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Pathological cardiac hypertrophy is a major risk factor for developing heart failure, the leading cause of death in
the world. Growth/differentiation factor 1 (GDF1), a transforming growth factor-β familymember, is a regulator
of cell growth and differentiation in both embryonic and adult tissues. Evidence from human and animal studies
suggests that GDF1 may play an important role in cardiac physiology and pathology. However, a critical role for
GDF1 in cardiac remodelling has not been investigated. Here, we performed gain-of-function and loss-of-
function studies using cardiac-specific GDF1 knockout mice and transgenic mice to determine the role of GDF1
in pathological cardiac hypertrophy, which was induced by aortic banding (AB). The extent of cardiac hypertro-
phy was evaluated by echocardiographic, hemodynamic, pathological, andmolecular analyses. Our results dem-
onstrated that cardiac specific GDF1 overexpression in the heart markedly attenuated cardiac hypertrophy,
fibrosis, and cardiac dysfunction, whereas loss of GDF1 in cardiomyocytes exaggerated the pathological cardiac
hypertrophy and dysfunction in response to pressure overload. Mechanistically, we revealed that the
cardioprotective effect of GDF1 on cardiac remodeling was associated with the inhibition of the MEK–ERK1/2
and Smad signaling cascades. Collectively, our data suggest that GDF1 plays a protective role in cardiac remodel-
ing via the negative regulation of the MEK–ERK1/2 and Smad signaling pathways.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Heart failure is the leading cause of death globally. One of the major
risk factors for developing heart failure is pre-existing cardiac remodel-
ing, i.e., cardiac hypertrophy, inflammation, fibrosis, and cardiomyocyte
apoptosis [1,20]. Cardiac remodeling may occur with pressure overload
(aortic valve stenosis and hypertension), with volume overload (valvular
regurgitation), or following cardiac injury, including myocardial infarc-
tion, myocarditis, and idiopathic dilated cardiomyopathy [15]. Although
the etiologies of these diseases are different, they share molecular, bio-
chemical, and cellular events that collectively change the shape of the
myocardium. Distinct remodeling events may initially be beneficial be-
cause they are initiated to compensate for cardiac dysfunction, but re-
modeling ultimately leads to a transition to heart failure [1]. Multiple
signaling pathways mediating the development of pathological cardiac
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remodeling have been identified over the past several decades
[5,9,12,15,21,23,31], but the molecular modulators that antagonize the
development of cardiac remodeling and the transition to heart failure
remain incompletely defined.

Growth/differentiation factor 1 (GDF1) is a transforming growth
factor-β family member that was originally isolated from a mouse em-
bryo cDNA library [28]. Two GDF1 transcripts [1.4 kilobases (kb) and
3.0 kb in length] displaying distinct temporal expression patterns
were detected in a Northern blot analysis of embryonic mRNA [18].
Furthermore, primary GDF1 protein contains a polybasic proteolytic
processing sitewhere it is cleaved to produce amature protein compris-
ing seven conserved cysteine residues, indicating that GDF1 is
post-translationally regulated. Concerning its functional role, GDF1 is a
regulator of cell growth and differentiation in both embryonic and
adult tissues [2,8]. Recent studies in rodents suggest that GDF1 is in-
volved in establishing left-right asymmetry during early embryogenesis
and in neural development during later embryogenesis [3,29]. Mice de-
ficient in GDF1 exhibit a spectrum of defects related to left-right axis
formation, including visceral situs inversus, right pulmonary isomerism,
and a range of cardiac anomalies [28]. Kaasinen et al. [13] reported that
mutations in GDF1 could cause inherited right atrial isomerism, and
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heterozygous loss-of-function mutations in the human GDF1 gene
contribute to cardiac defects and vessel remodeling [14]. Furthermore,
Wall et al. [30] demonstrated that mature GDF1 activates a Smad2-
dependent signaling pathway and is sufficient to reverse the left-right
axis. GDF1 overexpression significantly rescues developmental anoma-
lies, such as pericardial edema, circulation failure, and heart malforma-
tion, as well as cardiac toxicity caused by morpholinos or arsenite [22].
Together, these findings suggest that GDF1 plays a critical role in cardiac
physiology and pathology. However, the role of GDF1 in cardiac remod-
eling has not been investigated. The current study featured the follow-
ing objectives: 1) to determine whether GDF1 is altered in dilated
cardiomyopathy (DCM) patients and a model of pressure overload-
induced cardiac hypertrophy; 2) to determine whether GDF1 expres-
sion affects cardiac hypertrophy; and 3) to identify the mechanisms
that would be involved in any such effects that are observed.

