $r>0$.

We introduce a kind of Lipschitz space $\Lambda_{\mathcal{L}}^{\beta}(w)$ as the set of functions f such that

$$
\begin{equation*}
|f(x)-f(y)| \leqslant C\left[W_{\beta}(x,|x-y|)+W_{\beta}(y,|x-y|)\right] \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x)| \leqslant C W_{\beta}(x, \rho(x)) \tag{8}
\end{equation*}
$$

for almost all x and y in \mathbb{R}^{d}.
It is possible to define a norm in these spaces by taking the maximum of the two infima of the constants that satisfy Eqs. (7) and (8) respectively.

Remark 1. For almost every $x \in \mathbb{R}^{d}, W_{\beta}(x, r)$ is finite for all $r>0$, and it is always increasing as a function of r. Also, if w satisfies the doubling condition, then we have

$$
\begin{equation*}
W_{\beta}(x, 2 r) \leqslant C W_{\beta}(x, r) \tag{9}
\end{equation*}
$$

for almost every $x \in \mathbb{R}^{d}$ and $r>0$, where the constant C does not depend on r or x.
Proposition 4. If $0<\beta<1$ and w satisfies the doubling condition, then

$$
\Lambda_{\mathcal{L}}^{\beta}(w)=B M O_{\mathcal{L}}^{\beta}(w)
$$

and the norms are equivalent.
Proof. Let f be in $B M O_{\mathcal{L}}^{\beta}(w)$ with $\|f\|_{B M O_{\mathcal{L}}^{\beta}(w)}=1, x$ and y in \mathbb{R}^{d}. Since f satisfies (2), from [5, Proposition 1.3] we obtain

$$
|f(x)-f(y)| \leqslant C\left[W_{\beta}(x, 2|x-y|)+W_{\beta}(y, 2|x-y|)\right]
$$

for all x and y Lebesgue points of f. Hence, Remark 1 implies that f satisfies (7).
To verify (8), if $x \in \mathbb{R}^{d}$ is a Lebesgue point of f, and $B=B(x, \rho(x))$, from (7) and condition (3), we have

$$
\begin{align*}
|f(x)| & \leqslant \frac{1}{|B|} \int_{B}|f(x)-f(y)| d y+\frac{1}{|B|} \int_{B}|f(y)| d y \\
& \leqslant \frac{C}{|B|}\left(\int_{B} W_{\beta}(x,|x-y|) d y+\int_{B} W_{\beta}(y,|x-y|) d y+w(B)|B|^{\frac{\beta}{d}}\right) \tag{10}
\end{align*}
$$

In the last sum, by Remark 1, the first term is

$$
\int_{B} W_{\beta}(x,|x-y|) d y \leqslant|B| W_{\beta}(x, \rho(x))
$$

For the second term of (10), if $y \in B$, we have $B(y,|x-y|) \subset B(x, 2 \rho(x))$, then

$$
\begin{aligned}
\int_{B} W_{\beta}(y,|x-y|) d y & \leqslant \int_{B(x, 2 \rho(x))} w(z)\left(\int_{B} \frac{1}{|z-y|^{d-\beta}} d y\right) d z \\
& \leqslant C|B|^{\beta / d} w(B) \leqslant C|B| W_{\beta}(x, \rho(x))
\end{aligned}
$$

Finally, the last term of (10) is bounded by

$$
|B|^{\frac{\beta}{d}-1} w(B) \leqslant W_{\beta}(x, \rho(x)),
$$

and we have shown that (8) is satisfied.
In order to prove the other inclusion, consider $\|f\|_{\Lambda_{\mathcal{L}}^{\beta}(w)}=1$. From [5, Proposition 1.3] we have that (7) implies (2). To see condition (3), let $x \in \mathbb{R}^{d}$ and $R \geqslant \rho(x)$. If $y \in B(x, R)$, from Proposition 1 ,

$$
\rho(y) \leqslant C \rho(x)\left(1+\frac{|x-y|}{\rho(x)}\right)^{\frac{k_{0}}{k_{0}+1}} \leqslant C \rho(x)\left(\frac{R}{\rho(x)}\right)^{\frac{k_{0}}{k_{0}+1}} \leqslant C R
$$

and thus by (8)

$$
\begin{aligned}
\int_{B(x, R)}|f(y)| d y & \leqslant \int_{B(x, R)} \int_{B(y, \rho(y))} \frac{w(z)}{|z-y|^{d-\beta}} d z d y \\
& \leqslant \int_{B(x, C R)} w(z) \int_{B(x, R)} \frac{1}{|z-y|^{d-\beta}} d y d z \\
& \leqslant C R^{\beta} w(B(x, C R)) \\
& \leqslant C|B(x, R)|^{\beta / d} w(B(x, R)),
\end{aligned}
$$

where in the last inequality we have used the fact that w is doubling.
Remark 2. Observe that in the last proof (see inequality (10)) we have shown that (6) and (7) with $|x-y|<\rho(x)$ implies (8), and thus conditions (6) and (7) imply that f belongs to $\Lambda_{\mathcal{L}}^{\beta}(w)$.

3. \mathcal{I}_{α} on $L^{p, \infty}(w)$ spaces

We begin by stating a series of lemmas that will be useful in proving the main results. We omit the proofs though we provide references where they can be found.

For $L^{p, \infty}(w), p>1$, we mean the space of measurable functions f such that

$$
\begin{equation*}
[f]_{p, w}=\left(\sup _{t>0} t^{p}\left|\left\{x: \frac{|f(x)|}{w(x)}>t\right\}\right|\right)^{1 / p} \tag{11}
\end{equation*}
$$

is finite. The quantity (11) is not a norm (triangular inequality fails) but it turns to be equivalent to a norm. Clearly, the Lebesgue spaces $L^{p}(w)=\left\{f: \int_{\mathbb{R}^{d}}|f / w|^{p}<\infty\right\}$ are continuously embedded in $L^{p, \infty}(w)$.

As usual p^{\prime} denotes the Hölder conjugate exponent of p.
Lemma 1. (See [5].) Let $p>1$ and w a weight in $R H_{p^{\prime}}$. If f is a locally integrable function and B is a ball in \mathbb{R}^{d} then, there exists a constant C such that

$$
\int_{B}|f| \leqslant C w(B)|B|^{-\frac{1}{p}}[f]_{p, w}
$$

For $t>0$, let k_{t} be the kernel of $e^{-t \mathcal{L}}$. Then, the kernel of \mathcal{I}_{α} is given by the formula

$$
\begin{equation*}
K_{\alpha}(x, y)=\int_{0}^{\infty} k_{t}(x, y) t^{\alpha / 2} \frac{d t}{t} \tag{12}
\end{equation*}
$$

Some estimates of k_{t} are presented below.

