
Dynamics for ML using Meta-Programming

Thomas Gazagnaire

INRIA Sophia Antipolis-Méditerranée,
2004 Route des Lucioles,

BP 93, 06902 Sophia Antipolis Cedex, France
thomas.gazagnaire@inria.fr

Anil Madhavapeddy

Computer Laboratory, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK

avsm2@cl.cam.ac.uk

Abstract

We present the design and implementation of dynamic type and value introspection for the OCaml language.
Unlike previous attempts, we do not modify the core compiler or type-checker, and instead use the camlp4
metaprogramming tool to generate appropriate definitions at compilation time. Our dynamics library
significantly eases the task of generating generic persistence and I/O functions in OCaml programs, without
requiring the full complexity of fully-staged systems such as MetaOCaml. As a motivating use of the
library, we describe a SQL backend which generates type-safe functions to persist and retrieve values from
a relational database, without requiring programmers to ever use SQL directly.

Keywords: ocaml, metaprogramming, generative, database, sql, dynamics

1 Introduction

One of the great advantages of programming languages inheriting the Hindley-

Milner type system [6,17] such as OCaml [12] or Haskell [11] is the conciseness and

expressiveness of their type language. For example, sum types in these languages

are very natural to express and use when coupled with pattern-matching. These

concepts can be translated to C or Java, but at the price of a costly and unnatural

encoding. Parameterised types and mutually recursive types can also be used in

OCaml or Haskell to let the user define arbitrary complex data-types: part of the

art of programming in such languages is to encode invariants of the problem being

resolved into the types, and let the compiler statically ensure these invariants are

met during the whole execution of the program.

Historically, languages implementing such type systems are statically typed, with

safety enforced at compile-time and details of types forgotten at runtime. This helps

Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21

1571-0661 © 2011 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.06.002
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81951843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.06.002
http://dx.doi.org/10.1016/j.entcs.2011.06.002
http://creativecommons.org/licenses/by-nc-nd/3.0/

generate efficient code with compact runtime support [9,15]. The lack of runtime

type introspection does make some tasks more difficult to perform than with more

dynamically-typed languages such as Python or Java. Pretty-printing, conversions

between different types, or value persistence is a largely manual process in ML-like

languages, and can be tedious and error-prone. Haskell solves these problems by

using type-classes [4,22], which is a natural concept but difficult to implement. The

type-inference algorithm becomes more complex and the runtime implementation

suffers some performance penalties. In this paper, we concentrate on dynamic types,

but our work is influenced by ideas coming from type-classes.

Dynamic typing in the context of statically-typed programming languages had

been extensively studied [1] and even implemented in early versions of the OCaml

compiler. 1 Such solutions involve so-called objects with dynamic types (shortened

to dynamics), which consist of pairing a value v with a type expression τ such that

v is of type τ . The compiler is modified to:

• add a built-in type dyn such that all dynamics (v, τ) are of type dyn;

• add two constructs to communicate between type dyn and other types: one to

pair any value with its static type, and one to check if a dynamic value is of type

τ , and if so let the programmer read the associated value.

Such constructions are very powerful but difficult to implement correctly when

combined with a rich type environment. Moreover, their implementation is quite

intrusive in the compiler source code, as they modify the host type-system and

language constructs. Possibly as a result of this complexity, modern versions of

OCaml no longer have dynamics as a language feature.

In this paper, we describe a simplified implementation of dynamics in OCaml,

based on staged programming to generate and execute code fragments as part of

the compilation process [21]. We describe a 2-stage transformer that is sufficient

for generating information about dynamic types, and we illustrate the use of that

information to show how to build a storage layer which can easily persist ML values.

A key benefit of our approach is that it does not need to modify the core OCaml

compiler, and instead uses the camlp4 AST transformer to generate extra code at

compilation time. Our implementation: (i) parses a large subset of OCaml types to

a more succinct and expressive form than the syntax tree which camlp4 provides;

(ii) implements an Object-Relational Mapping (ORM) which defines an efficient

conversion to and from SQL; and (iii) provides a syntax extension to augment type

definitions in existing code.

End-user programmers use the same types and values as they did

previously, but additional functions are generated to persist and retrieve

these values from the database. One of the benefits of our approach

is that it works as a library to the standard OCaml distribution—no

modifications to the OCaml tool-chain are needed. For example:

1 In OCaml 2.x in the dynamics branch in source control. [13]

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–214

type t = { name: string; mail: string } with orm OCaml

let authors =
[{ name=“Anil”; mail=”avsm2@cam.ac.uk” };
{ name=“Thomas”; mail=”tgazagna@inria.fr” }]

let main () =
let db = t open “contacts” in
t save db authors;
let cam = t get ∼mail:(‘Contains ”ac.uk”) db in
printf ”Found %d @ac.uk” (List.length cam)

The type t is a standard OCaml type, with an annotation to mark it as a stor-

age type. Variables of type t can be saved and queried via the t open, t save

and t get functions. The backend uses the SQLite database library, and SQL is

automatically generated from the applications datatypes and never used by the

programmer directly.