To this end, we employed knockout (KO) mice with a cardiac-
specific deletion of the GDF1 gene and transgenic (TG) mice with
cardiac-specific overexpression of GDF1 to determine the role of GDF1
in pathological cardiac remodeling. Our results demonstrate that
GDF1-TG mice are resistant to cardiac remodeling via inhibition of
MEK–ERK1/2 and Smad signalings, whereas cardiac-specific GDF1-KO
mice display the opposite phenotype in response to pressure overload.
Our study shows a previously unrecognized therapeutic potential for
GDF1 in the treatment of pathological cardiac remodeling and heart
failure.

2. Methods

2.1. Antibodies

GDF1 expression in human and mouse samples was determined by
Western blotting using a GDF1-specific antibody (R&D Systems,
AF858, 1:1000 dilutions). Antibodies to ERK1/2 (#4695, 1:1000 dilu-
tion), phospho-ERK1/2Thr202/Thr204 (#4370, 1:1000 dilution), MEK1/2
(#9122, 1:1000 dilution), phospho-MEK1/2Ser217/221 (#9154, 1:1000 di-
lution), mTOR (#2983, 1:1000 dilution), phospho-mTORSer2448 (#2971,
1:1000 dilution), FOXO3A (#2497, 1:1000 dilution), phospho-
FOXO3ASer318/321 (#9465, 1:1000 dilution), P38 (#9212, 1:1000 dilu-
tion), phospho-P38Thr180/Thr182 (#4511, 1:1000 dilution), JNK1/2
(#9258, 1:1000 dilution), phospho-JNK1/2 (#4668, 1:1000 dilution),
AKT (#4691, 1:1000 dilution), phospho-AKTSer473 (#4060, 1:1000 dilu-
tion), GSK3β (#9315, 1:1000 dilution), phospho-GSK3β (#9322, 1:1000
dilution), FoxO1 (#2880, 1:1000 dilution), phospho-FoxO1ser256

(#9461, 1:1000 dilution), and α-actinin (#3134, 1:1000 dilution)
were purchased from Cell Signaling Technology (Danvers, MA, USA).
The GAPDH (MB001, 1:10,000 dilution) antibody was purchased from
Bioworld Technology (Harrogate, UK). Antibodies against atrial natri-
uretic peptide (ANP, sc20158, 1:200 dilution), lamin B (sc6217, 1:200
dilution), and β-myosin heavy chain MHC (β-MHC, sc53090, 1:200
dilution) were purchased from Santa Cruz Biotechnology (Dallas, TX,
USA).

2.2. Study animals

All experiments involving animals were approved by the Animal
Care and Use Committee of Renmin Hospital at Wuhan University. Ex-
periments were performed using male mice that were 8–10 weeks of
age with body weights of 23.5–27.5 g. These mice were anesthetized
with 1.5–2% isoflurane by inhalation or with pentobarbital (30 mg/kg,
Sigma) by intraperitoneal injection. The mice were housed with an al-
ternating 12-h light and dark cycle in temperature-controlled rooms
and had free access to food andwater. The following animals were used.

2.2.1. Cardiac-specific GDF1 conditional knockout mice
Male GDF1-floxed conditional mutation mice (B6.129X1-

Gdf1tm1Dmus/Kctt, C57BL/6 background) were ordered from the
European Mouse Mutant Archive (EMMA, EM: 02230). To obtain
cardiac-specific GDF1 knockout mice, GDF1-floxed mice were
crossed with mice that carried the α-MHC-MerCreMer transgene
[MEM-Cre-Tg (Myh6-cre/Esr1, Jackson Laboratory, 005650)]. Six-
week-old GDF1-Cre mice (with MEM-Cre and the GDF1 genes)
were then injected with tamoxifen (80 mg/kg/day, Sigma, T-5648)
on 5 consecutive days to induce Cre recombinase expression in
these mice. GDF1-Cre mice were identified using a PCR analysis of
cardiac genomic DNA with the following primers: primer 1: 5′-
ATGCCTTCCTTCAGGTC ACTT-3′, primer 2: 5′-CTCCACATTCGACAGG
TCAAA-3′, and primer 3: 5′-GTACTTGG ATCGGTTTGTCTC-3′.