Lemma 2. (See [6].) Given $N>0$, there exists a constant C such that for all x and y in \mathbb{R}^{d},

$$
k_{t}(x, y) \leqslant C t^{-d / 2} e^{-\frac{|x-y|^{2}}{C t}}\left(1+\frac{\sqrt{t}}{\rho(x)}+\frac{\sqrt{t}}{\rho(y)}\right)^{-N}
$$

As a consequence of the previous lemma we have

$$
\begin{equation*}
K_{\alpha}(x, y) \leqslant \frac{C}{|x-y|^{d-\alpha}} \tag{13}
\end{equation*}
$$

for all x and y in \mathbb{R}^{d}.
Lemma 3. (See [4, Proposition 4.11].) Given $N>0$ and $0<\delta<\min \left(1,2-\frac{d}{q}\right)$, there exists a constant C such that

$$
\left|k_{t}(x, y)-k_{t}\left(x_{0}, y\right)\right| \leqslant C\left(\frac{\left|x-x_{0}\right|}{\sqrt{t}}\right)^{\delta} t^{-d / 2} e^{-\frac{|x-y|^{2}}{C t}}\left(1+\frac{\sqrt{t}}{\rho(x)}+\frac{\sqrt{t}}{\rho(y)}\right)^{-N}
$$

for all x, y and x_{0} in \mathbb{R}^{d} with $\left|x-x_{0}\right|<\sqrt{t}$.

A function ψ is rapidly decaying (see [3]) if for every $N>0$ there exists a constant C_{N} such that

$$
|\psi(x)| \leqslant C_{N}(1+|x|)^{-N}
$$

If ψ is a real function on \mathbb{R}^{d} and $t>0$, we define

$$
\psi_{t}(x)=\frac{1}{t^{d / 2}} \psi\left(\frac{x}{\sqrt{t}}\right)
$$

We will also need some estimates for the kernel

$$
q_{t}(x, y)=k_{t}(x, y)-\tilde{k}_{t}(x, y)
$$

for all $x, y \in \mathbb{R}^{d}$ and $t>0$, where \tilde{k}_{t} is the kernel of the classical heat operator $e^{-t \Delta}$.
Lemma 4. (See [3].) There exists a rapidly decaying function $\psi \geqslant 0$ such that

$$
q_{t}(x, y) \leqslant C\left(\frac{\sqrt{t}}{\rho(x)}\right)^{2-\frac{d}{q}} \psi_{t}(x-y)
$$

for all x, y in \mathbb{R}^{d} and $t>0$.
Lemma 5. (See [3].) For every $0<\delta<\min \left(1,2-\frac{d}{q}\right)$ and C, there exists a rapidly decaying function ψ such that

$$
\left|q_{t}(x, y+h)-q_{t}(x, y)\right| \leqslant C^{\prime}\left(\frac{|h|}{\rho(x)}\right)^{\delta} \psi_{t}(x-y)
$$

for all x, y and in \mathbb{R}^{d} and $t>0$, with $|h|<C \rho(y)$ and $|h|<\frac{|x-y|}{4}$.
In [1] the authors obtain boundedness of \mathcal{I}_{α} from $L^{d / \alpha}$ into $B M O_{\mathcal{L}}=B M O_{\mathcal{L}}^{0}$. The next theorem presents an extension of this result to L^{p} spaces with p greater than d / α. Moreover, $L^{p, \infty}$ spaces are considered instead of L^{p}.

Theorem 1. Let us assume that the potential V belongs to $R H_{q}$ with $q \geqslant d / 2$ and set $\delta_{0}=\min \left\{1,2-\frac{d}{q}\right\}$. Let $0<\alpha<d, \frac{d}{\alpha} \leqslant p<$ $\frac{d}{\left(\alpha-\delta_{0}\right)^{+}}$and $w \in R H_{p^{\prime}} \cap D_{\eta}$, where $1 \leqslant \eta<1-\frac{\alpha}{d}+\frac{\delta_{0}}{d}+\frac{1}{p}$, then the operator \mathcal{I}_{α} is bounded from $L^{p, \infty}(w)$ into $B M O_{\mathcal{L}}^{\alpha-d / p}(w)$.

Proof. We need the following fact: if f is a locally integrable function and B a ball in \mathbb{R}^{d}, then

$$
\begin{equation*}
\frac{1}{w(B)} \int_{B} \mathcal{I}_{\alpha}\left(\left|f \chi_{2 B}\right|\right) \leqslant C|B|^{\frac{\alpha}{d}-\frac{1}{p}}[f]_{p, w} . \tag{14}
\end{equation*}
$$

To get this estimate, from (13), we have

$$
\frac{1}{w(B)} \int_{B} \mathcal{I}_{\alpha}\left(\left|f \chi_{2 B}\right|\right) \leqslant C \frac{1}{w(B)} \int_{B} \int_{2 B} \frac{|f(y)|}{|x-y|^{d-\alpha}} d y d x .
$$

Let x_{0} be the center of B and r its radius. Applying Tonelli's theorem, the last integral is

$$
\int_{2 B}|f(y)| \int_{B} \frac{d x}{|x-y|^{d-\alpha}} d y \leqslant C r^{\alpha} \int_{2 B}|f(y)| d y \leqslant C w(B)|B|^{\frac{\alpha}{d}-\frac{1}{p}}[f]_{p, w},
$$

where the last inequality is due to Lemma 1 , finishing the proof of (14).
In order to see that $\mathcal{I}_{\alpha} f$ is in $B M O_{\mathcal{L}}^{\alpha-d / p}(w)$, in view of Corollary 1 , it is enough to check that there exists a constant C such that the two following conditions hold:
(i) For any $x_{0} \in \mathbb{R}^{d}$

$$
\frac{1}{w\left(B\left(x_{0}, \rho\left(x_{0}\right)\right)\right)} \int_{B\left(x_{0}, \rho\left(x_{0}\right)\right)}\left|\mathcal{I}_{\alpha} f\right| \leqslant C\left|B\left(x_{0}, \rho\left(x_{0}\right)\right)\right|^{\frac{\alpha}{d}-\frac{1}{p}}[f]_{p, w} .
$$

(ii) For every ball $B=B\left(x_{0}, r\right)$ with $r<\rho\left(x_{0}\right)$ and some constant c_{B}

$$
\frac{1}{w(B)} \int_{B}\left|\mathcal{I}_{\alpha} f(x)-c_{B}\right| d x \leqslant C|B|^{\frac{\alpha}{d}-\frac{1}{p}}[f]_{p, w}
$$

We first prove (i). Let $B=B\left(x_{0}, R\right)$ with $R=\rho\left(x_{0}\right)$. Splitting $f=f_{1}+f_{2}$, with $f_{1}=f \chi_{2 B}$, by the claim (14), we have

$$
\frac{1}{w(B)} \int_{B}\left|\mathcal{I}_{\alpha} f_{1}\right| \leqslant C|B|^{\frac{\alpha}{d}-\frac{1}{p}}[f]_{p, w}
$$

To deal with f_{2}, we split the integral representation of \mathcal{I}_{α} as follows. Let $x \in B$,

$$
\begin{equation*}
\mathcal{I}_{\alpha} f_{2}(x)=\int_{0}^{R^{2}} e^{-t \mathcal{L}} f_{2}(x) t^{\alpha / 2-1} d t+\int_{R^{2}}^{\infty} e^{-t \mathcal{L}} f_{2}(x) t^{\frac{\alpha}{2}-1} d t \tag{15}
\end{equation*}
$$

