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1. Introduction

It is rather known that a ‘generic’ continuous real function (or a ‘typical’ one, or ‘most’ of them) admits a derivative at
no point. This is often stated as a kind of curiosity, for such a function is not so easy to exhibit, or even to fancy. The aim
of this paper is to give some properties of a generic compact metric space.

When we say generic, we refer to the notion of Baire categories. We recall that a subset of a topological space B is said
to be rare if the interior of its closure is empty. It is said to be meager, or of first category, if it is a countable union of rare
subsets of B . The space B is called a Baire space if each meager subset of B has empty interior. Baire’s theorem states that
any complete metric space is a Baire space. The complement of a meager subset of a Baire space is said to be residual. At
last, given a Baire space B , we say that a generic element of B enjoys a property if the set of elements which satisfy this
property is residual.

In order to state the results of this article we need a few definitions. We say that a metric space X is totally anisometric
if two distinct pairs of points have distinct distances. We say that three points x, y, z ∈ X are collinear if one of the three
distances between them equals the sum of the two others. Of course, this definition matches the classical one in a Euclidean
space. A perfect set is a closed set without isolated points. The definitions of the upper and lower box dimensions are recalled
in Section 5.

We will prove that a generic compact metric space X :

1. is totally discontinuous (Theorem 1);
2. is totally anisometric (Theorem 2);
3. has no collinear triples of (pairwise distinct) points (Theorem 3);
4. is perfect (Theorem 4);
5. is homeomorphic to the Cantor set (Corollary 5);
6. admits a set of distance values {d(x, y) | x, y ∈ X} which is homeomorphic to the Cantor set (Theorem 5);
7. cannot be embedded in any Hilbert space (Theorem 6);
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8. has zero Hausdorff and lower box dimensions (Theorem 7);
9. has infinite upper box dimension (Theorem 7).

Earlier studies were performed on a generic compact subset of some fixed complete metric space. It is known that
the points 1, 4 and 5 hold for a generic compact subset of R

n . The first proof in black and white of this fact is due to
J.A. Wieacker, who, however, didn’t claim its discovery [14]. In the same paper he proved that any subset with n+1 elements
of a generic subset of R

n is affinely independent. This implies in particular that the point 3 holds for subsets of R
n .

Almost simultaneously, P.M. Gruber investigated the dimension of a generic subset of a fixed complete metric space X .
In [8], he proved that the point 8 holds in this framework. Clearly the point 9 cannot hold for any complete metric space X .
However P.M. Gruber proved that, if X has some suitable property (e.g. X = R

n), then a generic compact subset of X has an
upper box dimension greater than or equal to n.

A decade later, A.V. Kuz’minykh proved that the points 2 and 6 hold in the case of subsets of the Euclidean spaces. As
far we know, the point 7 is new.

Many other properties of a generic compact subset K of some fixed ambient space X have been investigated by these
authors and some others. One can mention the porousness of K [15], the properties of the nearest point mapping from X
to K [3,12,4], the properties of the convex hull of K [14], or the properties of the image of K by the spherical projection
with respect to a given point [16,5]. However, all those properties involve the embedding of X in the whole space, and so,
admit no counterpart in our framework.

2. The Gromov–Hausdorff space

The section is devoted to recall the definition and the properties of the so-called Gromov–Hausdorff space, i.e. the space
of all isometry classes of compact metric spaces. We will use the same letter to designate both a metric space (i.e. a set
endowed with a distance) and its underlying set. If X is a metric space, we denote by dX its metric. If A is a part of X and
ρ is a positive number, we denote by A + ρ the ρ-neighborhood of A, namely

A + ρ = {
x ∈ X

∣∣ ∃y ∈ A s.t. dX (x, y) < ρ
}
.

If A = {a} is a singleton, we denote by B(a,ρ) = A + ρ the open ball. We recall that the Hausdorff distance dX
H (A, B)

between two nonempty closed bounded subsets A and B of X is the infimum of those numbers ρ such that A ⊂ B +ρ and
B ⊂ A + ρ . It is easy to see that dX

H is a distance on the set M(X) of all nonempty compact subsets of X . Moreover, if X is
complete (resp. compact), then M(X) is complete (resp. compact) too [2, p. 253].