2.2.2. Cardiac-specific GDF1 transgenic mice
Transgenic mice (C57BL/6 background) with cardiac-specific GDF1

expression were generated by subcloning the full-length mouse GDF1
cDNA (Origene, MC202978) downstream of the cardiac α-myosin
heavy chain (α-MHC) promoter. The linearized α-MHC-GDF1 plasmid
was microinjected into mouse oocytes, which were introduced into
pseudopregnant females to obtain the desired transgenic mice. The
transgenic mice were confirmed by PCR analyses of tail genomic DNA
using the forward PCR primer 5′-ATCTCCCCCATAAGAGTTTGAGTC-3′
and the reverse PCR primer 5′-CCCTGTATCTTCACTCTCAGCC-3′. Four in-
dependent lines were obtained for GDF1-Tg mice, and each had the
same phenotype.

2.3. Aortic banding

The pressure overload-induced cardiac hypertrophy mouse model
via aortic banding (AB) was established as previously described
[12,20,23]. After anesthesia and once the absence of reflexes had been
established, the left side of the chest of eachmousewas opened to iden-
tify the thoracic aorta,whichwas tied against a 26G (for bodyweights of
25–27.5 g) or 27G (for body weights of 23.5–25 g) needle by a 7–0 silk
suture; the needle was then removed, and the thoracic cavity was
closed. Finally, adequate constriction of the aorta was determined by
Doppler analysis. A similar procedure without aortic constriction was
performed in the sham group.

2.4. Treatment of mice with U0126

U0126, an inhibitor of MAPK kinase (MEK) 1/2, was obtained from
Cell Signaling Technology (Beverly, MA), dissolved in dimethyl sulfox-
ide, and administered at a constant volume of 1 ml per 100 g of body
weight by intraperitoneal injection every 3 days (1 mg/kg/3 days) [20].

2.5. Echocardiography and hemodynamic measurements

Mice were anesthetized with 1.5–2% isoflurane by inhalation, as
described previously [12,20,23,31], and then echocardiography was
performed to evaluate left ventricle (LV) function and structure using
a Mylab30CV (ESAOTE) machine with a 15-MHz probe. To measure LV
end-systolic dimension (LVESD), LV end-diastolic dimension (LVEDD),
and LV fractional shortening, M-mode tracings derived from the short
axis of the left ventricle at the level of the papillary muscles were re-
corded; parameters were obtained from at least three beats and aver-
aged. A 1.4-French catheter-tip micromanometer catheter (SPR-839;
Millar Instruments) was inserted into the left ventricle via the right ca-
rotid artery to obtain invasive hemodynamic measurements. An Aria
pressure-volume conductance system coupled with a PowerLab/4SP
A/D converter was used to record and store the pressure and dp/dt
continuously, which were then displayed on a personal computer.

2.6. Histological analysis

Hearts were arrested with 1 M KCl and fixed in 10% formalin
for N24 h. Hearts were paraffin embedded and cut into 5-μm sections.
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Fig. 1. GDF1 expression is up-regulated in DCMHuman hearts and in hypertrophicmurine hearts. (A–C) β-MHC, ANP, and GDF1 protein levels in left ventricular samples from (A) donor
hearts andDCMhearts; (B)mice at the indicated times after sham or AB operation; and (C)NRCMs treatedwith Ang II or PE for 48 h (n = 3 independent experiments, *p b 0.05 vs. donor
or sham or PBS). Left: Representative blots; Right: Quantitative results.
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Heart sections were stained with hematoxylin and eosin (H&E) to as-
sess morphology, picrosirius red (PSR) to assess fibrosis content, or
FITC-conjugated wheat germ agglutinin (WGA, Invitrogen Corp.) to de-
termine the myocyte cross-sectional area (CSA), which was measured
using a quantitative digital image analysis system (Image-Pro Plus 6.0).
2.7. Cultured neonatal rat cardiac myocytes and recombinant adenoviral
vectors