Parts of the extension were developed for use in XenServer and the Xen Cloud

Platform [19]—a large, complex OCaml application that has been developed since

2006. The Xen Cloud Platform runs in an embedded Linux distribution and controls

virtual machine activity across large pools of physical machines, and so requires

efficient and reliable storage and I/O.

In the remainder of the paper, we first describe the type parsing (§2) and value

introspection libraries (§3). Then we motivate its use by illustrating the design of a

SQL persistence layer for ML values (§4), and finally an example of a simple photo

gallery (Section §5).

2 Type Introspection

2.1 Formal background

First of all, let us focus on the (declarative) type language of ML. Let us consider

two disjoint sets of names R and A. We consider a type definition to be an equation

ρ(α̂) = t where ρ ∈ R is a type variable, α̂ is a possibly empty collection {α1, . . . , αn}
of type parameters αi ∈ A and t is described by the following syntax :

tt ::= base a base type

| 〈n1 : tt〉M1 × . . .× 〈nk : tt〉Mk
ni ∈ N ,Mi ∈ {·, M} product type

| 〈n1 : tt〉+ . . .+ 〈nk : tt〉 ∀i, ni ∈ N sum type

| [tt] enumeration type

| tt → tt function type

| ρ | ρ(tt, . . . , tt) ρ ∈ R type variable

| α α ∈ A type parameter

base ::= UNIT | INT(N) | FLOAT | STRING

Basic types correspond to all the basic types that can be defined in OCaml.

The INT(i) constructor stands for an i-bit integer. Names of named product and

sum come from an infinite set of symbols N . The parameters Mi in the named

product indicate that such fields can be mutable; we will write 〈n : t〉 when a field

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21 5

is immutable, and 〈n : t〉M otherwise. The difference between a named product

and an enumeration is that values of type enumeration are unbound and so there

is no way to statically determine their size n; however, this bound is explicit for

a named product. Cartesian products (or tuples) can be naturally encoded into a

named product by giving to fields the names corresponding to their position in the

tuple:

t1 × . . .× tn
def≡ 〈1 : t1〉 × . . .× 〈n : tn〉

ρ(t1, . . . tn) is the total application to ρ of its type parameters: arity consistency is

not a problem as type functions are always total in ML. Finally, when α̂ = ∅, we
write the type definition as ρ = t and we say that t is a monomorphic type.

Now, let us consider ML programs from a type perspective, by ignoring values

and considering only types declarations. In the absence of recursive modules and

by flattening the name-space of types, every ML program is a sequence of recursive

type declarations. A program P can be modeled as follows:

P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1,1(α̂1,1) = t1,1
...

ρ1,n1(α̂1,n1) = t1,n1

· . . . ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1,k(α̂k,1) = tk,1
...

ρk,nk
(α̂k,nk

) = tk,nk

where ρi,j can only appear in the term tk,l if either i < k or k = i and l ≤ ni.

Moreover, any type parameter α appearing in a ti,j term should also be a member

of the corresponding α̂i,j on the left-hand side of the equation definition.

The main goal of type introspection is to give an intuitive and easy-to-use run-

time representation of the types manipulated by the program. We believe than an

equational representation of the types, even if it is compact and intuitive to write, is

not easy to use from a programmer’s perspective. Moreover, using such equations

requires a dynamic context which binds previous type variables to type expres-

sions, and this is impossible to have at preprocessing time. 2 Instead, we expose a

fix-point representation obtained by unfolding the types variables within the same

recursive set of equations and an inductive call for previously defined type variables:

this representation is finite and computable at preprocessing time, while preserving

the same type structures that the programmer has defined. The main restriction is

that some advanced uses of the module system, such as recursive module definitions,

cannot be expressed using this technique.

2.2 Fixed-point Type Declarations

We now explain how to incrementally transform the sequence of recursive equations

into a sequence of independent fix-point declarations, where the extended type

structure (i.e. including abbreviation definitions) of the types is not lost. We first

2 Recall that one of our implementation constraints is to obtain dynamics using the camlp4 preprocessor
instead of compiler modifications.

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–216

extend the syntax for types defined above with a new fix-point constructor:

tt ::= . . . | type ρ · tt

We then say that a type expression of the form type ρ · t is recursive if the type

variable ρ is a free variable in the type expression t; this is a static property, which

will be denoted by typeR ρ · t and is equivalent to the μ construct in type theory.

Furthermore, such a type expression is mutable if the symbol M appears in the

type expression t. This can also be statically decided, and is denoted by typeM ρ · t.
Both of these static properties can be composed, so one can have a mutable and

recursive expression which will be denoted by typeRM ρ · t.
Let us now define how to translate from a sequence of recursive equations into

a sequence of fix-points expressions, while preserving some kind of structure that

the programmer would expect. This problem had been studied in the context of

structural type-equivalence or subtyping [2,3,5,8] and the algorithm used is based

on a gaussian elimination technique; the correctness on that technique is ensured

by Bekić’s Theorem which states that any mutually recursive types can always be

defined as simple μ-types [23].

