
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Functional Analysis 256 (2009) 3143–3157

www.elsevier.com/locate/jfa

Spectral conditions on Lie and Jordan algebras
of compact operators ✩

Matthew Kennedy ∗, Heydar Radjavi

Department of Pure Mathematics, University of Waterloo, 200 University Ave West, Waterloo,
Ontario, Canada N2L 3G1

Received 31 March 2008; accepted 19 February 2009

Available online 9 March 2009

Communicated by D. Voiculescu

Abstract

We investigate the properties of bounded operators which satisfy a certain spectral additivity condition,
and use our results to study Lie and Jordan algebras of compact operators. We prove that these algebras
have nontrivial invariant subspaces when their elements have sublinear or submultiplicative spectrum, and
when they satisfy simple trace conditions. In certain cases we show that these conditions imply that the
algebra is (simultaneously) triangularizable.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Conditions on the spectrum of an operator have been studied for some time, for instance
in the work of Motzkin and Taussky [7], who investigated pairs of n × n matrices A and B

with the property that for every scalar λ, the eigenvalues of A + λB are, subject to a slight
technical condition, linear functions of the eigenvalues of A and B . Specifically, they required
that the eigenvalues {α1, . . . , αn} and {β1, . . . , βn}, of A and B respectively, could be expressed as
ordered sets {α1, . . . , αn} and {β1, . . . , βn}, such that for every scalar λ, the eigenvalues of A+λB

are precisely αi + λβi , for i = 1, . . . , n. Such matrices are said to have property L (“L” is for
“linear”).
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A pair of (simultaneously) triangularizable matrices clearly has property L, and Motzkin and
Taussky were interested in conditions under which the converse of this was true. They showed
that a finite group of matrices, with every pair of elements in the group having property L,
is not just triangularizable, but diagonalizable. Somewhat later, Wales and Zassenhaus [13],
Zassenhaus [14], and Guralnick [2] showed that a multiplicative semigroup of n × n matrices
is triangularizable under the same circumstances.

The following conditions are seemingly much weaker than property L.

Definition 1.1. A pair of bounded operators A and B on a Banach space are said to have subad-
ditive spectrum if

σ(A + B) ⊆ σ(A) + σ(B),

where σ(A) + σ(B) means the set of all α + β , with α and β in σ(A) and σ(B) respectively.
Similarly, A and B are said to have sublinear spectrum if

σ(A + λB) ⊆ σ(A) + λσ(B)

for every complex number λ. A family F of bounded operators on a Banach space is said to
have subadditive (resp. sublinear) spectrum if every pair of elements in F has subadditive (resp.
sublinear) spectrum.

Note that for linear spaces, and in particular for Lie and Jordan algebras, subadditivity of the
spectrum clearly implies sublinearity.

The conditions of sublinear and subadditive spectrum are, in some sense, even weaker than
one might initially suspect. Indeed, as the following example illustrates, there is little hope of
obtaining any results about the existence of invariant subspaces for an arbitrary family of oper-
ators with subadditive or even sublinear spectrum without imposing a great deal of additional
structure.

Example 1.2. Consider the matrices

A =
⎛
⎝

0 1 0

0 0 −1

0 0 0

⎞
⎠ , B =

⎛
⎝

0 0 0

1 0 0

0 1 0

⎞
⎠ .

It is easy to verify that the linear space S spanned by A and B consists entirely of nilpotent
matrices, so S has sublinear spectrum, yet S clearly has no nontrivial invariant subspaces.

It was shown in [8] that the property of sublinear spectrum implies the triangularizability of a
semigroup of compact operators, which is an extension of the classical results mentioned above
to the context of an infinite-dimensional Banach space.

A natural question is whether this kind of result holds for other types of algebraic structures.
In this paper we study Lie and Jordan algebras of compact operators satisfying spectral condi-
tions like sublinearity and submultiplicativity, which have been shown to imply the existence of
invariant subspaces for semigroups of compact operators. We will prove that many of the results
obtained for semigroups also hold in this nonassociative context.
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Shulman and Turovskii obtained several results of this nature in their development of a radical
theory for Lie algebras of compact operators [11]. They showed that a Lie algebra of compact
operators with subadditive spectrum has invariant subspaces [11], and it was implicit in their
proof that this condition actually implied triangularizability. This gave an extension of Engel’s
Theorem for Lie algebras of compact operators, which was also proven recently in [10].