For $x \in B$ and $y \in \mathbb{R}^{d} \backslash 2 B$, we have $\left|x_{0}-y\right| \leqslant C|x-y|$, then for the first term of (15), we have

$$
\begin{aligned}
\left|\int_{0}^{R^{2}} e^{-t \mathcal{L}} f_{2}(x) t^{\alpha / 2-1} d t\right| & =\left|\int_{0}^{R^{2}} \int_{\mathbb{R}^{d} \backslash 2 B} k_{t}(x, y) f(y) d y t^{\frac{\alpha}{2}-1} d t\right| \\
& \leqslant C \int_{0}^{R^{2}} \int_{\mathbb{R}^{d} \backslash 2 B} \frac{1}{t^{d / 2}} e^{-\frac{|x-y|^{2}}{t}}|f(y)| d y t^{\frac{\alpha}{2}-1} d t \\
& \leqslant C \int_{0}^{R^{2}} t^{\frac{-d+\alpha}{2}-1} \int_{\mathbb{R}^{d} \backslash 2 B}\left(\frac{t}{|x-y|^{2}}\right)^{M / 2}|f(y)| d y d t \\
& \leqslant C \int_{0}^{R^{2}} t^{\frac{M-d+\alpha}{2}-1} d t \int_{\mathbb{R}^{d} \backslash 2 B} \frac{|f(y)|}{\left|x_{0}-y\right|^{M}} d y
\end{aligned}
$$

where M is a constant to be determined later and C depends on M.
Splitting the domain of the second integral into dyadic annuli $2^{k+1} B \backslash 2^{k} B$, and applying Lemma 1 we get

$$
\begin{align*}
\int_{(2 B)^{c}} \frac{|f(y)|}{\left|x_{0}-y\right|^{M}} d y & =\sum_{k=1}^{\infty} \int_{2^{k+1} B \backslash 2^{k} B} \frac{|f(y)|}{\left|x_{0}-y\right|^{M}} d y \\
& \leqslant \frac{1}{R^{M}} \sum_{k=1}^{\infty} \frac{1}{2^{k M}} \int_{2^{k+1} B}|f(y)| d y \\
& \leqslant C R^{-\frac{d}{p}-M}[f]_{p, w} \sum_{k=1}^{\infty} w\left(2^{k+1} B\right) 2^{-k\left(\frac{d}{p}+M\right)} \\
& \leqslant C w(B) R^{-\frac{d}{p}-M}[f]_{p, w} \sum_{k=1}^{\infty} 2^{-k\left(\frac{d}{p}+M-d \eta\right)} \tag{16}
\end{align*}
$$

where the last inequality follows from the fact that $w \in D_{\eta}$.
The last series converges if $M>d \eta-\frac{d}{p}$. Therefore, for such M,

$$
\begin{aligned}
\left|\int_{0}^{R^{2}} e^{-t \mathcal{L}} f_{2}(x) t^{\alpha / 2-1} d t\right| & \leqslant C w(B) R^{-\frac{d}{p}-M}[f]_{p, w} \int_{0}^{R^{2}} t^{(M-d+\alpha) / 2-1} d t \\
& =C w(B)|B|^{\frac{\alpha}{d}-\frac{1}{p}-1}[f]_{p, w} .
\end{aligned}
$$

For the second term of (15), we use the extra decay of the kernel $k_{t}(x, y)$ given by Lemma 2 . Thus, we can choose M as above and $N \geqslant M$ so that,

$$
\begin{aligned}
\left|\int_{R^{2}}^{\infty} e^{-t \mathcal{L}} f_{2}(x) t^{\alpha / 2-1} d t\right| & =\int_{R^{2}}^{\infty} \int_{\mathbb{R}^{d} \backslash 2 B} k_{t}(x, y)|f(y)| d y t^{\alpha / 2-1} d t \\
& \leqslant C \int_{R^{2}}^{\infty} \int_{\mathbb{R}^{d} \backslash 2 B} t^{(\alpha-d-N) / 2-1} \rho(x)^{N} e^{-\frac{|x-y|^{2}}{t}}|f(y)| d y d t
\end{aligned}
$$

and the last expression is bounded by

$$
C \rho(x)^{N} \int_{R^{2}}^{\infty} t^{(\alpha-d-N) / 2-1} \int_{\mathbb{R}^{d} \backslash 2 B}\left(\frac{t}{|x-y|^{2}}\right)^{M / 2}|f(y)| d y d t .
$$

As $x \in B$, we have $\rho(x) \sim \rho\left(x_{0}\right)=R$. Then, the last expression is bounded by a constant times

$$
R^{N} \int_{R^{2}}^{\infty} t^{(M+\alpha-d-N) / 2-1} d t \int_{\mathbb{R}^{d} \backslash 2 B} \frac{|f(y)|}{\left|x_{0}-y\right|^{M}} d y
$$

Since $M+\alpha-d-N<0$, the integral in t converges. Then, splitting the second integral in the same way as before, the last term is bounded by

$$
C w(B) R^{\alpha-\frac{d}{p}-d}[f]_{p, w}=C w(B)|B|^{\frac{\alpha}{d}-\frac{1}{p}-1}[f]_{p, w}
$$

and we have proved (i).
Now we will see (ii). Let $B=\left\{x \in \mathbb{R}^{d}:\left|x-x_{0}\right|<r\right\}$, with $r<\rho\left(x_{0}\right)$. We set $f=f_{1}+f_{2}$ with $f_{1}=f \chi_{2 B}$ and

$$
c_{B}=\int_{r^{2}}^{\infty} e^{-t \mathcal{L}} f_{2}\left(x_{0}\right) t^{\alpha / 2-1} d t
$$

By the claim (14) we have

$$
\begin{aligned}
\frac{1}{w(B)} \int_{B}\left|\mathcal{I}_{\alpha}(f)-c_{B}\right| & \leqslant \frac{1}{w(B)} \int_{B} \mathcal{I}_{\alpha}\left(\left|f_{1}\right|\right)+\frac{1}{w(B)} \int_{B}\left|\mathcal{I}_{\alpha}\left(f_{2}\right)-c_{B}\right| \\
& \leqslant C|B|^{\alpha / d-1 / p}[f]_{p, w}+\frac{1}{w(B)} \int_{B}\left|\mathcal{I}_{\alpha}\left(f_{2}\right)-c_{B}\right| .
\end{aligned}
$$

For the second term, we will show that

$$
\begin{equation*}
\left|\mathcal{I}_{\alpha} f_{2}(x)-c_{B}\right| \leqslant C w(B)|B|^{\frac{\alpha}{d}-\frac{1}{p}-1}[f]_{p, w} . \tag{17}
\end{equation*}
$$

Let x be in B and split $\mathcal{I}_{\alpha} f_{2}(x)$ as in (15). For the first term we can proceed as before to obtain that

$$
\left|\int_{0}^{r^{2}} e^{-t \mathcal{L}} f_{2}(x) t^{\alpha / 2-1} d t\right| \leqslant C w(B)|B|^{\frac{\alpha}{d}-\frac{1}{p}-1}[f]_{p, w}
$$

The remaining part, by the definition of c_{B}, is bounded by

$$
\left|\int_{r^{2}}^{\infty} e^{-t \mathcal{L}} f_{2}(x) t^{\alpha / 2-1} d t-c_{B}\right| \leqslant \int_{r^{2}}^{\infty} \int_{\mathbb{R}^{d} \backslash 2 B}\left|k_{t}(x, y)-k_{t}\left(x_{0}, y\right)\right||f(y)| d y t^{\alpha / 2-1} d t
$$

and by Lemma 3, for any $0<\delta<\delta_{0}$ the last integral is majorised by

$$
C_{\delta} \int_{r^{2}}^{\infty} \int_{\mathbb{R}^{d} \backslash 2 B}\left(\frac{\left|x-x_{0}\right|}{\sqrt{t}}\right)^{\delta} t^{-d / 2} e^{-\frac{|x-y|^{2}}{C t}}|f(y)| d y t^{\alpha / 2-1} d t
$$