We have adapted this algorithm to work in our setting—namely, for mutually

recursive parametrised types. First, we define t[u/μ(α̂)] as the substitution of the

type variable μ (and its possibly empty type parameters α̂) by the expression u in

t. This operation is defined by induction on t :

if b ∈ base : b[u/μ(α̂)] = b(
〈n1 : t1〉 × . . .× 〈nk : tk〉

)
[u/μ(α̂)] = 〈n1 : t1[u/μ(α̂)]〉 × . . .× 〈nk : tk[u/μ(α̂)]〉(

〈n1 : t1〉+ . . .+ 〈nk : tk〉
)
[u/μ(α̂)] = 〈n1 : t1[u/μ(α̂)]〉+ . . .+ 〈nk : tk[u/μ(α̂)]〉[

t
]
[u/μ(α̂)] =

[
t[u/μ(α̂)]

]
(
t1 → t2

)
[u/μ(α̂)] = t1[u/μ(α̂)] → t2[u/μ(α̂)]

α[u/μ(α̂)] = α

For the substitution of type variables, we need to consider two cases. First, if ρ
= μ

then, the induction is trivial:

ρ[u/μ(α̂)] = ρ

ρ(t1, . . . , tn)[u/μ(α̂)] = ρ
(
t1[u/μ(α̂)], . . . , tn[u/μ(α̂)]

)

However, when ρ = μ, type arity has also to match and then we have :

ρ[u/ρ] = u

ρ(t1, . . . , tn)[u/ρ(α̂)] = u
[
t1[u/ρ(α̂)]

/
α1

]
. . .

[
tn[u/ρ(α̂)]

/
αn

]

In the first equation, α̂ = ∅, and it is not possible to substitute a monomor-

phic type by a polymorphic one. In the second equation, α̂ = {α1, . . . , αn}
where n is the same as in t1 . . . tn and u[v1/α1] . . . [vn/αn] is left-associative, i.e.

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21 7

(
. . . (u[v1/α1]) . . .

)
[vn/αn]; this corresponds to first doing induction on the argu-

ments, and then substituting in the expression of the type parameters with the

corresponding computed arguments.

Let us now consider a program P , viewed as a sequence of recursive equations,

and let us focus on the last equation system of that sequence :

P : X1 · . . . ·Xn−1 ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1(α̂1) = t1
...

ρn(α̂n) = tn

We want to associate to P a sequence P of fix-point instructions of the form :

P : X1 · . . . ·Xn−1 ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ
1
(α̂1) ← ϕ(ρ1)

...

ρ
n
(α̂n) ← ϕ(ρn)

Γ denotes the mapping associating each ρi to the corresponding ti in the last equa-

tion system of P . Also, dom(Γ) is the domain of Γ, i.e. the collection {ρ1, . . . , ρn}.
In order to define, φ, we first introduce an intermediate function called ϕ�. This

function inductively unfolds a type expression by replacing each type variable by

its value exactly once; in order to do so, it uses a set of type variables to remember

the ones already unfolded. Hence, the signature of ϕ� is :

ϕ� : 2dom(Γ) × dom(Γ) → tt

It associates a fix-point type expression to a collection of type variables (the variables

already unfolded) and a type variable (the variable to be unfolded) as follows :

ϕ�
R(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ if ρ ∈ R

ρ if ρ /∈ dom(Γ)

type ρ · Γ(ρ)
[
ϕ�
Rρ

(ρ1)
/
ρ1(α̂1)

]
. . .

[
ϕ�
Rρ

(ρn)
/
ρn(α̂n)

]
Rρ = {ρ} ∪R

Finally, ϕ is defined as :

ϕ(ρ) = ϕ�
∅(ρ)

Intuitively, ϕ substitutes all the type variables by either their value if they are de-

fined in the same set of recursive equations or by the inductive value computed

previously otherwise, until all the variables in the right-hand side expression of

the equality are bound. The only point of discussion is whether the type abbre-

vations should be preserved by this transformation; We really want to emphasize

here that sometimes it is not enough to preserve structural equivalence. Indeed,

the programmer may also wants to be aware of some memory structures, the best

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–218

example being when trying to persist values, as we will discuss more in depth in §4.
A simple example can be described by the two programs P1 and P2 :

P1 :

⎧⎨
⎩

t1 = 〈n : x〉
x = INT(31)× STRING

P2 :
(
t2 = 〈n : INT(31)× STRING〉

)

Here, t1 and t2 are structurally equivalent; however, our “programmer” intuition is

that these two types should result in distinct relational schemas, where the table

associated to t1 will feature an explicit indirection to the table associated to x:

table t1 table x table t2

id n

x(id)

id 1 2

×

id x1 x2

In this example, the table associated to type t1 has two columns: one is a

unique identifier; and the other column corresponding to field n contains identifiers

referencing elements in the table associated to type x. The table associated to type

x has three columns: the unique identifiers that column n in table t1 is referencing,

and the two others columns contain 31-bits integers and strings.

On the right hand side, the table associated to type t2 has three columns, the

columns associated to x being inlined directly. If we use a transformation based on

structural equivalence to pass from the types to the schemas, the schema represen-

tation of t1 and t2 will be indistinguishable. Both tables will be similar to the one

associated to t2, which is not expected from a programmer’s point-of-view.

