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Abstract

This paper deals with the calculation of the Rao distance between Gamma distributions, which is the
Riemannian distance induced by the Fisher information matrix on the Gamma statistical model. In this case
no closed form expression of the Rao distance is available and a numerical approach is thus necessary to
compute the distance. A computer program based on a simple shooting algorithm is presented and discussed.
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1. Introduction

Metrics and distances between probability distributions play a fundamental role in problems of
statistical inference and data analysis to study a3nities within a given set of populations. See for
instance the works of Matusita [13], Bhattacharyya [2], Mahalanobis [12] and Cuadras [9] among
others.

We :rst introduce some notation. Let � a sample space, a a �-algebra of subsets of � and � a
positive measure on the measurable space (�; a). A parametric statistical model is de:ned as the triple
{(�; a; �);�;f} where: (�; a; �) is a measure space, �, called the parameter space, is a manifold and
f is a measurable map f : � ×� → R such that f¿ 0 and P	(dx) = f(x; 	)�(dx) is a probability
measure on (�; a), ∀	∈�. In general � can be any manifold although in many applications � will
be an n-dimensional C∞ real manifold, Hausdor? and connected. Moreover, for many applications
� is an open set of Rn and in this case it is customary to use the same symbol (	) to denote points
and coordinates.
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Additionally, if we assume that f satis:es certain regularity conditions, see for instance [3], the
elements

gij(	) =
∫
�

9 logf(x; 	)
9	 i

9 logf(x; 	)
9	 j f(x; 	)�(dx); i; j = 1; : : : ; n;

of the Fisher information matrix are all :nite and the information matrix is strictly positive de:nite.
Moreover,

ds2 =
n∑

i; j=1

gij(	) d	 i d	 j (1.1)

is a Riemannian metric on �, known as the information metric of the model, see [17]. Given two
probability measures P	1 and P	2 which belong to the statistical model, the Rao distance between
P	1 and P	2 is de:ned as the Riemannian distance between 	1; 	2 ∈�. For a more detailed account,
see [3,6,7,16]. The Rao distance has been computed for several statistical models, see Atkinson and
Mitchell [1], Mitchell and Krzanowski [14], Burbea and Oller [4] among others. There are some
statistical models, such as Gamma, Beta and multivariate Normal, for which a closed form of the
Rao distance is not available, in which cases a numerical approach may be appropriate. Then we may
compute the distance by solving numerically a system of nonlinear equations obtained through the
corresponding geodesic equations. Here we attempt to calculate the Rao distance between Gamma
distributions.

2. Description of the method

Let M be an n-dimensional Riemannian manifold, Mp be the tangent space of M at p∈M , ∇
be the Levi–Civita connection on M and ! : I ⊂ R → M ∈Cl, l¿ 2, be a curve on M . To write
geodesic equations corresponding to ∇ in coordinates, we let z :U → Rn be the chart, set !j =zj ◦!,
j=1; : : : ; n, and let �l

jk denote the Christo?el symbols. Then, ! is a geodesic if and only if is solution
of

I!l +
n∑

j; k=1

�l
jk(!) !̇j!̇k = 0; l = 1; : : : ; n: (2.1)

In order to compute the Rao distance between p and q, d(p; q), we must solve system (2.1) with
the boundary conditions

!(0) = p∈M; !(1) = q∈M; (2.2)

because the length of the resulting geodesic !(t) is the Riemannian distance, see for instance [20].
In general, geodesics or even minimal geodesics are not unique but if M is simply connected and
complete and all sectional curvatures are nonpositive then any two points on M are joined by a
unique minimal geodesic. Using the exponential map, see for instance [8], and considering the map
F :Rn → Rn de:ned by

F(x) = z ◦ expp ◦ z̃−1
p (x) − z(q); (2.3)
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where z̃p :Mp → Rn denotes the chart on Mp induced by z, we can express the two-point boundary
value problems (2.1) and (2.2) through the system of equations

F(x) = 0: (2.4)