Primary neonatal rat cardiomyocytes (NRCMs)were cultured as pre-
viously described [20]. Briefly, neonatal hearts of 1- to 2-day-old
Sprague–Dawley rats were removed from the thoracic cavities after
euthanization. PBS containing 0.125% trypsin was used to digest finely
minced heart tissue. NRCMs were enriched by differential pre-plating
for 2 h; seeded at a density of 1 × 105 cells/well onto gelatin-coated,
six-well culture dishes; and cultured in media consisting of DMEM/
F12 medium, 10% FBS, BrdU (0.1 mM), and penicillin/streptomycin at
37 °C for 48 h. Subsequently, culture media were changed to serum-
free DMEM/F12 for 12 h before adenoviral infection and/or Ang II
(1 μM), phenylephrine (PE, 100 μM), or TGFβ1 (10 ng/ml) treatment.
To overexpress GDF1, the full-length rat Gdf1 cDNA under the control
of the cytomegalovirus (CMV) promoter was subcloned into a
replication-defective adenoviral vector. AdGFP, a similar recombinant
adenovirus expressing GFP, was used as a control. To knockdown
GDF1, AdshGDF1 adenoviruses were generated based on three rat
shGDF1 constructs obtained from SABiosciences (KR49323G). The ade-
novirus that showed the greatest decrease in GDF1 levels was selected
for further experiments. AdshRNA was the non-targeting control.
NRCMswere infectedwith adenovirus for 24 h at amultiplicity of infec-
tion of 100.

2.8. Immunofluorescence analysis

Immunofluorescence staining was performed to determine the cell
surface area. Briefly, NRCMs were treated with the indicated adenovi-
ruses for 24 h and then stimulatedwith Ang II (1 μM) or phenylephrine
(PE, 100 μM) for 48 h. The cells were fixed with 4% paraformaldehyde
for 15 min at room temperature followed by three washes in PBS.
Thereafter, the cells were permeabilized with 0.2% Triton X-100 for
5 min, blocked with 10% BSA for 1 h, and stained with α-actinin anti-
body at a dilution of 1:200 at 4 °C overnight. Subsequently, the cells
were washed in PBS and incubated with secondary antibodies for
1 hour at room temperature. After washing, the cells were counter-
stained with 4′,6-diamidino-2-phenylindole (DAPI). Images were col-
lected and analyzed using Image-Pro Plus 6.0 software.

2.9. Quantitative real-time PCR and western blotting

Total RNAwas extracted frommouse hearts andNRCMs using TRIzol
(Invitrogen), and cDNA was generated with the Transcriptor First
Strand cDNA Synthesis Kit (Roche). Transcripts were then amplified
using SYBR Green (Roche), and GAPDH served as the endogenous refer-
ence gene.Western blottingwas performed using the extracts from car-
diac tissues and NRCMs. The protein concentrationwasmeasured using
a Pierce® BCA Protein Assay Kit (Pierce). Protein (50 μg) was loaded
into each lane for SDS-PAGE (Invitrogen) and then transferred to a



235Y. Zhang et al. / Biochimica et Biophysica Acta 1842 (2014) 232–244
PVDF membrane (Millipore). Blots were incubated with the indicated
primary antibodies overnight at 4 °C, followed by incubationwith a sec-
ondary IRDye® 800CW-conjugated antibody (LI-COR Biosciences, at a
1:10,000 dilution). Signals were detected using an Odyssey Imaging
System (LI-COR Biosciences). GAPDH was used as the loading control.