Since $\left|x_{0}-x\right|<r$, applying Fubini's theorem the last integral is bounded by

$$
r^{\delta} \int_{\mathbb{R}^{d} \backslash 2 B}|f(y)| \int_{r^{2}}^{\infty} t^{-(d-\alpha+\delta) / 2} e^{-\frac{|x-y|^{2}}{c t}} \frac{d t}{t} d y
$$

Now, changing variables $s=\frac{|x-y|^{2}}{t}$ we obtain the bound

$$
r^{\delta} \int_{\mathbb{R}^{d} \backslash 2 B} \frac{|f(y)|}{|x-y|^{d-\alpha+\delta}} d y \int_{0}^{\infty} s^{(d-\alpha+\delta) / 2} e^{-s / C} \frac{d s}{s}
$$

Since the integral in s is finite, we only need to estimate the integral in y. We perform the same calculation as in (16) with $M=d-\alpha+\delta$. But now, to make the series convergent we need $\eta<1-\alpha / d+\delta / d+1 / p$ which holds true by our assumption on η, and taking δ close enough to δ_{0}. Notice this is the only place where we have used the condition on the size of η. In this way the above expression can be controlled by $w(B) r^{\alpha-\frac{d}{p}-d}[f]_{p, w}$ and so (17) is proved.

4. \mathcal{I}_{α} on $\mathrm{BMO}_{\mathcal{L}}^{\beta}(w)$ spaces

The definition of $B M O_{\mathcal{L}}^{\beta}(w)$ only establishes a control for the averages over balls with radii greater than ρ at their centres (see (3)). However, for lower radii some kind of estimate can be proved.

Lemma 6. Let $w \in D_{\eta}$ with $\eta \geqslant 1$ and $f \in B M O_{\mathcal{L}}^{\beta}(w)$. Then, for every ball $B=B(x, r)$, we have

$$
\int_{B}|f| \leqslant C\|f\|_{B M O_{L}^{\beta}(w)} w(B)|B|^{\beta / d} \max \left\{1,\left(\frac{\rho(x)}{r}\right)^{d \eta-d+\beta}\right\},
$$

if $\eta>1$ or $\beta>0$, and

$$
\int_{B}|f| \leqslant C\|f\|_{B M O_{\mathcal{L}}(w)} w(B) \max \left\{1,1+\log \left(\frac{\rho(x)}{r}\right)\right\}
$$

if $\eta=1$ and $\beta=0$.
Proof. Let $f \in B M O_{\mathcal{L}}^{\beta}(w)$. If $r \geqslant \rho(x)$ the conclusion follows from condition (3). If $r<\rho(x)$, let $j_{0}=\left\lfloor\log _{2}\left(\frac{\rho(x)}{r}\right)\right\rfloor+1$, where $\lfloor\cdot\rfloor$ denotes the greatest integer function. Then

$$
\begin{aligned}
\frac{1}{|B|} \int_{B}|f| & \leqslant 2^{d} \sum_{j=0}^{j_{0}-1} \frac{1}{\left|2^{j} B\right|} \int_{2^{j_{B}}}\left|f(z)-f_{2^{j_{B}}}\right| d z+\frac{1}{\mid 2^{j_{0} B \mid}} \int_{2^{j_{0} B}}|f| \\
& \leqslant C\|f\|_{B M O_{\mathcal{L}}^{\beta}(w)} \sum_{j=0}^{j_{0}} w\left(2^{j} B\right)\left|2^{j} B\right|^{\frac{\beta}{d}-1},
\end{aligned}
$$

since $r 2^{j_{0}} \geqslant \rho(x)$. Using now that $w \in D_{\eta}$, we get

$$
\int_{B}|f| \leqslant C\|f\|_{B M O_{\mathcal{L}}^{\beta}(w)} w(B)|B|^{\beta / d} \sum_{j=0}^{j_{0}} 2^{j(d \eta-d+\beta)} \leqslant C\|f\|_{B M O_{\mathcal{L}}^{\beta}(w)} w(B)|B|^{\beta / d}\left(\frac{\rho(x)}{r}\right)^{d \eta-d+\beta},
$$

in the case $\eta>1$ or $\beta>0$. If $\eta=1$ and $\beta=0$, we have

$$
\sum_{j=1}^{j_{0}} 2^{j(d \eta-d+\beta)}=j_{0} \leqslant 1+\log _{2}\left(\frac{\rho(x)}{r}\right)
$$

and the proof is finished.
Theorem 2. Let us assume that the potential V belongs to $R H_{q}$ with $q \geqslant d / 2$ and set $\delta_{0}=\min \left\{1,2-\frac{d}{q}\right\}$. Let $0<\alpha<1, \beta \geqslant 0$, $\alpha+\beta<\delta_{0}$ and, $w \in D_{\eta}$ with $1 \leqslant \eta<1+\frac{\delta_{0}-\alpha-\beta}{d}$, then the operator \mathcal{I}_{α} is bounded from $B M O_{\mathcal{L}}^{\beta}(w)$ into $B M O_{\mathcal{L}}^{\beta+\alpha}(w)$.

Proof. Since $\alpha>0, B M O_{\mathcal{L}}^{\beta+\alpha}(w)=\Lambda_{\mathcal{L}}^{\beta+\alpha}(w)$ with equivalent norms, due to Proposition 4 . Hence we can prove boundedness from $B M O_{\mathcal{L}}^{\beta}(w)$ into $\Lambda_{\mathcal{L}}^{\beta+\alpha}(w)$. Let $f \in B M O_{\mathcal{L}}^{\beta}(w)$. We will see that for x and y in \mathbb{R}^{d}, we have

$$
\begin{equation*}
\left|\mathcal{I}_{\alpha} f(x)-\mathcal{I}_{\alpha} f(y)\right| \leqslant C\|f\|_{B M O_{\mathcal{L}}^{\beta}(w)}\left[W_{\beta+\alpha}(x,|x-y|)+W_{\beta+\alpha}(y,|x-y|)\right] \tag{18}
\end{equation*}
$$

provided $|x-y|<\rho(x)$, and

$$
\begin{equation*}
\int_{B(x, \rho(x))}\left|\mathcal{I}_{\alpha} f(u)\right| d u \leqslant\|f\|_{B M O_{\mathcal{L}}^{\beta}(w)} \rho(x)^{\beta+\alpha} w(B(x, \rho(x))) . \tag{19}
\end{equation*}
$$

The above inequalities (18) and (19) would imply that $\mathcal{I}_{\alpha} f$ belongs to $\Lambda_{\mathcal{L}}^{\beta+\alpha}(w)$ (see Remark 2).