This is a nonlinear system of equations that has to be solved iteratively. To compute F we have
a set of standard methods such as the Taylor series, Runge–Kutta, multistep methods and many
others. The problem of :nding a good starting approximation may be the most di3cult step for a
general system, and it will be discussed later, speci:cally for the Gamma statistical model. The basic
approach for solving (2.4) is the Newton method or one of its variants. We have to calculate the
n× n elements of the Jacobian matrix, DF(x), which can be computed by solving the equations of
variation corresponding to (2.1). Equations of variation may be obtained by considering the closed
relation between the derivative of the exponential map and the Jacobi :elds. Observe that from
(2.3) the Jacobian matrix DF(x) coincides with the matrix of the derivative map (expp)∗ at �,
(expp)∗|�, expressed in local coordinates. On the other hand, if Y denotes a Jacobi :eld along the
geodesic !(t) = expp(t�), with p∈M , �∈Mp, determined by the initial conditions Y (0) = 0 and
(∇=dt)Y (0) = ", then

(expp)∗|t�(t") = Y (t); (2.5)

see for instance [8]. Therefore, integrating Jacobi’s equation

∇2

dt2
Y + R(!̇; Y )!̇ = 0; (2.6)

we can compute the (expp)∗|�. Eq. (2.5) holds for any " in Mp, in particular, for the coordinate basis
vectors of Mp, (9=9z1)p; : : : ; (9=9zn)p. Then the vectors Yk(1), k=1; : : : ; n; which result by integrating
Jacobi’s equation with initial conditions Yk(0) = 0 and (∇=dt)Yk(0) = (9=9zk)p along !(t) = expp(t�)
give us the kth column of the matrix associated with (expp)∗|�. By straightforward calculus we can
write Jacobi’s equation (2.6) in coordinates. In matrix notation,

IY k(t) = AYk(t) + BẎ k(t); (2.7)

where Yk and Ẏk are n× 1 vectors with the components and the derivatives with respect to t of the
:eld, respectively, A and B are n× n matrices not depending on the Yk and Ẏ k , of the form

A =




−9�1
ij

9!1 !̇i!̇j : : : −9�1
ij

9!n !̇i!̇j

...
...

−9�n
ij

9!1 !̇i!̇j : : : −9�n
ij

9!n !̇i!̇j;


 B =




−2�1
i1!̇

i : : : −2�1
in!̇

i

...
...

−2�n
i1!̇

i : : : −2�n
in!̇

i


 ;

where we have employed the summation of repeated index convention and we omit the dependence
of t for shortness. Then the kth column of DF(x) results by integrating the system (2.7) with the
initial conditions

Yk(0) = (0; : : : ; 0; : : : ; 0)′; Ẏ k(0) = (0; : : : ; 1; : : : ; 0)′;

where 1 is placed at the kth row, along the geodesic !(t).
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Remark 2.1. From (2.5) the local coordinates of (∇=dt)Y (0)∈Mp are −DF(x)−1F(x), the correction
of the Newton method, when the Jacobi :eld Y (t) along the geodesic !(t) is determined by the
boundary conditions

Y (0) = 0; Y (1) = −F(x);

given in local coordinates.

3. Applications to the Gamma statistical model

In this section we describe the more interesting features of the program developed to compute
Rao’s distance between Gamma distributions based on a simple shooting method algorithm. We
pay special attention to two stages: the choice of a good starting approximation and the numerical
implementation of the iterative procedure by Newton’s method. Another important stage of the
algorithm is the resolution of the subsequent initial value problem by numerical integration of the
geodesic equations. In our case, since we have obtained the second, third and fourth derivatives
of the geodesics we have used a modi:cation of the Taylor series method, see [19], to integrate
the geodesics with a O(h8) method. We :rst summarize the fundamental quantities of the Gamma
statistical model.