2.10. Human heart samples

All procedures involving human tissue samples were approved by
the Renmin Hospital of Wuhan University Review Board, Wuhan,
China. Informed consent was obtained from the families of prospective
heart donors. Samples of failing human hearts were collected from the
left ventricles of DCM patients during orthotopic heart transplantation.
Control samples were obtained from the left ventricles of normal heart
donors who died in accidents but whose hearts were not suitable for
transplantation for noncardiac reasons.
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2.11. Statistical Analysis

Data are expressed as the mean ± SD. Comparisons between two
groups were evaluated by Student's t-test. Differences among multiple
groups were assessed by one-way ANOVA followed by Tukey's post-
hoc test. Differences were considered to be statistically significant at
values of p b 0.05.

3. Results

3.1. GDF1 is up-regulated in human DCM hearts and murine hypertrophic
hearts

To investigate the potential role of GDF1 in cardiac remodeling, we
first examinedwhether GDF1 expression levelswere altered in diseased
hearts. Western blotting and real-time PCR showed that both GDF1
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protein and mRNA levels were dramatically increased in human
DCM hearts compared with donor hearts (Fig. 1A and Supplemental
Fig. S1A). Additionally, the β-MHC and ANP (two hypertrophic
markers) expression levels were markedly elevated in these DCM
hearts compared with donors (Fig. 1A and Supplemental Fig. S1B). Sim-
ilarly, in a murine model of AB-induced cardiac hypertrophy, we found
that GDF1was progressively up-regulated from1 week to 8 weeks after
the AB operation (Fig. 1B and Supplemental Fig. S1C). Furthermore,
using ex vivo cultured NRCMs treated with either Ang II or PE for 48 h
to induce cell hypertrophy, we observed that GDF1 expression was
also significantly elevated compared with control PBS-treated cells
(Fig. 1C). Together, these data indicate that GDF1 may be involved in
cardiac remodeling.

3.2. GDF1 protects against Ang II-induced cardiomyocyte hypertrophy
ex vivo

The alterations inGDF1expression in response tohypertrophic stimuli
suggest that it has a potential role in thedevelopment of cardiac hypertro-
phy. We therefore performed gain- and loss-of-function experiments
using cultured NRCMs. Cells were infected with either AdshGDF1 to
knockdown GDF1 or AdGDF1 to overexpress GDF1 (Fig. 2A) and then
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Cremicewere treatedwith tamoxifen (80 mg/kg/day, i.p.) for 5 consec-
utive days prior to the experiments. Fourweeks after AB, GDF1-Cremice
exhibited a remarkable deterioration of cardiac hypertrophy compared
with the control groups (GDF1-floxed mice and MEM-Cre mice), as
evidenced by increased ratios of heart weight (HW)/body weight
(BW), lung weight (LW)/BW, and HW/tibia length (TL) (Fig. 3B–D).
Histological examination of the hearts revealed an increased
cardiomyocyte CSA in GDF1-Cre mice 4 weeks after AB (Fig. 3E/F).
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Echocardiography andhemodynamicmeasurements showed that GDF1
deficiency significantly aggravatedAB-induced cardiac dilation and dys-
function compared to control mice (Fig. 3 G/H). Additionally, 4 weeks
after AB, the mRNA levels of hypertrophic markers (ANP, BNP, and β-
MHC) were much higher in GDF1-Cre hearts compared to the control
hearts (Fig. 3I).