On the other hand, results on the existence of invariant subspaces for Jordan algebras of
compact operators have only recently been obtained. In particular, there is currently no Jordan
analogue of the theory which was developed in [11]. This is one reason why our results have
been developed in a different manner.

We begin by analyzing the properties of bounded linear operators which satisfy a certain
spectral additivity condition. The results we obtain here, when combined with new “Cartan-
like” conditions for the existence of invariant subspaces in Lie and Jordan algebras of compact
operators, provides us with a general method of proving the existence of invariant subspaces for
these algebras, in particular when their elements have subadditive or submultiplicative spectrum.
We will show that this implies a Lie or Jordan algebra of compact operators with subadditive
spectrum is triangularizable, obtaining a new proof of Shulman and Turovskii’s result for Lie
algebras. Finally, we obtain simple conditions on the trace of the finite-rank elements in the
algebra which imply the existence of invariant subspaces. As far as we know, some of our results
are new even in finite dimensions.

2. Preliminaries

In this paper we confine ourselves to the field C of complex numbers. For a Banach space X ,
we let B(X ) and K(X ) denote the algebras of all bounded and compact operators on X respec-
tively.

For A in B(X ), we let σ(A) and r(A) denote the spectrum and spectral radius of A respec-
tively. If A is of finite rank, then the trace of A is well-defined; we denote it by tr(A).

To clarify our exposition, we will sometimes make use of shorthand notation. For example, if
S1 and S2 are subsets of B(X ), then we will write S n

1 for the linear span of {An: A ∈ S1}, and
S1 S2 for the linear span of {AB: A ∈ S1, B ∈ S2}.

A family F of operators is called reducible if there is a nontrivial closed subspace invariant
under every member of F . We say that F is triangularizable if its lattice of invariant subspaces
contains a maximal subspace chain C . (If M1 and M2 are two members of C with M1 ⊆ M2

and no other member between M1 and M2, then dim(M1 � M2) � 1.)
To establish the triangularizability of a family of operators, we will require the following

lemma from [9, Lemma 7.1.11].

Lemma 2.1 (The Triangularization Lemma). Let P be a property of a family of operators such
that

(1) every family of operators with property P is reducible, and
(2) if F has property P and if M1 and M2 are invariant subspaces of F with M1 ⊆ M2, then

F̂ has property P , where F̂ is the set of all quotient operators on M1/M2 induced by F .

Then every family of operators with property P is triangularizable.
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If P is a property of a family of operators which satisfies hypothesis (2) of the Triangulariza-
tion Lemma, then we say that P is inherited by quotients.

The following result from [9, Corollary 8.4.2] will be used in combination with the Triangu-
larization Lemma.

Lemma 2.2. The property of sublinear spectrum is inherited by quotients.

Definition 2.3. A pair of bounded operators A and B on a Banach space are said to have submul-
tiplicative spectrum if

σ(AB) ⊆ σ(A)σ(B),

where σ(A)σ(B) means the set of all αβ , with α and β in σ(A) and σ(B) respectively. A family
F of bounded operators on a Banach space are said to have submultiplicative spectrum if every
pair of elements in F has submultiplicative spectrum.

The property of submultiplicative spectrum is not strong enough to imply the reducibility of
a semigroup of compact operators; indeed, the existence of finite irreducible matrix groups with
sublinear spectrum was shown in [6]. We will show however, that Lie and Jordan algebras of
compact operators with submultiplicative spectrum are reducible.

3. Operators with stable spectrum

It turns out that the following property, obviously closely related to the property of sublinear
spectrum, is of particular importance for obtaining many of our reducibility results.

Definition 3.1. Let T be a bounded operator on a Banach space. We say that a bounded opera-
tor A has T -stable spectrum if

r(A + λT ) � r(A)

for every complex number λ. A family of bounded operators on a Banach space is said to have
T -stable spectrum if each of its elements has T -stable spectrum.

It will sometimes be useful to reference a family of bounded operators with T -stable spectrum
without making explicit mention of T . Therefore, we will say that a family of bounded operators
has stable spectrum if it has T -stable spectrum, for some nonzero T .