3.1. Gamma statistical model

Let {(�; a; �);�;f} be the Gamma statistical model where; � ≡ R+, a is a �-algebra on the
Borel sets of � and � is the Lebesgue measure restricted to R+, � ≡ R+ ×R+ and f : �×� → R
parametrized by

f(x; '; () =
('

�(')
x'−1e−(x; (3.1)

where ('; () are the coordinates given by the chart corresponding to identity. If we consider a set of
new coordinates on � given by the transformation ' = ', " = log('=() then the information metric
is given by

ds2 =
)(')
'

(d')2 + '(d")2 (3.2)

with )(') = '*′(')− 1 where *′(') = (log�('))′′ denotes the usual trigamma function. The Gauss
curvature is given by

+(') = −1
4

(
1

)(')

)′
; (3.3)

see for instance [11]. As pointed out in [5], +(') is a strictly negative function for '∈ (0;∞).
Then any two points on the manifold � can be joined by only one geodesic and the length of the
resulting geodesic gives the Riemannian distance between these points. The geodesic equations, see
for instance [11,21], are of the form

I' +
1
2

(
)′(')
)(')

− 1
'

)
'̇2 − 1

2
'

)(')
"̇2 = 0; I" +

1
'
'̇"̇ = 0; (3.4)
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with the property ()(')=')'̇2 +'"̇2 =,2, with ,=1 when the geodesic is parametrized by arc length.
Our problem is to solve system (3.4) given the boundary conditions

('(0); "(0)) = ('1; "1); ('(1); "(1)) = ('2; "2):

Integrating the geodesic equations once gives

'̇ = ±
√
,2'− A2

)(')
; "̇ = A='; (3.5)

where A is a constant of integration. Further analytical integration of equations seems di3cult which
suggests that we should proceed numerically.

3.2. Starting approximation

The information metric ds2, given by (3.2), is bounded by PoincarRe metrics, see [5] for a detailed
account. If we consider new coordinates on � given by the bijection ('; ") �→ (�; ") where �=

√
b=
√
'

and �¿ 0, with b = 2 or 4, then ds2 is bounded by

b
�2 ((d�)2 + (d")2); (3.6)

which are PoincarRe metrics on �, with lower bound for b= 2 and upper bound for b= 4. To obtain
a good starting approximation, we shall compute the exact solution for the present problem using a
PoincarRe type metric (3.6) instead of (3.2). The geodesics corresponding to the PoncairRe metric are,
see [4],

�(t) = C−1 sech
(
,t√
b

+ /
)
; (3.7)

"(t) =
√
bC−2B tanh

(
,t√
b

+ /
)

+ D; (3.8)

and

�(t) = exp
(
,t√
b

+ /
)
;

"(t) = D;

when "1="2, where /; B and D are real constants of integration, and C=
√
b|B|, , denotes the PoincarRe

distance between the boundary points (�1; "1) and (�2; "2), that is, ,=
√
b log((1 +1)=(1−1)), with

1 =

√
("2 − "1)2 + b((1=

√
'2) − (1=

√
'1))2

("2 − "1)2 + b((1=
√
'2) + (1=

√
'1))2 :

Observe that as a consequence of (3.6) the above PoincarRe distances are upper and lower bounds
for the Rao distance.
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Then, by di?erentiating (3.7) and (3.8), and evaluating at t = 0, we obtain the starting tangent
vector of the geodesic between points with "1 �= "2,

�̇(0) = −C−1

√
b
, sinh(/) cosh−2(/);

"̇(0) = C−2B, cosh−2(/):

Expressing the vector in the boundary points and taking into account the contravariant law to
describe the change of tangent vectors we obtain

'̇(0) = − ,√
b

1 − 12

1
'1
√
'2

(
− 1√

'1
+

1√
'2

1 + 12

1 − 12

)
; (3.9)

"̇(0) =
,√
b

1 − 12

21
("2 − "1)

√
'2√
'1
: (3.10)

The vector with components (3.9) and (3.10) is the exact solution in the PoincarRe metric and supplies
a good starting approximation for the problem formulated in the information metric, as can be seen
in Section 4 where several examples are presented.