Suppose $\|f\|_{B M O_{\mathcal{L}}{ }^{\prime}(w)}=1$ and let us start with (19). We split the inner integral, as usual, in local and global parts. If we call $B=B(x, \rho(x))$, then

$$
\int_{B}\left|\mathcal{I}_{\alpha} f(u)\right| d u \leqslant \int_{B}\left(\int_{2 B}+\int_{(2 B)^{c}}\right) K_{\alpha}(u, z)|f(z)| d z d u
$$

By estimate (13), the first term is bounded by

$$
\int_{B} \int_{2 B} \frac{|f(z)|}{|u-z|^{d-\alpha}} d z d u \leqslant \int_{2 B}|f(z)| d z \int_{B} \frac{1}{|u-x|^{d-\alpha}} d u \leqslant C\|f\|_{B M O_{\mathcal{L}}^{\beta}(w)} \rho(x)^{\alpha+\beta} w(B) .
$$

For the second term, using Lemma 2 and the change of variables $s=\frac{|u-z|^{2}}{C t}$, we have

$$
\begin{aligned}
\int_{B} \int_{0}^{\infty} \int_{(2 B)^{c}} k_{t}(u, z)|f(z)| d z t^{\alpha / 2} \frac{d t}{t} d u & \leqslant C \int_{B} \int_{0}^{\infty} \int_{(2 B)^{c}} t^{-(d-\alpha+N) / 2} e^{-\frac{|u-z|^{2}}{C t}} \rho(u)^{N}|f(z)| d z \frac{d t}{t} d u \\
& \leqslant C \int_{0}^{\infty} s^{(d-\alpha+N) / 2} e^{-s} \frac{d s}{s} \int_{B} \int_{(2 B)^{c}} \rho(u)^{N} \frac{|f(z)|}{|u-z|^{d-\alpha+N}} d z d u .
\end{aligned}
$$

If $u \in B(x, \rho(x))$ then $\rho(u) \leqslant C \rho(x)$ (Proposition 1), and also $|u-z|>|x-z| / 2$ for all $z \in B(x, 2 \rho(x))^{c}$. Hence, the last expression is bounded by

$$
\begin{equation*}
C \rho(x)^{N+d} \int_{(2 B)^{c}} \frac{|f(z)|}{|x-z|^{d-\alpha+N}} d z \tag{20}
\end{equation*}
$$

If we call $B_{j}=2^{j} B$, we may split the last integral into annuli, use that $f \in B M O_{\mathcal{L}}^{\beta}(w)$ and $w \in D_{\eta}$ to obtain

$$
\begin{aligned}
& \int_{(2 B)^{c}} \frac{|f(z)|}{|x-z|^{d-\alpha+N}} d z \leqslant \sum_{k=1_{B_{k+1} \backslash B_{k}}^{\infty} \int_{B^{2}} \frac{|f(z)|}{|x-z|^{d-\alpha+N}} d z} \\
& \leqslant \rho(x)^{-d+\alpha-N} \sum_{k=1}^{\infty} 2^{-k(d-\alpha+N)} \int_{B_{k+1}}|f(z)| d z \\
& \leqslant C \rho(x)^{-d+\alpha+\beta-N} \sum_{k=1}^{\infty} 2^{-k(d-\alpha-\beta+N)} w\left(B_{k+1}\right) \\
& \leqslant C \rho(x)^{-d+\alpha+\beta-N} w(B) \sum_{k=1}^{\infty} 2^{-k(d-\alpha-\beta+N-d \eta)}
\end{aligned}
$$

If we choose N large enough, the last sum is finite, thus (20) is bounded by a constant times

$$
\rho(x)^{\alpha+\beta} w(B(x, \rho(x))),
$$

and we have shown that (19) is satisfied.
To see (18), let $|x-y|<\rho(x)$,

$$
\begin{equation*}
\left|\mathcal{I}_{\alpha} f(x)-\mathcal{I}_{\alpha} f(y)\right| \leqslant\left|\int_{0}^{\rho(x)^{2}} \int_{\mathbb{R}^{d}}\left[k_{t}(x, z)-k_{t}(y, z)\right] f(z) d z t^{\alpha / 2} \frac{d t}{t}\right|+\left|\int_{\rho(x)^{2}}^{\infty} \int_{\mathbb{R}^{d}}\left[k_{t}(x, z)-k_{t}(y, z)\right] f(z) d z t^{\alpha / 2} \frac{d t}{t}\right| \tag{21}
\end{equation*}
$$

For the first term, if $t>\rho(x)^{2}$, since $|x-y|<\rho(x)$, we have $|x-y|<\sqrt{t}$, hence Lemma 3 allows us to get

$$
\begin{equation*}
\int_{\rho(x)^{2}}^{\infty} \int_{\mathbb{R}^{d}}\left|k_{t}(x, z)-k_{t}(y, z)\right||f(z)| d z t^{\frac{\alpha}{2}-1} d t \leqslant C_{\delta}|x-y|^{\delta} \int_{\rho(x)^{2}}^{\infty} \int_{\mathbb{R}^{d}} e^{-\frac{|x-z|^{2}}{c t}}|f(z)| d z t^{(-d+\alpha-\delta) / 2} \frac{d t}{t}, \tag{22}
\end{equation*}
$$

for each $0<\delta<\delta_{0}$. If $t>\rho(x)^{2}$, calling $B=B(x, \sqrt{t})$ we estimate the inner integral as

$$
\int_{\mathbb{R}^{d}} e^{-\frac{|x-z|^{2}}{C t}}|f(z)| d z \leqslant C \int_{B}|f|+t^{M / 2} \sum_{k=0}^{\infty} \int_{2^{k+1} B \backslash 2^{k} B} \frac{|f(z)|}{|x-z|^{M}} d z
$$

for some $M>1$ to be chosen. Since $f \in B M O_{\mathcal{L}}^{\beta}(w)$ and $t>\rho(x)^{2}$, the first integral is bounded by $w(B) t^{\beta / 2}$. To deal with the sum in k, we use again $f \in B M O_{\mathcal{L}}^{\beta}(w)$, and then $w \in D_{\eta}$, to obtain

$$
\begin{aligned}
t^{M / 2} \sum_{k=0}^{\infty} \int_{2^{k+1}} \frac{|f(z)|}{} \frac{\mid f 2^{k} B}{|x-z|^{M}} d z & \leqslant 2 \sum_{k=0}^{\infty} 2^{-k M} \int_{2^{k+1} B}|f| \\
& \leqslant C t^{\beta / 2} \sum_{k=0}^{\infty} 2^{-k(M-\beta)} w\left(2^{k+1} B\right) \\
& \leqslant C t^{\beta / 2} w(B) \sum_{k=0}^{\infty} 2^{-k(M-\beta-d \eta)}
\end{aligned}
$$

and the sum is finite for M large enough. Therefore, since $|x-y|<\rho(x)<\sqrt{t}$ and $-d+\alpha+\beta-\delta+d \eta<0$ choosing δ close to δ_{0}, (22) is bounded by

$$
\begin{aligned}
|x-y|^{\delta} \int_{\rho(x)^{2}}^{\infty} w(B(x, \sqrt{t})) t^{(-d+\alpha+\beta-\delta) / 2} \frac{d t}{t} & \leqslant C|x-y|^{\delta-d \eta} w(B(x,|x-y|)) \int_{|x-y|^{2}}^{\infty} t^{(-d+\alpha+\beta-\delta+d \eta) / 2} \frac{d t}{t} \\
& \leqslant C w(B(x,|x-y|))|x-y|^{-d+\alpha+\beta} \\
& \leqslant C W_{\alpha+\beta}(x,|x-y|) .
\end{aligned}
$$