To further determine the effects of GDF1 deficiency on maladaptive
cardiac remodeling, we measured cardiac fibrosis, an important
feature of developing pathological cardiac hypertrophy [20]. Paraffin-
embedded slides were stained with PSR to assess the extent of cardiac
fibrosis. We observed that both perivascular and interstitial fibrosis
were much more prominent in AB-treated GDF1-Cre hearts compared
to control hearts (Fig. 3J). Consistent with these results, the content of
LV collagen and the mRNA levels of fibrotic markers (CTGF, collagen I,
and collagen III) were greater in GDF1-null hearts compared with
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Under basal conditions, GDF1 TG mice showed no apparent cardiac
morphological or pathological abnormalities (Supplemental Table S1).
GDF1-TG mice and their WT littermates (NTG mice) were subjected to
either AB surgery or a sham operation. As expected, after 8 weeks, the
AB-induced myocardial hypertrophic response was dramatically atten-
uated in GDF1-TG mice, as evidenced by lower ratios of HW/BW, HW/
TL, and LW/BW in TG mice compared to NTG mice (Fig. 4D–F). Consis-
tent with these results, cardiomyocytes in AB-treated GDF1-TG hearts
were smaller than those of NTGmice (Fig. 4G–H). GDF1 overexpression
also significantly alleviated AB-triggered cardiac dilation and dysfunc-
tion compared with controls, as determined by echocardiographic
and hemodynamic analysis (Supplemental Fig. S2A–C). Furthermore,
the AB-induced expression of hypertrophic markers (ANP, BNP, and
β-MHC) was greatly reduced in GDF1-TG mice compared with NTG
mice (Supplemental Fig. S2D). The effect of GDF1 overexpression on
AB-induced cardiac fibrosis was determined by PSR staining of tissue
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response to pressure overload. The immuno-blotting results revealed
that although the phosphorylated levels of MEK1/2, ERK1/2, JNK1/2,
and p38were significantly increased in AB-treated hearts, the activation
of MEK–ERK1/2 signaling was more pronounced in GDF1-Cs (KO) than
in GDF1-Fs (WT) (Fig. 5A). Furthermore, both p38 and JNK1/2 were
similarly activated in the two groups (Fig. 5A). PI3K–AKT is another im-
portant signaling pathway involved in cardiac remodeling. To further
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determinewhether GDF1 blocks theAB-induced PI3K–AKT signaling re-
sponse, we examined the activation of PI3K–AKT and its downstream
targets, including GSK3β, mTOR, forkhead box O3A (FOXO3A), and
forkhead box O1 (FOXO1). No differences were observed in the activa-
tion of AKT, GSK3β, FOXO1, or mTOR between GDF1-F and GDF1-C
hearts after AB, except for FOXO3A (Supplemental Fig. S3). Based
on the results obtained from GDF1-KO hearts (Fig. 5A), we next
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investigated whether GDF1 overexpression negatively affects the levels
of phosphorylated MEK1/2 and phosphorylated ERK1/2 in response to
pressure overload. As shown in Fig. 5B, the AB-triggered activation of
MEK1/2 and ERK1/2was almost completely blocked in GDF1-TG hearts.
To exclude potential in vivo compensatory mechanisms, we further uti-
lized cultured NRCMs to examine the effect of GDF1 on MEK–ERK1/2
signaling. We infected myocytes with either Ad-shGDF1 to knockdown
GDF1 or Ad-GDF1 to overexpress GDF1 and then subjected these infect-
ed cells to 1 μM Ang II for 48 h. The Western blotting results showed
that the Ang II-induced activation ofMEK1/2 and ERK1/2was promoted
in GDF1-knockdown cells, whereas this activation was attenuated in
GDF1-overexpressing cells (Fig. 5C/D). Our results demonstrate that
GDF1-elicited anti-hypertrophic effect is largely associated with the in-
hibition of MEK–ERK1/2 signaling in hearts upon pressure overload.

3.6. GDF1 regulates Smad signaling pathway

GDF1 is a transforming growth factor-β (TGF-β) family member.
TGF-β/Smad is an important signalingpathway involved in the develop-
ment of cardiac remodeling. To further elucidate the cellular mecha-
nisms underlying the cardio-protective effects of GDF1, we assessed
the regulatory role of GDF1 on Smad cascade activation. Our results
showed that GDF1-Cre mice induced higher levels of Smad 2/3 phos-
phorylation and nuclear translocation compared with that of MEM-
Cre mice (Fig. 6A). Importantly, AB-induced the increased levels
of Smad 2/3 phosphorylation and nuclear translocation were
significantly attenuated in TG mice, compared with NTG controls
(Fig. 6B). To confirm our in vivo data, we then treated neonatal rat
cardiomyocytes with recombinant human GDF1, followed by the addi-
tion of Ang II for 48 h. Western blot analyses revealed that Ang II stim-
ulation induced significant phosphorylation and nuclear translocation
of Smad 2/3, which were almost completely suppressed by the admin-
istration of recombinant human GDF1 (Fig. 6C). These findings suggest
that GDF1 attenuates cardiac remodeling partly by inhibiting Smad
signaling.
3.7. Inhibition of MEK–ERK1/2 signaling rescued abnormalities in
GDF1-deficient mice