Remark 3.1. We see no direct reasons to prefer b = 2 instead of b = 4 or vice versa. In fact, the
better choice may depend on the problem. We combine the solution obtained for both values of b. To
combine the starting vectors we average their physical components with respect to each approximate
PoincarRe metrics, then normalize the resulting vector with respect to the information metric and scale
it by the average of the two previously obtained Rao distance bounds.

3.3. Newton iteration

As we have introduced in Section 2 from (2.5) we can compute the correction proposed by
the Newton method if we compute (∇=dt)Y (0) by integrating the Jacobi :eld Y (t) de:ned by the
boundary conditions (in coordinates)

Y (0) = 0; Y (1) = −F(x);

along the geodesic corresponding to each iteration. To this end we describe the numerical integration
of the Jacobi :elds corresponding to the geodesics on the manifold related to the Gamma statistical
model. We can decompose any Jacobi :eld along a geodesic into its normal component and its
tangential component: Y (t) = Y tan(t) + Y nor(t), both components also being Jacobi :elds, see [8].
Moreover for a tangential Jacobi :eld, we can express its initial values in terms of the known
boundary values, that is,

Y tan(0) = 0;
∇
dt

Y tan(0) = 〈Y (1); 2′(1)〉2′(0):

Then the derivative of the Jacobi :eld at the origin satis:es

∇
dt
Y (0) = 〈Y (1); 2′(1)〉2′(0) +

∇
dt

Y nor(0):
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Thus we need only to compute (∇=dt)Y nor(0) by integrating the Jacobi :eld equation for the normal
component with boundary conditions

Y nor(0) = 0; Y nor(1) = −F(x) − Y tan(1): (3.11)

For the Gamma model, from (2.6), the Jacobi system of equations in coordinates is

Iu +
(
)′(')
)(')

− 1
'

)
'̇u̇− '

)(')
"̇v̇− 1

2

(
)(') − ')′(')

)(')2

)
"̇2u

+
1
2

(
)′′('))(') − )′(')2

)(')2 +
1
'2

)
'̇2u = 0; (3.12)

Iv +
"̇u̇
'

+
'̇v̇
'

− '̇"̇u
'2 = 0; (3.13)

where we assume that (u(t); v(t)) are normal components. We integrate Eqs. (3.12) and (3.13) with
conditions (3.11) which we write for shortness as

(u(0); v(0)) = (0; 0); (3.14)

(u(1); v(1)) = (u1; v1): (3.15)

Taking into account the equation for I" in (3.4) and substituting it in (3.13) we obtain

'v̇ + "̇u = C; (3.16)

where C is a constant of integration to be determined from the boundary conditions. Observe that,

v̇ =
1
'

(C − "̇u): (3.17)

On the other hand, the normal components satisfy
)(')
'

'̇u + '"̇v = 0

and using the equation for "̇ in (3.5) we obtain

)(')'̇u + A'v = 0; (3.18)

where A is a known constant for given initial values of the geodesic associated to the iteration.
Di?erentiating (3.18), we obtain

()′(')'̇2 + )(') I')u + )(')'̇u̇ + A'̇v + A'v̇ = 0: (3.19)

On the other hand, from the equation for I' in (3.4) and taking into account that ,2=()(')=')'̇2+'"̇2,
where ,2 denotes the square norm of the tangent vector of the geodesic corresponding to the iteration,
we obtain

)(') I' =
1
2

(
'"̇2 − )′(')'̇2 +

)(')'̇2

'

)
=

1
2

(,2 − )′(')'̇2): (3.20)

Combining (3.20), (3.17) and (3.18) into (3.19) we have

)(')'̇u̇ +
(
,2

2
+
)′(')

2
'̇2 − )(')

'
'̇2 − A"̇

)
u + AC = 0: (3.21)
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By considering again (3.5) we could write ,2 = ()(')=')'̇2 + A"̇, then (3.21) can be written as

)(')'̇u̇ +
{
)′(')