Let X and Y be two compact metric spaces. The Gromov–Hausdorff distance between them is defined by

dGH(X, Y ) = inf dZ
H

(
f (X), g(Y )

)
,

where the infimum is taken over all metric spaces Z and all isometric injections f : X → Z and g : Y → Z . It is known
that dGH is a distance on the Gromov–Hausdorff space M of all compact metric spaces up to isometry. Moreover, M is
complete [13, p. 296].

A correspondence R between two metric spaces X and Y is a relation (i.e. a subset of X × Y ) such that each element of X
is in relation with at least one element of Y , and conversely, each element of Y is in relation with at least one element
of X . For x ∈ X and y ∈ Y , we write xR y instead of (x, y) ∈ R . The distortion of a correspondence R between X and Y is the
number

dis(R) = sup
{∣∣dX(

x, x′) − dY (
y, y′)∣∣ ∣∣∣ x, x′ ∈ X, y, y′ ∈ Y , xR y, x′R y′}.

The above notion is useful for it provides another way to compute the Gromov–Hausdorff distance.

Lemma 1. ([2, p. 257])

dGH(X, Y ) = 1

2
inf

R
dis(R)

where the infimum is taken over all correspondences R between X and Y .

Another useful result is the following

Lemma 2. Let (Xn)n∈N be a converging sequence of elements of M, and denote by Y its limit. Let (εn)n∈N be a sequence of positive
numbers. Then, there exist a compact metric space Z , an isometric embedding g : Y → Z , and for each positive integer n, an isometric
embedding fn : Xn → Z , such that dZ

H ( fn(Xn), g(Y )) < dGH(Xn, Y ) + εn.

Proof. First, we can assume without loss of generality that εn converges to 0. For each integer n there exists a compact
metric space Zn and two isometric injections f ′

n : Xn → Zn and g′
n : Y → Zn such that

dZn
(

f ′
n(Xn), g′

n(Y )
)
< dGH(Xn, Y ) + εn.
H
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We also assume that Zn is minimum for inclusion, that is Zn = f ′
n(Xn) ∪ g′

n(Y ). Let Z ′ = ∐
n∈N Zn , endowed with the

pseudo-distance

dZ ′
(a,b) = dZn(a,b), if a,b ∈ Zn,

dZ ′
(a,b) = min

y∈Y

(
dZn

(
a, g′

n(y)
) + dZm

(
g′

m(y),b
))

, if a ∈ Zn and b ∈ Zm with m �= n.

We have called dZ ′
a pseudo-distance, but of course, this should be checked. Since the verification is straightforward, it is

left to the reader. Let Z be the quotient of Z ′ by the equivalence relation ∼ defined by

a ∼ b ⇐⇒ dZ ′
(a,b) = 0,

and let π : Z ′ → Z be the canonical surjection. We define fn = π ◦ f ′
n and g = π ◦ g′

n (g does not depend on n, since
dZ ′

(g′
n(y), g′

m(y)) = 0). It is clear that fn and g are isometric embeddings, and that

dZ
H

(
fn(Xn), g(Y )

)
< dGH(Xn, Y ) + εn.

It remains to prove that Z is compact. Let (zk)k∈N be a sequence in Z . Either there exists an integer n such that all but a
finite number of terms of (zk)k∈N belong to π(Zn), or one can extract from (zk)k∈N a subsequence such that zk ∈ π(Z v(k)),
where v : N →N is increasing. In the former case, since Zn is compact, we can extract from (zk) a converging subsequence,
and the proof is over. In the latter case, there exists a sequence (yk)k∈N of points of Y such that dZ v(k) (z′

k, g′
v(k)

(yk)) �
dGH(Xv(k), Y ) + εv(k) , where z′

k ∈ Z v(k) is such that π(z′
k) = zk . By extracting a suitable subsequence we may assume that yk

is converging to some point y ∈ Y . It follows that

dZ (
zk, g(y)

)
� dZ v(k)

(
z′

k, g′
v(k)(yk)

) + dZ (
g(yk), g(y)

)
� dGH(Xv(k), Y ) + εv(k) + dY (yk, y) → 0,

whence (zk)k∈N is converging. Hence Z is compact. �
3. Finite spaces

The subset MF ⊂ M of finite metric spaces is playing a key role in the study of M because it is dense in M and simple
enough to be described by mean of matrices.

We define the codiameter of a finite metric space X as the minimum of all non-zero distances in X : cdm(X) =
minx�=y∈X dX (x, y).