The aforementioned experimental results suggested that ERK activa-
tion or inactivationwould affect the role of GDF1 in theheart. To address
this issue, we co-infected neonatal rat cardiomyocytes with Ad-GDF1
plus Ad-ERK, respectively, followed by the addition of Ang II for 48h.
Our results of cell size analysis show that suppression of Ang II-
induced cell hypertrophy by overexpression of GDF1 (Supplemental
Fig. S4)was released by increased ERK expression (AdERK-cells). To fur-
ther determine whether the abnormalities displayed in AB-treated
GDF1-deficient mice could be reversed by pre-inhibition of MEK–
ERK1/2 signaling, we treated MEM-Cre mice and GDF1-Cre mice with
a specificMEK inhibitor, U0126, or PBS followed byAB.Western blotting
analysis showed that the phosphorylated MEK and phosphorylated
ERK1/2 levels were dramatically suppressed in U0126-treated samples
compared with PBS-treated controls (Fig. 7A). Importantly, both the
gravimetric data and histological examination demonstrated that
U0126 treatment significantly reversed the deteriorative effects of
GDF1 deficiency on the hypertrophic and fibrotic response 4 weeks
after AB compared with PBS-treated controls (Fig. 7B–H). U0126 treat-
ment also markedly limited the increases in the mRNA levels of hyper-
trophic (ANP, BNP, and β-MHC) and fibrotic markers (CTGF, collagen I,
and collagen III) compared with expression in PBS-treated groups
(Fig. S5A/B). Altogether, these data suggest that pre-inhibition of
MEK–ERK1/2 signaling could resist the GDF1-null-induced pro-
hypertrophic effects in the hearts upon pressure overload.

4. Discussion

The aim of our study was to examine the role of GDF1 in pressure
overload-induced cardiac remodeling. Using both gain-of-function and
loss-of-function approaches, we observed that GDF1 functions as a pro-
tective factor in the process of pathological cardiac hypertrophy. To our
knowledge, this report is the first showing that GDF1 overexpression in
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the heart profoundly blunts cardiac remodeling and dysfunction follow-
ing chronic pressure overload. Conversely, disruption of GDF1 resulted
in an exaggerated pathological cardiac remodeling response. These
data demonstrate a previously unrecognized and important role for
GDF1 in the regulation of cardiac remodeling and heart failure.

We found that GDF1 transgenic mice were resistant to pressure
overload-induced cardiac remodeling, whereas GDF1-knockout mice
displayed the opposite phenotype. These results indicate that GDF1
plays a critical role in protecting the heart against maladaptive re-
sponses to stress, and this finding is consistent with previous studies
on other GDF proteins. For example, GDF5 regulates cardiac repair
after myocardial infarction, and GDF15 antagonizes the pressure
overload-induced hypertrophic response [32,33]. Additionally, GDF1
expression is up-regulated in human DCMhearts andmurine hypertro-
phic hearts. However, the mechanism of GDF1 expression changes
during cardiac remodeling is not known. A recent study has suggested
that Smad2/3-dependent signaling pathway is involved in regulating
GDF1 in myelomonocytic cells [7]. Therefore, determining whether
this pathway also regulates GDF1 expression during the development
of cardiac remodeling is important.
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Mechanistically, the cardio-protective effect of GDF1 on pathological
cardiac remodeling could be largely exerted by inhibiting MEK–ERK1/2
signaling. It is generally accepted that biomechanical stress induced by
pressure overload triggers a variety of signal transduction molecules
and pathways, which regulate the hypertrophic growth of cardiac
myocytes [9]. Numerous studies have demonstrated that both the
MAPK and AKT signaling pathways are often activated in response to
extracellular stresses, and both have been shown to contribute to cardi-
ac remodeling and heart failure [4,6,9]. The MAPK cascade comprises a
sequence of successive kinases, including p38, JNKs, and ERKs [9]. The
downstream targets of AKT signaling include GSK3β, mTOR, and FOXO
transcription factors [9], which reprogram cardiac fetal gene expression
and induce cardiac hypertrophy. In the present study, we found that ac-
tivation of bothMEK1/2 and ERK1/2was blocked by cardiac GDF1 over-
expression but enhanced by the loss of GDF1 in response to chronic
pressure overload. However, GDF1 did not affect the phosphorylation
of p38, JNK1/2, AKT, GSK3β, FOXO1, andmTOR, except for FOXO3a. Pre-
vious studies reported that ERK1/2 can modulate FOXO3a activation
and nuclear translocation [34,35]. We speculate the alteration in
FOXO3a may be due to the effect of GDF1 on MEK–ERK1/2 signaling
pathway, which needs to be further investigated. Importantly, the ag-
gravated effects of GDF1deficiency on cardiac remodelingweremitigat-
ed by the MEK–ERK1/2 inhibitor, indicating that the MEK–ERK1/2
signaling pathway is critically involved in the anti-hypertrophic effects
of GDF1. Thus, GDF1 may exert cardio-protective effects largely by
inhibiting the MEK–ERK1/2 axis.