2
'̇2 − ,2

2

}
u + AC = 0; (3.22)

and :nally,

u̇− I'
'̇
u +

AC
)(')'̇

= 0; (3.23)

we comment later the case '̇=0. Next, to compute u̇(0) and v̇(0) we consider three cases depending
on the initial values '̇(0) and "̇(0) of the geodesic corresponding to the iteration.
Case 1: "̇(0) = 0.
Then A = 0 and from (3.18) results

)(')'̇u = 0: (3.24)

The above equation must hold along the geodesic and since in this case '̇(t) �= 0 for all t values,
then u(t) = 0, u̇(t) = 0 and then u̇(0) = 0. On the other hand, since '̇(t) �= 0 for all t, from (3.17)
and (3.18) we obtain

v̇− A"̇
)(')'̇

v− C
'

= 0: (3.25)

Therefore, in this case,

v̇(t) =
C
'(t)

: (3.26)

Taking into account that there is a linear relation between the values v̇(0) and v(1), then we can
write

v(1) = bv̇(0); (3.27)

where b∈R is an unknown constant to be determined from boundary conditions. Notice that, if we
:x the value v̇(0) = 1 or equivalently C = '(0) and we integrate numerically Eq. (3.26) along the
geodesic, using a method with global error of order O(hp), where h denotes the steplength for the
geodesic integration, then at t = 1 we will obtain

v(1) = ṽ + O(hp): (3.28)

Therefore, from (3.27) and (3.28)

b = ṽ + O(hp):

Consequently, for the normal Jacobi :eld with conditions (3.14) and (3.15), from (3.27), we have

v1 = ṽv̇(0) + O(hp):

and thus

v̇(0) =
v1

ṽ
+ O(hp):

Case 2: '̇(0) = 0.
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Observe that, from (3.21), at t=0, then AC=0. Thus C=0. Taking into account that the component
' of the geodesic is a convex function on t as can be deduced from the geodesic equations, then
'̇(t)¿ 0 for t �= 0, and, therefore, from (3.23) we have

'̇u̇− I'u = 0: (3.29)

Hence, u='̇ = B, where B is a constant that should be determined from boundary conditions. Then

u(t) = B'̇(t); (3.30)

u̇(t) = B I'(t): (3.31)

We can determine B by using the conditions at t = 1, from (3.30)

B =
u1

'̇(1)
:

and from (3.31)

u̇(0) =
u1

'̇(1)
I'(0):

On the other hand, if we consider (3.16) at t = 0, since C = 0 results '(0)v̇(0) = 0. Consequently
v̇(0) = 0.
Case 3: '̇(0) �= 0, "̇(0) �= 0.
For the component v(t), from (3.19), at t = 0 we have

v̇(0) = −)('(0))'̇(0)
A'(0)

u̇(0): (3.32)

Observe that v̇(0) depends linearly on u̇(0). Moreover, there is a linear relationship between u̇(0)
and u(t) at each t. At t = 1 we could write

u(1) = au̇(0); (3.33)

where a is a real unknown constant that is determined by the boundary conditions. With a similar
reasoning as Case 1, if we :x u̇(0) = 1 and then integrate numerically the di?erential equation of u̇
in (3.23) we will obtain at t = 1 the value ũ such that

u(1) = ũ + O(hp); (3.34)

where O(hp) denotes the order of the :nal error. Then, from (3.33) and (3.34) we obtain a = ũ +
O(hp). Then for the Jacobi :eld with boundary conditions (3.14) and (3.15) we have u1 = ũu̇(0) +
O(hp) and in consequence

u̇(0) =
u1

ũ
+ O(hp): (3.35)

With (3.35) and (3.32) we obtain the desired quantities.

Remark 3.2. We have integrated Eq. (3.23) by using a modi:ed Taylor of order O(h5), see [18,19].
We have observed numerically that the behaviour of the component u(t) is stable in spite of '̇(t)
being so small. A singularity will appear only at t = tm with '̇(tm) = 0 but we could avoid this
eventuality. When the program detects '̇(t) � 0, we approximate u(tm + h) by a Taylor expansion at



164 F. Reverter, J.M. Oller / Journal of Computational and Applied Mathematics 157 (2003) 155–167

tm, using the coe3cients at tm− h, instead of using expression (3.23). We should store, temporarily,
at each step the approximate values of all derivatives.