The type system of ML is based on structural equivalence, and so our choice

might seem contradictory as we distinguish types that are indistinguishable by the

type system. However, in our practical experience [19], such indirections are always

put in the code for some reason (to be able to use physical equality or to ensure

maximum sharing for example) and so we believe that this extended structure should

be pushed down to the persistence layer as well.

When applying ϕ on t1, x and t2 to obtain P 1 and P 2, we can remark that t1
and t2 are different (even using α-conversion) :

P 1 :

⎧⎨
⎩

t1 ← type t1 · 〈n : type x · (INT(31)× STRING)〉
x ← type x · (INT(31)× STRING)

P 2 :
(
t2 ← type t2 · 〈n : INT(31)× STRING〉

)

We now focus on a more complex example using recursion and inductive defini-

tions. Consider a program P , with the sequence of recursive equations :

P :
(
t = STRING

)
·

⎧⎨
⎩

x = y(t)

y(α) = [x× α]

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21 9

We can now apply ϕ and check for static properties to obtain :

P :
(
t ← type t · STRING

)
·

⎧⎨
⎩

x ← typeR x ·
(
type y · [x× t]

)

y(α) ← typeR y ·
[
type x · (y(t)× α)

]

Again, the obtained result is finite and preserves the extended type structure

(type abbreviations and type structure). The usual solution 3 would have been to

forget non-recursive type constructors to obtain the more compact but less precise:

P :
(
t ← STRING

)
·

⎧⎨
⎩

x ← typeR x · [x× t]

y(α) ← typeR y · [y(t)× α]

This more compact structure can trivially be obtained from our extended struc-

ture at a later stage.

2.3 Implementation

The transformation described in §2.2 has been implemented in OCaml as a prepro-

cessing library, called type-of. This library uses camlp4 and the type-conv frame-

work [18] to make type introspection available to the programmer. Hence, for each

type definition annotated with the special keyword type of, it will automatically

generate a finite value of type Type.t describing the type shape:

module Type = struct OCaml

type t =
| Unit | Int of int option | Float | String
| Dict of (string × [‘RW|‘RO] × t) list
| Sum of (string × t list) list
| Enum of t
| Arrow of t × t
| Var of string × (t list)
| Param of string
| Type of elt

and elt = {
recursive : bool;
read only : bool;
name : string;
contents : t }

end

As described previously, this transformation works for a large subset of ML types,

including recursive and polymorphic types. We have the following correspondence:

on the left-hand side, types as they were defined in §2.1; on the right-hand side,

3 Recall we did not choose this method because it forgets information that the programmer explicitly
annotated in their source code.

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–2110

types as they are defined in an OCaml program:

t = . . . type t = . . . with type of

t ← . . . let type of t = . . .

t(α1, . . . , αn) = . . . type (‘a1, . . . , ‘an) t = . . .

t(α1, . . . , αn) ← . . . let type of t type of a1 . . . type of an = . . .

The translation from a set of recursive equation into fix-point expressions is

well-known. Our contributions are to: (i) make the fix-point expressions available

to the programmer to inspect static types at run-time; and (ii) tailor the technique

for preprocessing time using only syntactic information and keeping the core

compiler tool-chain significantly simpler. Furthermore, modularity and abstraction

are handled quite naturally using induction on types variables—a programming

style close to the one used when type-classes are available. For example :

(� type definition �) OCaml

type α t = A of α | X of x list
(� auto-generated code �)
let type of t type of a =

Type {
recursive : (is recursive type of a) || (is recursive type of x);
read only = (is read only type of a) && (is read only type of x);
name = “t”;
contents = Sum [

(“A”, [type of a]);
(“X”, [Enum (type of x)])

]
}

In this case, type of x has to be defined previously for the program to compile.

This definition may have either been automatically generated previously using the

type-of library, or been defined previously by the user. The latter option makes the

type-of library easily extensible, especially for abstract types.

3 Value Introspection

3.1 Formal background

As we did for types, we now introduce the syntax for values. The considered val-

ues are concrete memory representations; we thus define a collection L of memory

locations and we assume that we have a memory function M : (L× tt) → vv asso-

ciating typed memory locations to values (implicitly performing a conversion from

ML values into introspectable values), where introspectable values are described by

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21 11

the following syntax :

vv ::= base a base value

| (vv, . . . , vv) tuple construction

| 〈n : vv〉 n ∈ N sum construction

| (γ : ρ) γ ∈ L, ρ ∈ tt typed variable

| an unknown value

base ::= UNIT no value

| INT(Z) integer constants

| FLOAT(R) real numbers

| STRING(Σ�) strings constants

Base values are tagged with their types; this can be performed directly when calling

M as the type representation ρ as computed in §2.2 is available. For example, the

integer 42 will hence be represented as INT(42). We ensure that the type of such

variable does not have any free parameters; it is not possible using our scheme to

have a value representing an α-list. Furthermore, unlike the type syntax, value

representations do not carry any names. This information is already present in the

type description obtained earlier (see §2.2). Hence, programmers can reason by

induction both on value and type runtime representations at the same time

The only constructs are unbounded product and sum constructors. Values cor-

responding to named sum types are built by remembering the name of the tag and

the corresponding value. Functional values have no (explicit) runtime representa-

tion and are represented by the symbol .