To deal with the second term of (21), we set

$$
q_{t}(x, y)=k_{t}(x, y)-\tilde{k}_{t}(x, y)
$$

for all $x, y \in \mathbb{R}^{d}$ and $t>0$, where \tilde{k}_{t} is the classical heat kernel as before. Then we have

$$
\left|\int_{0}^{\rho(x)^{2}} \int_{\mathbb{R}^{d}}\left[k_{t}(x, z)-k_{t}(y, z)\right] f(z) d z t^{\alpha / 2} \frac{d t}{t}\right| \leqslant I+I I
$$

where

$$
I=\left|\int_{0}^{\rho(x)^{2}} \int_{\mathbb{R}^{d}}\left[q_{t}(x, z)-q_{t}(y, z)\right] f(z) d z t^{\alpha / 2} \frac{d t}{t}\right|
$$

and

$$
I I=\left|\int_{0}^{\rho(x)^{2}} \int_{\mathbb{R}^{d}}\left[\tilde{k}_{t}(x, z)-\tilde{k}_{t}(y, z)\right] f(z) d z t^{\alpha / 2} \frac{d t}{t}\right|
$$

To estimate I, calling $B=B(x, 4|x-y|)$, we split \mathbb{R}^{d} into two regions and write

$$
I \leqslant I_{1}+I_{2}+I_{3}
$$

with

$$
\begin{aligned}
& I_{1}=\int_{0}^{\rho(x)^{2}} \int_{B^{c}}\left|q_{t}(x, z)-q_{t}(y, z)\right||f(z)| d z t^{\alpha / 2} \frac{d t}{t} \\
& I_{2}=\int_{0}^{\rho(x)^{2}} \int_{B}\left|q_{t}(x, z)\right||f(z)| d z t^{\alpha / 2} \frac{d t}{t}
\end{aligned}
$$

and

$$
I_{3}=\int_{0}^{\rho(x)^{2}} \int_{B}\left|q_{t}(y, z)\right||f(z)| d z t^{\alpha / 2} \frac{d t}{t}
$$

If $z \in B^{c}$, we are in the hypothesis of Lemma 5 and therefore, given $0<\delta<\delta_{0}$, there exists a rapidly decaying function ψ such that

$$
\begin{aligned}
I_{1} & \leqslant C|x-y|^{\delta} \int_{0}^{\rho(x)^{2}} \int_{B^{c}} \frac{\psi_{t}(z-x)}{\rho(z)^{\delta}}|f(z)| d z t^{\alpha / 2} \frac{d t}{t} \\
& \leqslant C\left(\frac{|x-y|}{\rho(x)}\right)^{\delta} \int_{0}^{\rho(x)^{2}} \int_{B^{C}}\left(1+\frac{|x-z|}{\rho(x)}\right)^{\delta k_{0}} \psi_{t}(z-x)|f(z)| d z t^{\alpha / 2} \frac{d t}{t},
\end{aligned}
$$

where in the last inequality we have used Proposition 1.
The inner integral is

$$
\int_{B^{C}}\left(1+\frac{|x-z|}{\rho(x)}\right)^{\delta k_{0}} \psi_{t}(z-x)|f(z)| d z=\sum_{j=0}^{\infty} \int_{B_{j} \backslash B_{j-1}}\left(1+\frac{|x-z|}{\rho(x)}\right)^{\delta k_{0}} \psi_{t}(z-x)|f(z)| d z,
$$

where $B_{j}=B\left(x, 2^{j+3}|x-y|\right)$. Thus $I_{1} \leqslant I_{11}+I_{12}$, where

$$
I_{11}=C\left(\frac{|x-y|}{\rho(x)}\right)^{\delta} \int_{0}^{\rho(x)^{2}} \sum_{j=0}^{j_{0}} \int_{B_{j} \backslash B_{j-1}}\left(1+\frac{|x-z|}{\rho(x)}\right)^{\delta k_{0}} \psi_{t}(z-x)|f(z)| d z t^{\alpha / 2} \frac{d t}{t}
$$

with $j_{0}=\left\lfloor\log _{2}\left(\frac{\rho(x)}{|x-y| \mid}\right)\right\rfloor$, and I_{12} the same but summing up from $j_{0}+1$. If $j \leqslant j_{0}$ and $z \in B_{j} \backslash B_{j-1}$, then $\left(1+\frac{|x-z|}{\rho(x)}\right)^{\delta k_{0}} \leqslant C$, and since $\psi_{t}(z-x) \leqslant C t^{\epsilon / 2} /|x-z|^{d+\epsilon}$, for some $\epsilon>0$ fixed, we obtain

$$
\begin{aligned}
I_{11} & \leqslant C\left(\frac{|x-y|}{\rho(x)}\right)^{\delta} \int_{0}^{\rho(x)^{2}} t^{(\alpha+\epsilon) / 2} \frac{d t}{t} \sum_{j=0}^{j_{0}} \int_{B_{j} \backslash B_{j-1}} \frac{|f(z)|}{|x-z|^{d+\epsilon}} d z \\
& \leqslant C \frac{|x-y|^{\delta-d-\epsilon}}{\rho(x)^{\delta-\alpha-\epsilon}} \sum_{j=0}^{j_{0}} 2^{-j(d+\epsilon)} \int_{B_{j}}|f(z)| d z .
\end{aligned}
$$

From Lemma 6 and the fact that $w \in D_{\eta}$, in the case $\eta>1$ or $\beta>0$,

$$
\begin{aligned}
\sum_{j=0}^{j_{0}} 2^{-j(d+\epsilon)} \int_{B_{j}}|f(z)| d z & \leqslant C \sum_{j=0}^{j_{0}} 2^{-j(d+\epsilon)} w\left(B_{j}\right)\left|B_{j}\right|^{\beta / d}\left(\frac{\rho(x)}{2^{j+3}|x-y|}\right)^{d \eta-d+\beta} \\
& \leqslant C \frac{\rho(x)^{d \eta-d+\beta}}{|x-y|^{d \eta-d}} w(B) \sum_{j=0}^{j_{0}} 2^{-j \epsilon} \\
& \leqslant C \frac{\rho(x)^{d \eta-d+\beta}}{|x-y|^{d \eta-d}} w(B)
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
I_{11} \leqslant C\left(\frac{|x-y|}{\rho(x)}\right)^{\delta-\alpha-\beta-d \eta+d-\epsilon} \frac{w(B)}{|x-y|^{d-\alpha-\beta}} \leqslant C \frac{w(B)}{|x-y|^{d-\alpha-\beta}} \tag{23}
\end{equation*}
$$

since by hypothesis $1 \leqslant \eta<\frac{\delta_{0}-\alpha-\beta}{d}+1$ and $|x-y|<\rho(x)$, and thus $\delta-\alpha-\beta-d \eta+d-\epsilon>0$, choosing ϵ small enough and δ close to δ_{0}.

As for the case $\beta=0$ and $\eta=1$, using Lemma 6 and the inequality

$$
\begin{equation*}
1+\log (t) \leqslant C t^{\epsilon / 2} \tag{24}
\end{equation*}
$$

for $t>1 / 8$, we arrive to the same estimate of I_{11} proceeding as before.