Remark 3.3. From numerical calculations we have observed that the Gaussian curvature + is bounded
by − 1

2 ¡+¡− 1
4 . Then from the geometric Rauch theorem, see [8], we have

,√
2 sinh(,=

√
2)

‖Y‖(1)6 ‖(∇=dt)Y‖(0)6
,

2 sinh(,=2)
‖Y‖(1):

Observe that the above bounds allow to stabilize the iterative procedure because if eventually the
norm of the computed (∇=dt)Y (0) exceeds the bounds we can scale conveniently the vector.

4. Behaviour of the program

We have written a computer program, using Microsoft Developer Studio 97 for Visual Fortran
[10], based on the ideas introduced above. In order to illustrate the behaviour of the program we
have considered two features: the range of applicability over the parameter space and time spent in
computing any distance. With this aim we describe two kinds of examples.

4.1. Example 1

For the values of the parameters ' and ( corresponding to the vertex of the six rectangles de:ned
by [10−k ; 10k] × [10−k ; 10k]; k = 1; : : : ; 6, Tables 1–6 shows for every rectangle the performance of
the program in solving the six boundary problems determined by the two diagonals and the four
sides of each rectangle. Tables summarize in columns: N , the number of iterations needed to solve
the problem, ,, the Rao’s distance between the boundary points ('1; (1) and ('2; (2), error, the length
of the :nal deviation vector measured in the metric of ('2; (2), time, the time in seconds to solve
the problem, v, speed as the ratio between distance , and time. Observe that:

1. Every problem has been solved by the program. The range of the parameter space where the
program converges to the solution is clearly wider than the range of standard programs like the
D02HAF routine of NAG library, see [15]. This indicates the goodness of the initial approximation
and the global accuracy of the iterative scheme.

Table 1
Rectangle: [10−1; 101] × [10−1; 101]

('1; (1) ('2; (2) N , Error Time (s) v

(10−1; 10−1) (101; 101) 5 3.76091 0:591 10−7 0:606 10−2 620.5
(10−1; 101) (101; 10−1) 5 6.08427 0:141 10−7 0:105 10−1 579.0
(10−1; 10−1) (10−1; 101) 4 1.42335 0:315 10−6 0:211 10−2 672.9
(10−1; 101) (101; 101) 4 4.67064 0:555 10−6 0:655 10−2 712.9
(10−1; 10−1) (101; 10−1) 4 4.67064 0:555 10−6 0:654 10−2 714.0
(101; 10−1) (101; 101) 4 6.90379 0:948 10−6 0:968 10−2 712.8
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Table 2
Rectangle: [10−2; 102] × [10−2; 102]

('1; (1) ('2; (2) N , Error Time (s) v

(10−2; 10−2) (102; 102) 4 7.65804 0:334 10−6 0:954 10−2 802.9
(10−2; 102) (102; 10−2) 5 8.89581 0:286 10−7 0:146 10−1 609.5
(10−2; 10−2) (10−2; 102) 5 0.91301 0:222 10−6 0:218 10−2 418.8
(10−2; 102) (102; 102) 5 8.04868 0:660 10−7 0:133 10−1 605.2
(10−2; 10−2) (102; 10−2) 5 8.04868 0:660 10−7 0:132 10−1 609.8
(102; 10−2) (102; 102) 5 12.5209 0:162 10−6 0:201 10−1 621.9

Table 3
Rectangle: [10−3; 103] × [10−3; 103]

('1; (1) ('2; (2) N , Error Time (s) v

(10−3; 10−3) (103; 103) 4 11.5798 0:315 10−6 0:141 10−1 822.7
(10−3; 103) (103; 10−3) 5 11.9328 0:623 10−7 0:195 10−1 610.2
(10−3; 10−3) (10−3; 103) 3 0.43602 0:410 10−7 0:757 10−3 575.9
(10−3; 103) (103; 103) 5 11.6756 0:569 10−7 0:187 10−1 625.6
(10−3; 10−3) (103; 10−3) 5 11.6756 0:569 10−7 0:188 10−1 622.3
(103; 10−3) (103; 103) 6 17.2655 0:709 10−7 0:323 10−1 535.6