As for types, our goal is to provide at runtime to the programmer a finite and

easy-to-use representation of the values. However, unlike types, values are built and

modified at runtime. It is thus impossible to build a translation at preprocessing

time, as the program needs to run to actually produce values. We solve this by

generating at preprocessing time, a pair of functions
→
ρ : ML → vv and

←
ρ : vv → ML.

These functions transform back and forth, at runtime, any ML value of type ρ into

a finite representation whose syntax is vv, extended with a fix-point operator:

vv ::= . . . | val γ · vv

The extra fix-point operator is used to deal with cyclic values. Recursive types

do not automatically imply corresponding cyclic values, so this information is not

already encoded in the type description and must be explicitly encoded in the value.

We denote by FV (v) the free variables in v. We can easily define substitution on

values; if u and v are two values and γ a variable, then u[v/γ] is the value u where

all instances of γ have been replaced by v :

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–2112

(
u1, . . . , un

)
[v/γ] =

(
u1[v/γ]× . . .× un[v/γ]

)
〈n : u〉[v/γ] = 〈n : u[v/γ]〉

γ[v/γ] = v

Otherwise: u[v/γ] = u

We now detail how the functions are generated at preprocessing time. Recall

that a program, from a type perspective, is a sequence of recursive equations :

P : X1 · . . . ·Xn−1 ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ1(α̂1) = t1
...

ρn(α̂n) = tn

Following the technique described in §2.2, we associate to that program a sequence

of values
→
P :

→
P :

→
X1 · . . . ·

→
Xn−1 ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

→
ρ 1 (α̂1) = ψ(ρ

1
)

...
→
ρn (α̂n) = ψ(ρ

n
)

such that :

ψ(ρ) = (ψ�
∅(ρ) : ρ); and

ψ�
L(ρ)(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(γ : ρ) if γ ∈ L

val γ · v[u1/γ1] . . . [un/γn] if γ ∈ FV (v[u1/γ1] . . . [un/γn])

v[u1/γ1] . . . [un/γn] otherwise, where :

• v = M(γ, ρ);

• {γ1, . . . , γn} = FV (v);

• and ∀i, ui = ψ�(
{γ} ∪ L

)(ρ
i
)(γi).

As with types, the transformation of an implicit collection of recursive equations

into a fix-point representation is done by induction. It suffices to substitute value

locations by their contents and stop when all value variables are bound to an inner

val declaration. It is worth emphasising that, even if they look similar, the function

ϕ� (defined in §2.2) and ψ� are different. ϕ� is a value computed at preprocessing

time, and the substitutions are done only once; whereas ψ� is a function that com-

putes a new value each time it is called. This implies that every translation from

an ML value into an element of vv is an expensive operation: all the memory of

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21 13

the ML values needs to be scanned and some re-allocated into the new structure 4 .

These costs are difficult to eliminate entirely, but our implementation (§3.2) uses

lazy evaluation to evaluate only necessary parts of the translated ML value.

Using similar techniques, we also compute ψ−1 to get :

←
P :

←
X1 · . . . ·

←
Xn−1 ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

←
ρ 1 (α̂1) = ψ−1(t1)

...
←
ρn (α̂n) = ψ−1(tn)

The only notable difference is, as ψ is not surjective, that ψ−1 can produce an

exception if the dynamic value cannot be converted back to a normal ML value.

Let us now consider an example. We are assuming the memory function to have

the following shape :

M :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x1, x) → y × INT(32)

(x2, x) → y × INT(52)

(y, y) → x1 × x2 × x1

with :

x = typeR x ·
((

type y · (x× x× x)
)
× INT(31)

)

y = typeR y ·
(
type x ·

(
y × INT32

)
× type x ·

(
y × INT32

)
× type x ·

(
y × INT32

))

Then the runtime representation
→
x (x1) = ψ(x)(x1) is the pair (γ : ρ) where :

γ = val x1 ·
(
val y ·

(
(x1 : x)× (y × INT(52))× (x1 : x)

)
× INT(32)

)

3.2 Implementation

The transformation described in §3.1 has also been implemented as a library

called value. As for the type-of library, it uses camlp4 and type-conv to

generate at preprocessing time, a pair of functions to translate to and from

an ML value and a dynamic value expression. To this end, the ML value

should be of an explicitly declared ML type, annotated with the keyword

value. The dynamic value expression implements the syntax given in 3.1 :

4 Some potentially large primitive values, such as string values will not be reallocated but passed by
reference.

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–2114

module Value = struct OCaml

type loc
type elt =

| Unit | Int of int64 | Float of float | String of string
| Tuple of elt list
| Sum of string × elt
| Unknown
| Val of loc × elt
| Var of loc

type t = { val : elt; typ : Type.t }
end

We then have the following correspondence between the notations given in the

previous section and the value library :

→
t← . . . let value of t = . . .
←
t← . . . let t of value = . . .

Type loc is left abstract as it is implemented as Obj.t: the location of an object

is the reference cell where it is stored. Comparing locations has to be done using the

OCaml physical equality operator ==. The function value of t uses some unsafe

features of OCaml to store all the values already seen in an untyped way, when

unfolding the value. The t of value function also uses some unsafe features of

OCaml , but only when cyclic ML values are built from a value of type Value.t.