A distance matrix is a symmetric matrix D = (dij)1�i�n, 1� j�n with 0’s on the (main) diagonal, and positive numbers
elsewhere, such that for all indices i, j, k we have dij � dik + dkj . We say that two distance matrices are equivalent, if we
can pass from one to the other by applying the same permutation simultaneously to its rows and its columns.

We clearly can associate to a distance matrix D of order n the metric space XD defined by

XD = {1, . . . ,n},
dXD (i, j) = dij .

The spaces XD and XD ′ are isometric if and only if D and D ′ are equivalent. Conversely, given a finite metric space X =
{x1, . . . , xn}, we can associate to it the distance matrix, D = (dX (xi, x j))1�i�n, 1� j�n . Of course D depends on the order in
which the points of X are labeled, but not its class of equivalence. Moreover, two isometric spaces X and X ′ give the same
class of equivalence of distance matrices. Hence the set Mn ⊂ M of those metric spaces with cardinality n is bijectively
mapped on the set of equivalence classes of distance matrices of order n. Furthermore the inequality

dGH(XD , XD ′) � 1

2
max

i, j

∣∣dij − d′
i j

∣∣ = 1

2

∥∥D − D ′∥∥∞ (1)

follows from Lemma 1.
Conversely, let X and Y be two finite metric spaces with n elements, such that dGH(X, Y ) < 1

2 cdm(Y ). Let θ be a
real number such that dGH(X, Y ) < θ < 1

2 cdm(Y ). By definition of dGH , there exist a metric space Z , and two subsets
X ′ = {x1, . . . , xn} and Y ′ = {y1, . . . , yn} of Z , such that X is isometric to X ′ , Y is isometric to Y ′ and dZ

H (X ′, Y ′) < θ . It
follows that for each i ∈ {1, . . . ,n}, there exists j ∈ {1, . . . ,n} such that dZ (xi, y j) < θ . Moreover j is unique: assume on the
contrary that two such indices j1 and j2 exist, then

2θ < cdm(Y ) � dY (y j1 , y j2) � dZ (y j1 , xi) + dZ (xi, y j2) < 2θ.

Hence, by changing the labeling of elements of Y , we can assume that dZ (xi, yi) is less than θ for all indices i. Let D X
and DY be the distance matrices of X and Y corresponding to this order, then

1‖D X − DY ‖∞ � max
1 (

dZ (xi, yi) + dZ (x j, y j)
)
< θ.
2 i, j 2
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Since this holds for all θ greater than dGH(XD , XD ′), it follows that

1

2
‖D X − DY ‖∞ � dGH(X, Y ).

This and (1) prove that, if dGH(XD , XD ′) � 1
2 cdm(XD), then

dGH(XD , XD ′) = 1

2
min

D ′′∼D ′
∥∥D − D ′′∥∥∞. (2)

In other words, the bijection between Mn and the set of equivalence classes of distance matrix of order n is a local simili-
tude. We will use this fact to prove the

Lemma 3. Let X ∈ Mn be a finite metric space with cardinality n and ε be a positive number. There exits a ball B0 ⊂ B(X, ε) ⊂ Mn,
each point of which is totally anisometric and without triples of collinear points.

Proof. Put m = n(n−1)
2 . Let D be a distance matrix associated to X . Since the space Dn of distance matrices of order n is

defined by a finite number of linear inequalities (dij > 0, dij +d jk � dik) it is a convex polytope of the set Sn of all symmetric
matrices with zero on the diagonal, which in turn is isomorphic to R

m as a vector space. Moreover the distance matrix
with 0 on the diagonal and 1 elsewhere clearly belongs to the interior of Dn , that is therefore nonempty. Let R1 be the union
of the (m−1)m

2 hyperplanes of Sn defined by the equations dij = dkl (1 � i < j � n, 1 � k < l � n, (i, j) < (k, l)) and R2 the
union of the (n − 2)m hyperplanes defined by the equations dij + d jk = dik (1 � i < k � n, 1 � j � n, j �= k, j �= i). The matrix
of a metric space of cardinality n which is not totally anisometric (resp. admits a triple of collinear points) should belong
to R1 (resp. R2). Since R1 ∪ R2 is clearly rare, there exists a ball B1 = B(�,2η) included in B(D, ε)∩ (Dn\(R1 ∪ R2)). Assume

moreover that η < 1
2 cdm(X�). Let Y ∈ B0

def= B(X�,η) ⊂ Mn . By (2), there exists a distance matrix DY associated to Y such
that ‖� − DY ‖ = 2dGH(X�, Y ) < 2η. Whence DY ∈ B1 and Y is totally anisometric and without collinear points. �
Corollary 4. Totally anisometric spaces without collinear points are dense in M.