Table 4
Rectangle: [10−4; 104] × [10−4; 104]

('1; (1) ('2; (2) N , Error Time (s) v

(10−4; 10−4) (104; 104) 4 15.5092 0:476 10−6 0:193 10−1 803.1
(10−4; 104) (104; 10−4) 5 15.5754 0:462 10−7 0:254 10−1 614.2
(10−4; 10−4) (10−4; 104) 3 0.18414 0:357 10−10 0:757 10−3 243.1
(10−4; 104) (104; 104) 5 15.5259 0:170 10−7 0:261 10−1 593.8
(10−4; 10−4) (104; 10−4) 5 15.5259 0:169 10−7 0:253 10−1 612.6
(104; 10−4) (104; 104) 10 21.6093 0:484 10−6 0:652 10−1 331.3

2. The program took little time to solve all the cases even when the points were far apart. This is
an advantage in situations, like simulation procedures, when a large number of distances must be
computed.

4.2. Example 2

We performed an additional test. By means of a random number generator we have obtained 10 000
pairs of points independently and uniformly distributed on the rectangle [10−6; 106] × [10−6; 106].
The program converges to the solution for every pair of points. In Table 7 we show the summary
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Table 5
Rectangle: [10−5; 105] × [10−5; 105]

('1; (1) ('2; (2) N , Error Time (s) v

(10−5; 10−5) (105; 105) 4 19.4378 0:720 10−6 0:247 10−1 785.4
(10−5; 105) (105; 10−5) 5 19.4478 0:141 10−7 0:323 10−1 600.6
(10−5; 10−5) (10−5; 105) 2 0.07281 0:379 10−7 0:543 10−3 134.1
(10−5; 105) (105; 105) 5 19.4399 0:721 10−8 0:319 10−1 608.1
(10−5; 10−5) (105; 10−5) 5 19.4399 0:721 10−8 0:321 10−1 604.3
(105; 10−5) (105; 105) 7 25.7231 0:225 10−6 0:537 10−1 478.5

Table 6
Rectangle: [10−6; 106] × [10−6; 106]

('1; (1) ('2; (2) N , Error Time (s) v

(10−6; 10−6) (106; 106) 4 23.3667 0:919 10−6 0:303 10−1 772.2
(10−6; 106) (106; 10−6) 5 23.3682 0:133 10−7 0:394 10−1 593.9
(10−6; 10−6) (10−6; 106) 2 0.02763 0:782 10−9 0:542 10−3 50.9
(10−6; 106) (106; 106) 5 23.3671 0:588 10−6 0:393 10−1 595.4
(10−6; 10−6) (106; 10−6) 5 23.3671 0:588 10−6 0:394 10−1 593.9
(106; 10−6) (106; 106) 7 29.6856 0:555 10−6 0:603 10−1 492.5

Table 7
Summary statistics from a sample of size 10000

Average Std. deviation Minimum Maximum

Iterations 5.6166 1.0456 2 13
Distance 11.326 5.7267 0.0017 27.766
Time (s) 0.0219 0.0129 0.0005 0.1399
Speed 547.66 118.12 3.1430 1701.3

statistics of the results after simulation. Observe that: for great enough average distance the program
needed a small number of iterations on average and also the average time taken to solve the problem
is low.

5. Summary

A computer program to evaluate Rao’s distance between Gamma populations is implemented.
In summary the main features of the program are; (1) using geometric properties of the Gamma
manifold a good starting value for the iterative process is supplied, then the program shows a greater
range of convergence than other standard routines, (2) the Newton approximation at each iteration is
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obtained by solving the variational equations by the integration of normal Jacobi :elds determined
by the boundary conditions, yielding a fast iterative procedure. A FORTRAN program to compute
Rao distance between Gamma distributions is available on request.
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