However, this is hidden in the generated library code and never exposed to the

end-user programmer.

4 SQL Persistence

We now describe how to use the type-of and value libraries to build an integrated

SQL backend to persist ML values. This backend is integrated seamlessly with

OCaml, and the user does not write any SQL queries manually. For each type

definition t annotated with the keyword orm, a tuple of functions to persist and

access the saved values are automatically generated:

(� User-defined datatype �) OCaml

type t = ... with orm

(� Auto-generated signatures �)
val t init: string → (t, [‘RW]) db
val t init read only: string → (t, [‘RO]) db
val t get: (t, [< ‘RW | ‘RO]) db → ... → t list
val t save: (t, [‘RW]) db → t → unit
val t delete: (t, [‘RW]) db → t → unit

The t init function connects to the database to check if values of type named

t have already been persisted; if so, it checks if the structure of t is consistent with

previously persisted values of types named t, that is if values of the current type t

can be safely stored and/or read into the database. It performs this schema check

using the structural sub-typing-aware type redirections described earlier (§2.2). If

the database is new, it constructs new tables in the database with the right schema.

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21 15

This automatic translation between ML types to SQL schemas is described in more

detail later (§4.1).
The t get function has a part of its signature left unspecified; this is because

the type of the query arguments are parameterised by t (see §5 for an example of

query arguments). As an additional layer of type-safety, the database handle has a

phantom polymorphic variant [‘RO|‘RW] that distinguishes between mutable and

immutable database handles. This causes a compilation error if, for example, an

attempt is made to delete a value in a read-only database.

The t save function stores values into the database; it uses mutabil-

ity information exposed by the type-of library to perform sharing optimisa-

tion when possible: for immutable values, our scheme use hash-consing [7,10]

to save memory space. Implementing correctly (mutable) value updates has

been an interesting challenge. Consider the following piece of code:

(� Type defintions �) OCaml

type x = { mutable x : string } with orm
type t = { a : int; b : x } with orm
(� Code �)
let t = { a = 0; b = { x = “foo” } }
and db = t init ”mydb.db” in
t save db t;
t.b.x ← “bar”;
t save db t

This should create only one record of each type in the database; the second call

to t save needs to detect that the value of type x is at the same location but has

different content. Our implementation uses: (i) a hidden global cache, associating

unique identifiers to ML values for a given database name; (ii) weak pointers to

clean this cache when a value is garbage-collected; and (iii) SQL triggers to update

the cache correctly when new values are deleted or added.

The t delete function raises interesting implementation problems as well. In a

garbage-collected language, it is not clear how to mix automatic memory manage-

ment with persistent values. We cannot rely on liveness analysis and life-propagation

algorithms to know if an object can be deleted or not, as the purpose of persisting

objects is to make the life of a value longer than the program which created it.

Conventional counting mechanisms also do not work when cyclic values are present.

Our implementation uses a mix of these two techniques, but we view the precise

semantics of a “persistent deletion” function as an open challenge, as it can be con-

fusing for the programmer to determine the behaviour without knowing the details

of our framework.

4.1 Schema creation

SQL schemas are automatically constructed when connecting to a new database.

Let us suppose we have a set of column and table names N such that 0, 1 ∈ N
and such that they verifies the following property : if n ∈ N and m ∈ N , then

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–2116

n ·m ∈ N . Then, the schema creation syntax of SQL can be defined as :

sql ::= t � (c1 : type) · . . . · (ck : type) t ∈ N , ci ∈ N table creation

sql; sql sequence

type ::= I(i) | R | T | F (t) | ⊥ i ∈ N, t ∈ N column type

where I(i) stands for an i-bit integers, R for reals, T for texts, F (t) for row IDs of

foreign tables and ⊥ for binary data. Furthermore, to be valid, a creation query

needs to verify that every column of the created table has a unique name:

Validity Property : t � (c1 : t1) · . . . · (ck : tk) is valid if i
= j implies that ci
= cj

We can now describe how to translate any ML type (with no free type param-

eters) into a valid SQL statement. Figure 1 shows how to inductively build the

collection of fields from a name and an element of tt, i.e. it defines a function

F : N × tt → (N × type)�. Equations (1)-(4) translates basic constructors of

tt into simple fields with the appropriate type; Equations (5), (8) and (9) means

that enumeration and type variables are stored in separate tables and thus the row

ID of this foreign table need to be stored in the current table. Finally, equations

(6)-(7) fold the induction through the sub-terms of the current term of type tt, and

propagate the name changes. We ensure the validity property by giving a different

field name to each sub-induction call.

