TiO$_2$: Cr nanopowders for hydrogen sensing

B. Lysona, P. Gwizdza, A. Czaplaa, M. Lubeckaa, K. Zakrzewskaa, K. Biernackab, M. Radeckac, K. Michalow-Mauked, T. Grauled, A. G. Baloghe, S. Lauterbachf, H.-J. Kleebef

aFaculty of Electrical Engineering, Automatics, Computer Science and Electronics, AGH University of Science and Technology

bFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland

cFaculty of Materials Science and Ceramics, AGH University of Science and Technology, Cracow, Poland

dEMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Dubendorf, Switzerland

eInstitute of Materials Science, Technische Universität Darmstadt, Germany

fInstitute for Applied Geosciences, Technische Universität Darmstadt, Germany

Abstract

The aim of this research was to use nanocrystalline TiO$_2$ and TiO$_2$: Cr (0.1–10 at. % Cr) obtained by Flame Spray Synthesis, FSS, for hydrogen sensing. Morphological properties of nanopowders were investigated by Brunauer–Emmett–Teller, BET, adsorption isotherms, X-ray Diffraction, XRD, Scanning Electron Microscopy, SEM, and Transmission Electron Microscopy, TEM. Nanosensors were prepared in a form of circular tablets by pressing the nanopowder at the pressure of 25 MPa and heating up to 400°C. Dynamic changes in the electrical resistance $\Delta R/R_o$ upon hydrogen exposure were detected over low-to-medium concentration range of 50-3000 ppm at 200–400°C. The influence of particle size and Cr content on the sensor response was studied.

© 2011 Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

TiO$_2$ nanopowders, Cr dopant, gas sensors, hydrogen detection, Flame Spray Synthesis

1. Introduction

Nanoscience and nanotechnology seem to hold the key solutions to the issue of the improvement of the resistive gas sensor operating parameters. It is impossible to overestimate the role of nanomaterials in modifying sensitivity, selectivity, response time and other features extremely important as far as we consider a reliable gas sensor. Furthermore, nanosensors can work over lower temperature range as
compared with their microcrystalline counterparts what is especially important as far as we consider power consumption and reducing operating costs. Among many metal oxide candidates (TiO$_2$, SnO$_2$, WO$_3$, and ZnO) for gas detection, TiO$_2$ is a unique and well-promising material. Reversible and large changes ΔR in the electrical resistance along with the inherent chemical stability at high temperatures and in harsh environments are widely exploited in the resistive-type gas sensors based on TiO$_2$. Basic parameters characterizing gas sensor performance such as sensitivity, selectivity and response time of TiO$_2$-based sensors can be optimized by choosing the appropriate type and level of doping [1]. Recently, many attempts have been undertaken to exploit the influence of a trivalent chromium dopant acting as an acceptor type impurity on the electrical and gas sensing properties of TiO$_2$ [2]. According to the literature, doping with metals, e.g. Cr affects the response time, sensitivity and the initial resistivity (baseline) of the sensor [2,3]. Usually, TiO$_2$ behaves like n-type semiconductor thus is considered a promising candidate for detection of reducing gases such as hydrogen, carbon dioxide or methane. However under certain conditions $n \rightarrow p$ transition may occur in TiO$_2$ [4]. This is beneficial for detection of oxidizing gases such as oxygen and NO$_x$ where the sign of the resistance change can be reversed in p-type material [3]. The aim of this work was to study gas sensing properties of nanocrystalline TiO$_2$:Cr nanopowders obtained by Flame Spray Synthesis (FSS). This method was used because it allowed us to obtain crystalline powders in a single step thanks to a high temperature in the flame [5-7]. The effect of chromium concentration and crystallite size on the sensor dynamic responses to hydrogen has been the object of the investigations. Hydrogen, as a proposed fuel of the future, has to be detected at very small quantities.

2. Experimental

Nanopowders of TiO$_2$:Cr with up to 10 at.% Cr were obtained by Flame Spray Synthesis (FSS) as described in detail in [5,6]. Titanium tetra-isopropoxide TTIP and solution of chromium acetylacetonate CHAA in m-xylene were used as precursors of Ti and Cr, respectively. Specific surface area, SSA, of nanopowders was determined from nitrogen adsorption BET (Brunauer-Emmett-Teller) isotherms obtained with a Beckman-Coulter SA3100. Grain size of nanopowders was determined from the SSA data while the dimensions of crystallites were analyzed on the basis of XRD patterns recorded with the help of X’Pert MPD Philips diffractometer. Transmission Electron Microscopy TEM of nanopowders was performed. Nanosensors were prepared in a form of circular tablets calcined from nanopowders at the pressure of 25 MPa and temperature of 400°C. Planar silver electrodes were applied 5 mm apart. Dynamic changes in the electrical resistance $\Delta R/R_0$ upon hydrogen exposure were detected over low-to-medium concentration range of 50-3000 ppm at 200-400°C in a custom-made system described in detail elsewhere [8]. Air, at the flow rate of 120 sccm, was used as a reference gas. Sensor response S was defined as $S=1-R/R_0$, where R represented the electrical resistance upon interaction with gas and R_0 was the electrical resistance measured in air.