4. Basic properties of generic compact metric spaces

Theorem 1. A generic compact metric space is totally discontinuous.

Proof. Let Pn ⊂ M be the set of compact metric spaces admitting a connected component of diameter at least 1
n . Since MF

is dense in M, Pn has empty interior. The union
⋃

n∈N Pn is the complement of the set of totally discontinuous compact
metric spaces, thus we only need to prove that Pn is closed. Let (Xk)k∈N be a sequence of elements of Pn , converging to
X ∈ M. Let Ck ⊂ Xk be a closed connected subset whose diameter is at least 1

n . By Lemma 2, we can assume without loss
of generality that all Xk and X are subsets of a compact metric space Z and that dZ

H (Xk, X) � dGH(Xk, X) + 1
k . Since M(Z)

is compact, we can extract from (Ck) a converging subsequence. Let C be its limit, it is easy to see that C ⊂ X . Since the
diameter function is continuous, it is clear that diam(C) = lim diam(Ck) � 1

n . Moreover, it is a well-known fact that the set of
connected compact subsets of Z is closed in M(Z) [10]. Hence C is connected and X belongs to Pn . Thus Pn is closed. �
Theorem 2. A generic compact metric space is totally anisometric.

Proof. Let P ⊂ M be the set of compact metric spaces which are not totally anisometric.

P =
⎧⎨
⎩X

∣∣∣∣∣∣
∃x, y, x′, y′ ∈ X d(x, y) = d(x′, y′) > 0

and d(x, x′) + d(y, y′) > 0
and d(x, y′) + d(x′, y) > 0

⎫⎬
⎭

=
⋃
n∈N

P 1
n
,

where

Pε =
⎧⎨
⎩X

∣∣∣∣∣∣
∃x, y, x′, y′ ∈ X d(x, y) = d(x′, y′) � ε

and d(x, x′) + d(y, y′) � ε
and d(x, y′) + d(x′, y) � ε

⎫⎬
⎭ .

By virtue of Corollary 4, it is sufficient to prove that Pε is closed. Let (Xn)n∈N be a sequence of elements of Pε tending to
X ∈ M. There exists a sequence of correspondences Rn from X to Xn such that dis(Rn) tends to zero. Let xn, yn, x′

n, y′
n ∈ Xn

be such that
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d(xn, yn) = d
(
x′

n, y′
n

)
� ε,

d
(
xn, x′

n

) + d
(

yn, y′
n

)
� ε,

d
(

yn, x′
n

) + d
(
xn, y′

n

)
� ε. (3)

There exists x̃n, x̃′
n, ỹn, ỹ′

n ∈ X such that x̃n Rnxn , ỹn Rn yn , x̃′
n Rnx′

n , and ỹ′
n Rn y′

n . Let (x̃, x̃′, ỹ, ỹ′) be the limit of a converging
subsequence of (x̃n, x̃′

n, ỹn, ỹ′
n). Since dis(Rn) tends to zero, we can pass to the limit in (3):

d(x̃, ỹ) = d
(
x̃′, ỹ′) � ε,

d
(
x̃, x̃′) + d

(
ỹ, ỹ′) � ε,

d
(

ỹ, x̃′) + d
(
x̃, ỹ′) � ε.

Hence X belongs to Pε . This completes the proof. �
Theorem 3. In a generic compact metric space, three distinct points are never collinear.

Proof. By Corollary 4, it is sufficient to prove that

Pε
def=

{
X ∈ M

∣∣∣∣ ∃x, y, z ∈ X d(x, y) = d(x, z) + d(z, y)

and d(x, z) � ε and d(x, z) � ε

}

is closed. The proof is totally similar to the one of Theorem 2. �
Theorem 4. A generic compact metric space is perfect.

Proof. Let Pn = {X ∈ M | ∃x ∈ X s.t. ∀x′ ∈ X d(x, x′) ∈ An}, where An
def= {0}∪] 1

n ,+∞[. The set of non-perfect compact metric
spaces is the union

⋃
n∈N Pn . It is therefore sufficient to prove that Pn is rare.