Example 3.2. Consider the matrices

A =
⎛
⎝

−1 0 0

0 0 1

0 0 0

⎞
⎠ , B =

⎛
⎝

0 −1 −1

0 −1 −1

1 0 1

⎞
⎠ .

Note that A is in Jordan normal form, so σ(A) = {−1,0}, and B3 = 0, so σ(B) = {0}. The
characteristic polynomial of A + λB is t3 − t2, which implies that σ(A + λB) = σ(A) for all λ

in C. This shows that A is B-stable.
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Calculating the inverse of μ − A, we have

(μ − A)−1B = 1

μ2(1 − μ)

⎛
⎝

0 μ2 μ2

−1 −μ(1 − μ) −(1 − μ)2

μ(1 − μ) 0 μ(1 − μ)

⎞
⎠ ,

and it is routine to verify that this matrix is nilpotent. Calculating the inverse of 1 −μB , we have

(1 − μB)−1A =
⎛
⎝

0 0 0

−1 0 −1

2 0 1

⎞
⎠ ,

and this matrix has characteristic polynomial t3 − t2, showing that it has the same eigenvalues
as A.

In this section, we will show that the results in Example 3.2 hold in general, which will be
important for our main results. An important tool will be the theory of subharmonic functions,
based on the result of Vesentini that if f is an analytic function from a domain of the com-
plex numbers into a Banach algebra, then the functions λ → r(f (λ)) and λ → log(r(f (λ)))

are subharmonic [12]. We will require the following two fundamental results from the theory of
subharmonic functions (see for example [1, Theorem A.1.3] and [1, Theorem A.1.29] resp.).

Theorem 3.3 (Maximum Principle for Subharmonic Functions). Let f be a subharmonic func-
tion on a domain D of C. If there exists λ0 in D such that f (λ) � f (λ0) for all λ in D, then
f (λ) = f (λ0) for all λ in D.

We state here only a special case of H. Cartan’s Theorem.

Theorem 3.4 (H. Cartan’s Theorem). Let f be a subharmonic function from a domain D of C.
If f (λ) = −∞ on a nonempty open ball in D, then f (λ) = −∞ for all λ in D.

Remark 3.5. For bounded operators A and T on a Banach space, the function λ → A + λT is
analytic, so by Vesentini’s results, the functions λ → r(A + λT ) and λ → log(r(A + λT )) are
subharmonic. If A has T -stable spectrum, the Maximum Principle for subharmonic functions
immediately implies that r(A + λT ) = r(A) for all complex numbers λ.

If A and T have sublinear spectrum and T is quasinilpotent, then A has T -stable spectrum.
The following lemma from [11, Lemma 4.2] shows that the quasinilpotence of T is a necessary
condition for A to be T -stable.

Lemma 3.6. Let A and T be bounded operators on a Banach space. If A has T -stable spectrum,
then T is quasinilpotent.

Proof. By Remark 3.5, r(A + λT ) = r(A) for all λ in C, so

r
(
λ−1A + T

) = |λ|−1r(A)



3148 M. Kennedy, H. Radjavi / Journal of Functional Analysis 256 (2009) 3143–3157
for all nonzero λ in C. Thus by the subharmonicity of the function μ → r(μA + T ),

r(T ) = lim sup
μ→0

r(μA + T ) = lim sup
μ→0

|μ|r(A) = 0. �
Lemma 3.7. Let A and T be bounded operators on a Banach space. Then A has T -stable spec-
trum if and only if (μ − A)−1T is quasinilpotent for all μ /∈ σ(A).

Proof. By Remark 3.5, r(A + λT ) = r(A) for all λ in C, so for μ in C with |μ| > r(A), both
μ − A and μ − A − λT are invertible. Therefore,

λ−1(μ − A)−1(μ − A − λT ) = λ−1 − (μ − A)−1T

is invertible for all nonzero λ in C. This means that the values of the operator-valued function
μ → (μ − A)−1T , which is analytic for μ /∈ σ(A), are quasinilpotent whenever |μ| > r(A).