Next we estimate I_{12}. For $M>\delta k_{0}+d \eta+\beta$, we have $\psi_{t}(z-x) \leqslant C \frac{t^{(M-d) / 2}}{|z-x|^{M}}$. Also if $z \in B_{j} \backslash B_{j-1}$ for $j>j_{0}$, then $|x-z|>\rho(x)$. Therefore

$$
\begin{aligned}
I_{12} & \leqslant C\left(\frac{|x-y|}{\rho(x)}\right)^{\delta+\delta k_{0}} \int_{0}^{\rho(x)^{2}} t^{(M-d+\alpha) / 2} \frac{d t}{t} \sum_{j=j_{0}+1}^{\infty} 2^{j \delta k_{0}} \int_{B_{j} \backslash B_{j-1}} \frac{|f(z)|}{|z-x|^{M}} d z \\
& \leqslant C \frac{|x-y|^{\delta+\delta k_{0}-M}}{\rho(x)^{\delta+\delta k_{0}-M+d-\alpha}} \sum_{j=j_{0}+1}^{\infty} 2^{-j\left(M-\delta k_{0}\right)} \int_{B_{j}}|f(z)| d z
\end{aligned}
$$

Since for $j>j_{0}$, the radius of B_{j} is $2^{j+3}|x-y|>\rho(x)$, then

$$
\int_{B_{j}}|f(z)| d z \leqslant C w\left(B_{j}\right)\left|B_{j}\right|^{\beta / d} \leqslant C 2^{j(d \eta+\beta)}|x-y|^{\beta} w(B),
$$

and thus

$$
\begin{align*}
I_{12} & \leqslant C\left(\frac{|x-y|}{\rho(x)}\right)^{-M+\delta k_{0}+\delta-\alpha+d} \frac{w(B)}{|x-y|^{d-\alpha-\beta}} \sum_{j=j_{0}+1}^{\infty} 2^{-j\left(M-\delta k_{0}-d \eta-\beta\right)} \\
& \leqslant C\left(\frac{|x-y|}{\rho(x)}\right)^{d-d \eta+\delta-\alpha-\beta} \frac{w(B)}{|x-y|^{d-\alpha-\beta}} \\
& \leqslant C \frac{w(B)}{|x-y|^{d-\alpha-\beta}} \tag{25}
\end{align*}
$$

with an appropriate choice of δ.
To deal with I_{2}, let $M>d$. From Lemma 4, being $t<\rho(x)^{2}$,

$$
\begin{equation*}
\left|q_{t}(x, z)\right| \leqslant C\left(\frac{\sqrt{t}}{\rho(x)}\right)_{0}^{\delta} \frac{1}{t^{d / 2}}\left(1+\frac{|x-z|}{\sqrt{t}}\right)^{-M} \tag{26}
\end{equation*}
$$

Then we may write

$$
I_{2}=I_{21}+I_{22}
$$

where

$$
I_{21}=C \int_{0}^{|x-y|^{2}} \int_{B}\left|q_{t}(x, z)\right||f(z)| d z t^{\alpha / 2} \frac{d t}{t}
$$

and

$$
I_{22}=\int_{|x-y|^{2}}^{\rho(x)^{2}} \int_{B}\left|q_{t}(x, z)\right||f(z)| d z t^{\alpha / 2} \frac{d t}{t}
$$

To take care of I_{21} let $B_{t}=B(x, \sqrt{t})$ and $N=\left\lfloor\log _{2}\left(\frac{4|x-y|}{\sqrt{t}}\right)\right\rfloor$. Using estimate (26), we have

$$
\begin{aligned}
\int_{B}\left|q_{t}(x, z)\right||f(z)| d z & \leqslant \frac{t^{\frac{\delta_{0}-d}{2}}}{\rho(x)_{0}^{\delta}}\left(\int_{B_{t}}|f|+t^{M / 2} \int_{B \backslash B_{t}} \frac{|f(z)|}{|x-z|^{M}} d z\right) \\
& \leqslant \frac{t^{\frac{\delta_{0}-d}{2}}}{\rho(x)_{0}^{\delta}}\left(\int_{B_{t}}|f|+t^{M / 2} \sum_{j=0}^{N} \int_{2^{j+1}} \frac{|f(z)|}{|x-z|^{M}} d z\right) \\
& \leqslant C \frac{t^{\frac{\delta_{0}-d}{2}}}{\rho(x)_{0}^{\delta}}\left(\sum_{j=0}^{N+1} 2^{-j M} \int_{2^{j} B_{t}}|f|\right),
\end{aligned}
$$

and since every ball in the last sum has its radius less than $8 \rho(x)$, we can apply Lemma 6 and that $w \in D_{\eta}$, to obtain

$$
\begin{aligned}
\int_{B}\left|q_{t}(x, z)\right||f(z)| d z & \leqslant C \frac{t^{\left(\delta_{0}-d \eta\right) / 2}}{\rho(x)^{\delta_{0}-d \eta+d-\beta}}\left(\sum_{j=0}^{N} 2^{-j(M-d+d \eta)} w\left(2^{j} B_{t}\right)\right) \\
& \leqslant C \frac{t^{\left(\delta_{0}-d \eta\right) / 2}}{\rho(x)^{\delta_{0}-d \eta+d-\beta}} w\left(B_{t}\right)\left(\sum_{j=0}^{\infty} 2^{-j(M-d)}\right) \\
& \leqslant C \frac{t^{\left(\delta_{0}-d \eta\right) / 2}}{\rho(x)^{\delta_{0}-d \eta+d-\beta}} w\left(B_{t}\right)
\end{aligned}
$$

where the last sum is finite since $M>d$.
Hence,

$$
\begin{align*}
I_{21} & \leqslant \frac{C}{\rho(x)^{\delta_{0}-d \eta+d-\beta}} \int_{0}^{|x-y|^{2}} t^{\left(\delta_{0}+\alpha-d \eta\right) / 2} w\left(B_{t}\right) \frac{d t}{t} \\
& \leqslant \frac{C}{\rho(x)^{\delta_{0}-d \eta+d-\beta}} \int_{0}^{|x-y|^{2}} t^{\left(\delta_{0}-\beta-d \eta+d\right) / 2} W_{\alpha+\beta}(x, \sqrt{t}) \frac{d t}{t} \\
& \leqslant \frac{C}{\rho(x)^{\delta_{0}-d \eta+d-\beta}} \int_{0}^{|x-y|^{2}} t^{\left(\delta_{0}-\beta-d \eta+d\right) / 2} \frac{d t}{t} W_{\alpha+\beta}(x,|x-y|) \\
& \leqslant C\left(\frac{|x-y|}{\rho(x)}\right)^{\delta_{0}-\beta-d \eta+d} W_{\alpha+\beta}(x,|x-y|) . \tag{27}
\end{align*}
$$

Since $\delta_{0}-\beta-d \eta+d>\alpha>0$, and $|x-y|<\rho(x)$, we have $I_{21} \leqslant W_{\alpha+\beta}(x,|x-y|)$.
To deal with I_{22} we use again (26) and Lemma 6, to get

$$
\begin{align*}
I_{22} & =\int_{|x-y|^{2}}^{\infty} \int_{B}\left|q_{t}(x, z)\right||f(z)| d z t^{\alpha / 2} \frac{d t}{t} \\
& \leqslant C \rho(x)^{-\delta_{0}} \int_{|x-y|^{2}}^{\infty} t^{\left(\alpha+\delta_{0}-d\right) / 2} \frac{d t}{t} \int_{B}|f| \\
& \leqslant C \frac{w(B)}{|x-y|^{d-\alpha-\beta}}\left(\frac{|x-y|}{\rho(x)}\right)^{d-d \eta+\delta_{0}-\beta} \\
& \leqslant C \frac{w(B)}{|x-y|^{d-\alpha-\beta}} \leqslant C W_{\alpha+\beta}(x,|x-y|) \tag{28}
\end{align*}
$$

since $d-d \eta+\delta_{0}-\beta>\alpha>0$, and $|x-y|<\rho(x)$.
The case $\beta=0$ and $\eta=1$ is performed using Lemma 6 and inequality (24) with $\epsilon<\delta_{0}$, following the same steps as in (27) and (28) respectively.