We claim that the set of perfect compact metric spaces is dense in M, and so the interior of Pn is empty. Indeed, it is
sufficient to prove that any finite metric space F can be approximated by perfect spaces. Let ε be less than the codiameter

of F and endow the product Fε
def= F × [0, ε] with the distance

dFε
(
(a, s), (b, t)

) = dF (a,b) + s + t, if a �= b,

dFε
(
(a, t), (a, s)

) = |t − s|.
It is easy to see that dFε is a distance on Fε , that Fε is perfect and that dGH(Fε, F ) � ε. This proves the claim.

It remains to prove that Pn is closed. Let (Xk)k∈N be a sequence of elements of Pn converging to Y ∈ M. Let Rk

be a correspondence between Xk and Y such that εk
def= dis(Rk) � 3dGH(Xk, Y ). Let xk ∈ Xk be such that for all x′ ∈ Xk ,

dXk (xk, x′) ∈ An . Let yk ∈ Y correspond to xk by Rk . By extracting a suitable subsequence, we can assume that the sequence
(yk)k∈N converges to some point y ∈ Y . Let y′ be a point of Y and let x′

k ∈ Xk correspond to y′ by Rk . We have

dY (
y, y′) ∈ {

dY (
yk, y′)} + 2dY (y, yk)

⊂ {
dXk

(
xk, x′

k

)} + 2
(
dY (y, yk) + εk

)
⊂ An + 2

(
dY (y, yk) + εk

)
.

Since the relation holds for arbitrary large k, we have dY (y, y′) ∈ An , whence Y ∈ Pn . �
Corollary 5. A generic compact metric space is a Cantor space.

Proof. Brouwer’s theorem [9, (7.4)], states that a topological space is a Cantor space if and only if it is nonempty, perfect,
compact, totally disconnected, and metrizable. Thus the result follows from Theorems 1 and 4. �
Theorem 5. Let X be a generic compact metric space. The set d(X)

def= {dX (x, y) | x, y ∈ X} is homeomorphic to the Cantor set.

Proof. By virtue of Brouwer’s theorem we quote in the proof of Corollary 5, it is sufficient to prove that d(X) is totally
discontinuous and perfect.

Let Pa,ε = {X ∈ M | [a,a + ε] ⊂ d(X)}. For ε > 0, MF ∩ Pa,ε = ∅, whence Pa,ε has empty interior. The set d(X) is not
totally discontinuous if and only if X belongs to the countable union

⋃
a�0,a∈Q

⋃
n∈N Pa, 1

n
. Hence we only have to prove

that Pa,ε is closed. Let (Xk)k∈N be a sequence of elements of Pa,ε converging to X ∈ M. Let Rk be a correspondence
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between Xk and X such that dis(Rk) tends to zero. Let b be a number of [a,a + ε]. By hypothesis, there exist xk, yk ∈ Xk
such that dXk (xk, yk) = b. Let x′

k, y′
k ∈ X correspond by Rk to xk and yk respectively, and extract from (x′

k) and (y′
k) some

subsequences converging to x and y respectively. Since

∣∣b − dX(
x′

k, y′
k

)∣∣ = ∣∣dXk (xk, yk) − dX(
x′

k, y′
k

)∣∣
� dis(Rk) → 0,

dX (x, y) = b, and b ∈ d(X). This holds for all b in [a,a + ε], whence X ∈ Pa,ε . Hence Pa,ε is closed. It follows that for a
generic X ∈ M, d(X) is totally discontinuous.

We will now prove that d(X) is perfect. Note that d(X) = ⋃
x0∈X fx0 (X), where fx0 : X → R is the distance function from

x0 ∈ X . So, it is sufficient to prove that fx0 (X) is perfect. Since by Theorem 2 a generic X ∈ M is totally anisometric, the
functions fx0 are injective, and so are homomorphisms between X and fx0 (X). Theorem 4 completes the proof. �
Theorem 6. The set of compact metric spaces which contain a 4 points subspace that cannot be isometrically imbedded in R

3 is open
and dense in M. Therefore, a generic compact metric space cannot be embedded in any Hilbert space.