The TGF-β superfamily is a large family of structurally related cell
regulatory proteins that function by binding to distinct complexes of
type I and type II receptor serine-threonine kinases; each of these com-
plexes bind to a different class of TGF-β ligands [24]. An unexpected
finding in this study was that GDF1 exerts its cardio-protective effect
through the inhibition, not the activation, of TGF-β canonical signaling.
We observed that increased levels of Smad 2/3 phosphorylation and
nuclear translocation were attenuated in GDF1 TG mice and promoted
in GDF1 deficient mice in response to AB. This finding is in contrast to
another TGF-β superfamily member, GDF15, which protects the heart
from ischemia/reperfusion injury by activating PI3K–AKT-dependent
signaling pathways and protects the heart against pressure overload-
induced cardiac hypertrophy by activating Smad2/3 proteins [16,32].
In this context, defining the exact molecular mechanism through
which a given TGF-β superfamily member exerts its effects is difficult
due to the heterogeneity associated with each of the different receptor
subtypes and their differential specificities for ligands. Interestingly, a
previous study found that another GDFmember, GDF3, interacts physi-
cally with BMPs and regulates cell fate in stem cells and early
embryos by inhibiting its own subfamily, the BMP–GDF subfamily of
TGF-β ligands [19]. Additionally, Derer et al. [7] reported that TGF-β
down-regulates GDF1 expression through the Smad2/3 pathway in
myelomonocytic cells. Therefore, the interactions between TGF-β su-
perfamily members are complex. GDF1 may exert inhibitory effects on
the MEK–ERK1/2 and Smad signaling pathways via interaction with its
own subfamily members, a hypothesis that should be tested in future
studies. Indeed, GDF1 has been shown to cooperate with GDF3 during
early embryonic development [2].

The hypertrophic growth of cardiac myocytes in response to hyper-
trophic stimuli is regulated by endocrine, paracrine, and autocrine
growth factors that activate membrane-bound receptor-mediated sig-
nal transduction pathways that, in turn, activate various transcriptional
regulators [26]. Several antihypertrophic growth factors have been
characterized in recent years. For example, A- and B-type natriuretic
factors/peptides (ANP and BNP) are secreted from the heart following
acute and chronic cardiac injury, and they signal a cardio-protective re-
sponse through their receptors [10,11,17,25,27]. The observations that
GDF1 expression is increased in human failing hearts and is induced in
the heart in response to hypertrophic stimuli and that it functions as
an antihypertrophic factor indicate that GDF1 might exert cardio-
protective effects in an analogous manner and that it may serve as a
novel remodeling biomarker in heart failure. However, it should be
noted that human DCM may not be the best representative for AB. The
alteration of GDF1 in human hearts in response to hypertrophic stimuli
needs further study.

In conclusion, the present study defines the role of GDF1 in cardiac
remodeling in response to pressure overload. Themolecularmechanism
for the protective role of GDF1 in the development of cardiac remodel-
ing is largely dependent on the inhibition of the MEK–ERK1/2 and
Smad signaling pathways. Our observations may help to develop
novel therapeutic strategies for the treatment of cardiac remodeling
and heart failure.
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