Fn(INT(i)) = (n : I(i)) (1)

Fn(FLOAT) = (n : R) (2)

Fn(STRING) = (n : T) (3)

Fn(t1 → t2) = (n : ⊥) (4)

Fn([t]) = (n · 0 : F (n · 0)) (5)

Fn(〈m1 : t1〉 × . . .× 〈mk : tk〉) = Fn·m1(t1) · . . . · Fn·mk
(tk) (6)

Fn(〈m1 : t1〉+ . . . 〈mk : tk〉) = (n · 0 : T) · Fn·m1(t1) · . . . · Fn·mk
(tk) (7)

Fn(type ρ · t) = (n : F (n)) (8)

Fn(ρ) = (n : F (n)) (9)

Fig. 1. Field semantics for schema creation

Figure 2 shows how to build the set of SQL tables from a name and element

of tt, i.e. it defines a function T : N × tt → sql. In equations (10) and (11),

basic constructors of tt do not affect the set of tables (they are handled in the

previous field semantics). Equations (12) and (15) create foreign tables t, which are

referenced as fields of type F (t) from the field semantics in Equations (5),(8) and

(9). Moreover, equation (12) adds the field (n · 0 : F (n · 0)) to the field semantics

of the n · 0 table: an enumeration is stored as a simply linked list in the database,

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21 17

the next relation being stored in that new field. Equations (13) and (14) also fold

the induction through the current term as with the semantics in (6) and (7).

Tn(base) = ∅ (10)

Tn(t1 → t2) = ∅ (11)

Tn([t]) = n · 0 � (n · 0 : F (n · 0)) · Fn·1(t) ; Tn·0(t) (12)

Tn(〈m1 : t1〉 × . . .× 〈mk : tk〉) = Tn·m1(t1) ; · · · ; Tn·mk
(tk) (13)

Tn(〈m1 : t1〉+ . . .+ 〈mk : tk〉) = Tn·m1(t1) ; · · · ; Tn·mk
(tk) (14)

Tn(type ρ · t) = n � Fn(t) ; Tn(t) (15)

Tn(ρ) = ∅ (16)

Fig. 2. Table semantics for SQL

Finally, the SQL queries which create the tables to persist values of type ρ is

Tρ(ρ), where ρ is the dynamic type as computed in §2.2.

5 Example: Photo Gallery

We do not explain the full semantics of queries and writes in this paper. Instead,

we choose to illustrate the capabilities of the ORM library by constructing a simple

photo gallery. We start that example by defining the basic ML types corresponding

to a photo gallery:

type image = string OCaml

and gallery = {
name: string;
date: float;
contents: image list;

} with orm

We hold an image as a binary string, and a gallery is a named list of images.

First, initializations functions are generated for both image and gallery:

val image init : string → (image, [‘RW]) db OCaml

val gallery init : string → (gallery, [‘RW]) db
val image init read only : string → (image, [‘RO]) db
val gallery init read only : string → (gallery, [‘RO]) db

Intuitively, calling gallery_init will:

(i) use type-of to translate the type definitions into:

let type of image = Ext (“image”, String) OCaml

let type of gallery =
Ext(“gallery”, Dict [(“name”, String); (“date”, Float) ; (“contents”, Enum type of image)])

(ii) use the rules defined by Figures 1 and 2 to generate the database schema:

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–2118

CREATE TABLE image (id INTEGER PRIMARY KEY, image TEXT); SQL

CREATE TABLE gallery (id INTEGER PRIMARY KEY,
gallery name TEXT, gallery date REAL, gallery contents 0 INTEGER);

CREATE TABLE gallery contents 0 (id INTEGER PRIMARY KEY,
next INTEGER, size INTEGER, gallery contents 0 INTEGER);

Second, using the value library, any value of type image or gallery can be

translated into a value of type Value.t. Using rules similar to the ones defined in

Figures 1 and 2, saving functions can be then defined, having as signature:

val image save : (image, [‘RW]) db → image → unit OCaml

val gallery save : (gallery, [’RW]) db → gallery → unit

Finally, using type-of, functions to access the database are generated, with the

following signature:

val image get : (image, [< ‘RO | ‘RW]) db → OCaml

?value:[‘Contains of string | ‘Eq of string]] →
?custom:(image → bool) →
image list

val gallery get : (gallery, [< ‘RO | ‘RW]) db →
?name:[‘Eq string | ‘Contains string] →
?date:[‘Le float | ‘Ge float | ‘Eq float | ‘Neq float] →
?custom:(gallery → bool) →
gallery list

For both types, we are generating: (i) arguments that can be easily translated

into an optimized SQL queries; and (ii) a more general (and thus slow) custom query

function directly written in OCaml. On one hand, (i) is achieved by generating

optional labelled arguments with the OCaml type corresponding to the fields defined

by Figure 1. This allows the programmer to specify a conjunction of type-safe

constraints for his queries. For example, the field name is of type string which is

associated to the constraint of type [‘Eq of string | ‘Contains of string].

Values of this type can then be mapped to SQL equality or the LIKE operator. On

the other hand, (ii) is achieved using a SQLite extension to define custom SQL

functions—in our case we register an OCaml callback directly. This is relatively

slow as it bypasse the query optimizer, but allows the programmer to define very

complex queries.

let db = gallery init ”louvre.db” in OCaml

let i = new image () in
let gallery = { name=“Leonardo”; date=today(); contents=[i] } in
gallery save db gallery;
match gallery get ∼name:(Eq “Leonardo”) db with

| [g] → printf ”Found 1 gallery: %s” g.name
| → failwith ”Wrong numver of galleries”

The above code snippet saves a gallery named “Leonardo” containing an unique

fresh image in a database called louvre.db. It then queries all the galleries whose

name is strictly equal to “Leonardo”. It expects to find exactly one gallery with

this name; otherwise it throws an error.