Proof. It is well known (see for instance [1, (10.6.5)]) that the square of the volume of a (possibly degenerated) tetrahedron
of R

3 is given by the following formula (the so-called Cayley–Menger determinant)

φ
(
r, s, t, r′, s′, t′) = 1

288

∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 t2 s2 r′2

1 t2 0 r2 s′2

1 s2 r2 0 t′2

1 r′2 s′2 t′2 0

∣∣∣∣∣∣∣∣∣
,

where r, s and t are the lengths of the sides of a one of the faces of the tetrahedron, and r′ , s′ , t′ are the lengths of the edges
respectively opposite to the ones of length r, s, t . Whereas φ was initially defined only for the sextuples (r, s, t, r′, s′, t′)
which actually correspond to a tetrahedron, as a polynomial function, it can be extended to R

6. Given a metric space
A = {a0,a1,a2,a3} ∈ M4, we put

φ(A)
def= φ

(
dA(a1,a2),dA(a2,a3),dA(a3,a1),dA(a0,a3),dA(a0,a1),dA(a0,a2)

)
.

If φ(A) < 0, then surely A cannot be isometrically embedded in R
3, nor in any Hilbert space. We will prove that the set

P
def= {

X ∈ M
∣∣ ∃A ⊂ X card(A) = 4 and φ(A) < 0

}
is open and dense in M.

Let X be in P and A = {a0,a1,a2,a3} ⊂ X , such that card(A) = 4 and φ(A) < 0. Since φ is continuous, there exists
η > 0 such that, for any A′ ∈ M4, if there exists a correspondence between A and A′ whose distortion is less than η, then

φ(A′) < 0. Let Y ∈ U
def= B(X, 1

3 min(η, cdm(A))); there exists a correspondence R of distortion less than min(η, cdm(A))

between X and Y . Let A′ = {a′
0,a′

1,a′
2,a′

3} ⊂ Y be such that ai Ra′
i , i = 0, . . . ,3. Since dis(R) < cdm(A), A′ is a 4 points set,

and since dis(R) < η, φ(A′) < 0. Hence U ⊂ P . It follows that P is open.
Denote by Aε that the 4 points space whose distance matrix is

⎛
⎜⎝

0 2ε 2ε ε
2ε 0 2ε ε
2ε 2ε 0 ε
ε ε ε 0

⎞
⎟⎠ .

A direct computation shows that φ(Aε) = − 1
9 ε6, and so, any space in which Aε is isometrically embedded belongs to P . In

order to show that P is dense, it is sufficient to prove that any finite metric space F can be approached by elements of P .

Let F = {x0, . . . , xn} ∈ MF . For each ε > 0 we endow Fε
def= {y1, y2, y3, x0, x1, . . . , xn} with the distance

dFε (xi, x j) = dF (xi, x j) (0 � i, j � n),

dFε (xi, y j) = dF (xi, x0) + ε (0 � i � n, 1 � j � 3),

dFε (yi, y j) = 2ε (1 � i, j � 3, i �= j).

It is easy to check that dFε is a distance on Fε . Moreover Aε is embedded (as {y1, y2, y3, x0}) in Fε , whence Fε ∈ P . At last
dGH(F , Fε) � ε, whence P is dense in M. �
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5. Dimensions

We can associate to a compact metric space several (possibly coinciding) numbers which all deserve to be called dimen-
sion. Among the most used, one distinguishes the topological dimension (dimT ), the Hausdorff dimension (dimH ), the lower
(dimB ) or upper (dimB ) box dimension. It is a well-known fact that for any compact metric space X

dimT (X) � dimH (X) � dimB(X) � dimB(X).

We refer to [11] or [6] for more details on this subject. For our purpose, we only need to recall that the upper and lower
box (also called box-counting, fractal [11], entropy [8], capacity, Kolmogorov, Minkowski, or Minkowski–Bouligand) dimensions
are defined as

dimB(X) = − lim sup
ε→0

log N(X, ε)

logε
,

dimB(X) = − lim inf
ε→0

log N(X, ε)

logε
,

where

N(X, ε) = min
{

card(F )
∣∣ F ⊂ X ∀x ∈ X d(x, F ) � ε

}
stands for the minimum number of closed balls of radius ε which are required to cover X . It is easy to see that, for a given
space X , the function N(X,•) is non-increasing and left-continuous.

If we put

M(X, ε) = max
{

card(F )
∣∣ F ⊂ X and cdm(F ) � ε

}
,

we may replace N by M in the definitions of dimB and dimB . This fact follows from the inequalities

N(X, ε) � M(X, ε) � N(X, ε/3),

which in turn, follow with a little effort from the definitions of M and N [8, p. 152].
The generic dimension of some compact subset of some fixed complete metric space has been studied in [8] by P.M. Gru-

ber. He proved that, given a complete metric space X such that {A ∈ M(X) | dimB A � α} is dense in M(X), a generic
element of M(X) has zero lower box dimension, and an upper box dimension greater than or equal to α. In this section,
we transpose his result in the frame of the Gromov–Hausdorff space.