We can also obtain that

$$
\begin{equation*}
I_{3} \leqslant C W_{\alpha+\beta}(x,|x-y|) \tag{29}
\end{equation*}
$$

following the same lines as in I_{2} but exchanging x by y and integrating over $B(y, 8|x-y|)$.
From (23), (25), (27)-(29) we obtain

$$
I \leqslant C W_{\alpha+\beta}(x,|x-y|)
$$

To see $I I \leqslant C W_{\alpha+\beta}(x,|x-y|)$ we refer to the reader to [5, p. 238]. In fact, since \tilde{k}_{t} is a convolution kernel,

$$
\int_{\mathbb{R}^{d}}\left[\tilde{k}_{t}(x, z)-\tilde{k}_{t}(y, z)\right] d z=0
$$

So we have

$$
I I=\left|\int_{0}^{\rho(x)^{2}} \int_{\mathbb{R}^{d}}\left[\tilde{k}_{t}(x, z)-\tilde{k}_{t}(y, z)\right]\left[f(z)-f_{B}\right] d z t^{\alpha / 2} \frac{d t}{t}\right| \leqslant I I_{1}+I I_{2}
$$

where

$$
I I_{1}=\int_{0}^{\rho(x)^{2}} \int_{B}\left|\tilde{k}_{t}(x, z)-\tilde{k}_{t}(y, z)\right|\left|f(z)-f_{B}\right| d z t^{\alpha / 2} \frac{d t}{t}
$$

and

$$
I I_{2}=\int_{0}^{\rho(x)^{2}} \int_{B^{c}}\left|\tilde{k}_{t}(x, z)-\tilde{k}_{t}(y, z)\right|\left|f(z)-f_{B}\right| d z t^{\alpha / 2} \frac{d t}{t}
$$

with $B=B(x,|x-y|)$.
Applying

$$
\left|\tilde{k}_{t}(x, z)-\tilde{k}_{t}(y, z)\right| \leqslant C \frac{e^{-\frac{|x-y|}{C t}}}{t^{d / 2-1}}|x-y||x-z|
$$

and changing variables $s=\frac{t}{|x-y|}$, we have

$$
I I_{2} \leqslant|x-y| \int_{B^{c}}\left|f(z)-f_{B}\right||x-z| \int_{0}^{\rho(x)^{2}} \frac{e^{-\frac{|x-y|}{c t}}}{t^{d / 2-1}} t^{\alpha / 2} \frac{d t}{t} d z \leqslant|x-y| \int_{B^{c}} \frac{\left|f(z)-f_{B}\right|}{|x-z|^{d-\alpha+1}} d z .
$$

Since $w \in D_{\eta}$, from Lemma 4.7 in [5], the last expression is bounded by

$$
|x-y| \int_{B^{c}} \frac{w(z)}{|x-z|^{d-\alpha-\beta+1}} d z \leqslant C w(B)|x-y|^{d-\alpha-\beta},
$$

where the last inequality is due to Lemma 3.9 in [5].
To deal with I_{1},

$$
\int_{0}^{\rho(x)^{2}} \int_{B}\left|\tilde{k}_{t}(x, z)\right|\left|f(z)-f_{B}\right| d z t^{\alpha / 2} \frac{d t}{t} \leqslant C \int_{0}^{\infty} \int_{B} \frac{e^{-\frac{|x-y|}{C t}}}{t^{d / 2}}\left|f(z)-f_{B}\right| d z t^{\alpha / 2} \frac{d t}{t}=C \int_{B} \frac{\left|f(z)-f_{B}\right|}{|x-z|^{d-\alpha}} d z
$$

and denoting $B_{j}=2^{-j} B$, we obtain

$$
\begin{aligned}
& \int_{B} \frac{\left|f(z)-f_{B}\right|}{|x-z|^{d-\alpha}} d z=\sum_{k=0_{B_{j} \backslash B_{j+1}}^{\infty} \int_{k=0} \frac{\left|f(z)-f_{B}\right|}{|x-z|^{d-\alpha}}} \\
& \leqslant C \sum_{k=0}^{\infty}\left(\frac{2^{j}}{|x-y|}\right)^{d-\alpha} \int_{B_{j}}^{d}\left|f(z)-f_{B}\right| \\
& \leqslant C \sum_{k=0}^{\infty}\left(\frac{2^{j}}{|x-y|}\right)^{d-\alpha-\beta} w\left(B_{j}\right) \\
& \leqslant C \sum_{k=0}^{\infty}\left(\frac{2^{j}}{|x-y|}\right)^{d-\alpha-\beta} w\left(B_{j} \backslash B_{j+1}\right) \\
& \leqslant C \sum_{k=0_{B_{j} \backslash B_{j+1}}^{\infty} \int \frac{w(z)}{|x-z|^{d-\alpha-\beta}} d z} \\
&=C \int_{B} \frac{w(z)}{|x-z|^{d-\alpha-\beta}} d z,
\end{aligned}
$$

finishing the proof of the theorem.

Acknowledgment

We would like to express our gratitude to the referee for the thorough revision of the manuscript.

References

[1] J. Dziubański, G. Garrigós, T. Martínez, J. Torrea, J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2) (2005) 329-356.
[2] J. Dziubański, J. Zienkiewicz, Hardy spaces H^{1} associated to Schrödinger operators with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 (2) (1999) 279-296.
[3] J. Dziubański, J. Zienkiewicz, H^{p} spaces for Schrödinger operators, Fourier Anal. Relat. Top. 56 (2002) 45-53.
[4] J. Dziubański, J. Zienkiewicz, H^{p} spaces associated with Schrödinger operator with potential from reverse Hölder classes, Colloq. Math. 98 (1) (2003) 5-38.
[5] E. Harboure, O. Salinas, B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc. 349 (1) (1997) 235-255.
[6] K. Kurata, An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. London Math. Soc. (2) 62 (3) (2000) 885-903.
[7] Z.W. Shen, L^{p} estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (2) (1995) 513-546.

[^0]: This research is partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Litoral, Argentina.

 * Corresponding author.

 E-mail addresses: bbongio@santafe-conicet.gov.ar (B. Bongioanni), harbour@santafe-conicet.gov.ar (E. Harboure), salinas@santafe-conicet.gov.ar (O. Salinas).