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21 19

6 Related Work and Conclusions

There are a number of extensions to functional languages to enable general meta-

programming, such as Template Haskell [20] and MetaOCaml [21]. MetaHDBC [14]

uses Template Haskell to connect to a database at compile-time and generate code

from the schema; in contrast, we derive schemas directly from types in order to make

the use of persistence more integrated with existing code. We avoid a dependency on

MetaOCaml by using camlp4 in order to fully use the OCaml toolchain (particularly

ARM and AMD64 native code output), and also because we only need a lightweight

syntax extension instead of full meta-programming support. We believe that our

work is simpler and easier to extend than Yallop’s deriving [24] which is inspired

by the construct in the same name in Haskell [11]. Language-integrated constructs

to manipulate databases is also an active topics for mainstream languages, such as

the LINQ [16] library for the .NET framework. The small syntax extension we are

proposing in this paper is more naturally integrated with the host language.

We have shown how a type and value introspection layer using the AST trans-

former built into OCaml can be used to create useful persistence extensions for the

language that does not require manual translation. As future work, we are building

libraries for network and parallel computation using the same base libraries. The

library is open-source and available at: http://github.com/mirage/orm.

References

[1] M. Abadi, L. Cardelli, B. C. Pierce, and D. Rémy. Dynamic typing in polymorphic languages. J. Funct.
Program., 5(1):111–130, 1995.

[2] M. Abadi and M. P. Fiore. Syntactic considerations on recursive types. In LICS, pages 242–252, 1996.

[3] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans. Program. Lang. Syst.,
15(4):575–631, 1993.

[4] S. Blott. Type inference and type classes. In K. Davis and J. Hughes, editors, Functional Programming,
Workshops in Computing, pages 254–265. Springer, 1989.

[5] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality and subtyping.
Fundam. Inform., 33(4):309–338, 1998.

[6] L. Damas and R. Milner. Principal type-schemes for functional programs. In POPL, pages 207–212,
1982.

[7] A. P. Ershov. On programming of arithmetic operations. Commun. ACM, 1(8):3–6, 1958.

[8] V. Gapeyev, M. Y. Levin, and B. C. Pierce. Recursive subtyping revealed. J. Funct. Program.,
12(6):511–548, 2002.

[9] T. Gazagnaire and V. Hanquez. Oxenstored: an efficient hierarchical and transactional database using
functional programming with reference cell comparisons. In G. Hutton and A. P. Tolmach, editors,
ICFP, pages 203–214. ACM, 2009.

[10] E. Goto. Monocopy and associative algorithms in an extended LISP. Technical Report 74-03,
Information Sciences Lab., University of Tokyo, 1974.

[11] S. L. P. Jones, editor. Haskell 98 Language and Libraries: The Revised Report. Cambridge University
Press, April 2003.

[12] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system, 2005.

[13] X. Leroy and M. Mauny. DynamicsOA in ML. J. Funct. Program., 3(4):431–463, 1993.

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–2120

http://github.com/mirage/orm

[14] M. Lindstrom. MetaHDBC: Statically Checked SQL for Haskell (Draft). 2008.

[15] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan. Melange: creating a ”functional” internet.
EuroSys, 41(3):101–114, 2007.

[16] E. Meijer, B. Beckman, and G. M. Bierman. LINQ: reconciling object, relations and XML in the .NET
framework. In S. Chaudhuri, V. Hristidis, and N. Polyzotis, editors, SIGMOD Conference, page 706.
ACM, 2006.

[17] R. Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci., 17(3):348–375,
1978.

[18] M. Mottl. type-conv: a library for composing automated type conversions in OCaml, 2009.

[19] D. Scott, R. Sharp, T. Gazagnaire, and A. Madhavapeddy. Using Functional Programming within an
Industrial Product Group: Perspectives and Perceptions. In The 15th ACM SIGPLAN International
Conference on Functional Programming, 2010.

[20] T. Sheard and S. Peyton Jones. Template metaprogramming for Haskell. In M. M. T. Chakravarty,
editor, ACM SIGPLAN Haskell Workshop 02, pages 1–16. ACM Press, Oct. 2002.

[21] W. Taha. A Gentle Introduction to Multi-stage Programming. In Domain-Specific Program
Generation, volume 3016 of Lecture Notes in Computer Science, pages 30–50, Dagstuhl Castle,
Germany, March 2004. Springer.

[22] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In POPL, pages 60–76, 1989.

[23] G. Winskel. The formal semantics of programming languages. The MIT Press, 1993.

[24] J. Yallop. Practical generic programming in OCaml. In ML ’07: Proceedings of the 2007 workshop on
Workshop on ML, pages 83–94. ACM, 2007.

T. Gazagnaire, A. Madhavapeddy / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 3–21 21

	Introduction
	Type Introspection
	Formal background
	Fixed-point Type Declarations
	Implementation

	Value Introspection
	Formal background
	Implementation

	SQL Persistence
	Schema creation

	Example: Photo Gallery
	Related Work and Conclusions
	References