The result of Gruber is based on the following three lemmas

Lemma 6. ([8, p. 153]) Given a complete metric space X and a positive number ε, the functions N(•, ε) :M(X) → N and
M(•, ε) :M(X) → N are respectively lower and upper semi-continuous.

Lemma 7. ([7, p. 20]) Let B be a Baire space. Let α1,α2, . . . be positive real constants and φ1, φ2, . . . be non-negative upper-continuous
real functions on B such that {x ∈ B | φn(x) = o(αn)} is dense in B. Then, for a generic point of B, the inequality φn(x) < αn holds for
infinitely many n.

Lemma 8. ([7, p. 20]) Let B be a Baire space. Let β1, β2, . . . be non-negative real constants and ψ1,ψ2, . . . be positive lower-continuous
real functions on B such that {x ∈ B | βn = o(ψn(x))} is dense in B. Then, for a generic point of B, the inequality βn < ψn(x) holds for
infinitely many n.

We first transfer Lemma 6 to the Gromov–Hausdorff framework.

Lemma 9. Given a positive number ε, the functions N(•, ε) :M → N and M(•, ε) :M → N are respectively lower and upper semi-
continuous.

Proof. Let (Xn)n∈N be a sequence of compact metric spaces converging to X with respect to dGH . By Lemma 2, we can
assume without loss of generality that all Xn and X are subsets of some compact metric space Z , such that dZ

H (Xn, X) tends
to zero. Hence, we can apply Lemma 6 in Z ; it follows that M(X, ε) � lim sup M(Xn, ε) and N(X, ε) � lim inf N(Xn, ε). �
Theorem 7. The lower box dimension of a generic compact metric space is zero, while its upper box dimension is infinite.

Proof. The proof follows rather closely Gruber’s one. Let τ > 0. Since MF is included in{
X ∈ M

∣∣ M

(
X,

1
)

= o
(
nτ

)}
,

n
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this set is dense in M. Applying Lemma 7, we obtain that for a generic X ∈ M, the inequality M(X, 1
n ) < nτ holds for

infinitely many n, whence

dimB X � lim inf
n→∞ − log M(X, 1

n )

log 1
n

� τ .

In other words, the set Pτ
def= {X ∈ M | dimB X > τ } is meager, and thus the set

{X ∈ M | dimB X > 0} =
⋃
k∈N

P1/k

is meager too.
Let D be a positive integer. We claim that set of D-dimensional (for any of the aforementioned notion of dimension) com-

pact set is dense in M. Indeed, it is sufficient to prove that any finite metric space can be approximated by a D-dimensional
one. Let F be a finite metric space, let B ⊂ R

D be a D-dimensional ball centered at 0 whose radius ε is less than cdm(F ),
and endow the product F × B with the distance

dF×B(
(a, u),

(
a′, u′)) = dF (

a,a′) + ‖u‖ + ∥∥u′∥∥, if a �= a′,
dF×B(

(a, u),
(
a, u′)) = ∥∥u − u′∥∥.

Its easy to see that dF×B is actually a distance, and that dGH(F , F × B) � dF×B
H (F × {0}, F × B) = ε. Moreover, as a disjoint

union of D-dimensional balls, F × B is D-dimensional. This proves the claim.

If dimB X = D , then for n large enough n
2D
3 < N(X, 1

n ), whence n
D
3 = o(n

2D
3 ) = o(N(X, 1

n )). It follows that the set of
D-dimensional compact metric spaces is included in{

X ∈ M
∣∣ n

D
3 = o

(
N

(
X,

1

n

))}
,

which is thereby dense in M. Applying Lemma 8 we obtain that, for a generic metric space X , the inequality N(X, 1
n ) > nD/3

holds for infinitely many n. Hence dimB X � lim supn→∞ − log N(X, 1
n )

log 1
n

� D
3 . In other words the set Q D

def= {X ∈ M | dimB X <

D
3 } is meager, and thus the set

{
X ∈ M

∣∣ dimB X < ∞} =
⋃
D∈N

Q D

is meager too. �
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