3. Results and discussion

Flame Spray Synthesis, FSS provided us with nanocrystalline powders of undoped TiO$_2$ and Cr-doped TiO$_2$ with large specific surface area SSA over the range of 37-126 m2/g and small crystallite size of 6-27 nm. TEM images (Fig.1.) reveal particles with the size decreasing systematically from 40 nm to 10 nm with the increasing Cr content. This is a consequence of a dilution effect described in detail in [6]. As discussed previously [5,7], two polymorphic forms of TiO$_2$, namely rutile and anatase are present. The fraction of anatase largely dominates over rutile, but the rutile amount increases slightly with the addition of Cr.
Up to 10 at.\% Cr none of the secondary phases, neither chromium oxide nor chromium titanates have been identified. This is compatible with the reported solubility limit of Cr3+ in TiO\textsubscript{2} and the fact that the ionic radii of Cr3+ and Ti4+ are very similar [9]. Fig. 2 presents changes of the electrical resistance of undoped TiO\textsubscript{2} and TiO\textsubscript{2} doped with 5 at.\% Cr sensor materials upon interaction with the reducing gas H\textsubscript{2} as a function of time at a constant temperature of 350\degree C. Large and reproducible responses of the sensors follow the step changes 0-500 ppm-0, 0-1100 ppm-0, 0-3000 ppm-0 in H\textsubscript{2} concentration. As we can see, there is a systematic decrease in the electrical resistance R for undoped TiO\textsubscript{2} upon exposure to H\textsubscript{2}, whereas for the TiO\textsubscript{2}:5 at.\% Cr the same parameter R increases upon interaction with H\textsubscript{2}. Such observed changes in R upon adsorption of hydrogen indicate that undoped TiO\textsubscript{2} behaves as an n-type semiconductor, whereas starting from 5 at.\% Cr the samples exhibit p-type conductivity. Moreover, as one can see in Fig.2, incorporation of 5 at.\% Cr into TiO\textsubscript{2} causes significant decrease, by two orders of magnitude as compared with undoped TiO\textsubscript{2}, in the baseline electrical resistance R\textsubscript{0} of the material in air.

Chromium dopant modifies the electronic structure of TiO\textsubscript{2} and forms localized acceptor levels in the forbidden band gap. This modifies the concentration of electrons and electron holes and leads to a decrease in the electrical resistance R\textsubscript{0} in air over low-to-medium temperature range. Substitutional incorporation of Cr3+ can be described by the following reaction:

$$\text{Cr}_2\text{O}_3 \rightarrow 2\text{Cr}^{3+} + \text{V}_{\text{O}}^{2+} + 3\text{O}_2 + 2e^-$$

where V_{O}^{2+} denotes doubly ionized oxygen vacancy, Cr\textsubscript{T1} represents Cr substitution at Ti sites.

Because of the observed sign reversal of the sensor response S within the range of 1 at.\% and 5 at.\% Cr, in order to compare the sensors sensitivity, the absolute value |S| is plotted in Fig 3. The results indicate that at 250\degree C the best sensor response is obtained for 5 at\% of Cr. For undoped TiO\textsubscript{2} the lowest temperature at which the baseline sensitivity could be measured was 300\degree C. This relatively high operating temperature for the undoped TiO\textsubscript{2} can be lowered to 210-250\degree C by adding Cr. Fig. 4 demonstrates the response S of the TiO\textsubscript{2}:Cr nanosensors as a function the operating temperature for a given change in the hydrogen concentration from 0 to 200 ppm. As can be noticed, the operating temperature below 250\degree C can be reached for TiO\textsubscript{2}: 1 at.\% Cr, TiO\textsubscript{2}: 5 at.\% Cr and TiO\textsubscript{2}: 10 at.\% Cr. This effect is, to a large extent, due to doping through the decreased baseline resistance in air.
4. Conclusions

The results obtained in the course of these studies allow to formulate the following conclusions. Crystalline nanopowders of mostly anatase TiO$_2$, grown by Flame Spray Synthesis, are characterized by large specific surface area and small crystallite size depending on Cr loading. Nanosensors obtained from TiO$_2$:Cr nanopowders show promising dynamic characteristics in response to hydrogen. The sensor responses are large and reproducible. The electrical resistance R decreases upon hydrogen exposure as long as Cr concentration does not exceed 1 at.% Cr while the reversed effect is observed at 5 and 10 at.% Cr. The sensor performance in the latter case clearly improves with a decrease in the operating temperature. Incorporation of 1 at.% and 5 at.% of Cr into TiO$_2$ allows to reach lower baseline resistance in air over the temperature range of 210-250°C thus proving sensor sensitivity to hydrogen.

Acknowledgement
This work was supported by the Polish Ministry of Education and Science (2009–2012) grant no. N N507 466537. One of the authors (B.L.) acknowledges the Statutory Project for Science (Działalność Statutowa) for 2011. One of the authors (K.B.) has been partly supported by the EU Human Capital Operation Program, Polish Project No. POKL.04.0101-00-434/08-00.

References