Consider the subharmonic function μ → log(r((μ − A)−1T )) defined for μ /∈ σ(A). Since
log(r((μ − A)−1T )) = −∞ whenever |μ| > r(A), by H. Cartan’s Theorem, log(r((μ −
A)−1T )) = −∞ for all μ /∈ σ(A). In other words, (μ − A)−1T is quasinilpotent for all
μ /∈ σ(A). �
Lemma 3.8. Let A and T be bounded operators on a Banach space. Then A has T -stable spec-
trum if and only if σ(A + λT ) ⊆ σ(A) for all λ in C.

Proof. Suppose μ ∈ σ(A + λT ), but that μ /∈ σ(A). Then clearly λ is nonzero, and

λ−1(μ − A)−1(μ − A − λT ) = λ−1 − (μ − A)−1T

is not invertible. But by Lemma 3.7, (μ−A)−1T is quasinilpotent for all μ /∈ σ(A), which gives
a contradiction. �

The next result also follows from [1, Theorem 3.4.14], but it is interesting to see that it can be
proved in the following way.

Lemma 3.9. Let A and T be bounded operators on a Banach space. If A has T -stable spectrum
and σ(A) has no interior points, then σ(A + λT ) = σ(A) for all λ in C.

Proof. This follows immediately from Corollary 3.8 and the Spectral Maximum Principle
of [1]. �
Lemma 3.10. Let A and T be bounded operators on a Banach space. If A has T -stable spectrum
and σ(A) has no interior points, then σ((1 − νT )−1A) = σ(A) for all ν in C.

Proof. First suppose λ is nonzero, and that λ /∈ σ(A). By Lemma 3.9, σ(λ−1A + νT ) =
σ(λ−1A), and by Lemma 3.6, T is quasinilpotent. These two facts imply that 1 − νT and
1 − λ−1A − νT are both invertible, and hence that

λ(1 − νT )−1(1 − λ−1A − νT
) = λ − (1 − νT )−1A

is invertible for all ν in C. Therefore, λ /∈ σ((1 − νT )−1A) for all ν in C.
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Now suppose 0 /∈ σ(A). Then A is invertible, implying (1 − νT )−1A is invertible, and hence
by the quasinilpotence of T , that 0 /∈ σ((1 − νT )−1A) for all ν in C.

We have shown that σ((1−νT )−1A) ⊆ σ(A) for all ν in C. Since σ(A) has no interior points,
the result now follows from the Spectral Maximum Principle of [1]. �
Lemma 3.11. Let f be an entire function from C into B(X ). Suppose that

(1) there exists a complex number λ0 such that σ(f (λ0)) = σ(f (λ)), and
(2) there exists N such that rank(f (λ)) � N for all complex numbers λ.

Then tr(f (λ)) = tr(f (λ0)) for all λ in C.

Proof. Since f takes finite-rank values and is entire, the function λ → tr(f (λ)) is also entire.
For each λ, the trace of f (λ) is the sum, with multiplicity, of the eigenvalues of f (λ), so we may
write it as a finite sum

tr
(
f (λ)

) =
∑

α∈σ(f (λ0))

nα(λ)α,

where nα(λ) denotes the multiplicity of the eigenvalue α with respect to f (λ). But clearly

∑
α∈σ(f (λ0))

nα(λ)|α| � rank
(
f (λ)

)∥∥f (λ0)
∥∥ � N

∥∥f (λ0)
∥∥,

which implies that the function λ → tr(f (λ)) is bounded. By Liouville’s Theorem, it now follows
that tr(f (λ)) = tr(f (λ0)) for all λ in C. �

The next result extends [11, Lemma 4.2], and gives a symmetric trace condition which will
be useful for our results.

Lemma 3.12. Let A and B be bounded operators on a Banach space. If A is B-stable and one
of A or B is of finite rank, then tr(AnB) = tr(ABn) = 0 for all n � 1.

Proof. First suppose that A is of finite rank. Since B is quasinilpotent by Lemma 3.6, the
function ν → (1 − νB)−1A is entire. Moreover, σ((1 − νB)−1A) = σ(A) for all ν in C by
Lemma 3.10. Then, taking nth powers, the function v → ((1 − νB)−1A)n is also entire, and
σ(((1 − νB)−1A)n) = σ(An) for all ν in C. Clearly rank(((1 − νB)−1A)n) � rank(A), so
tr(((1 − νB)−1A)n) = tr(An) for all ν in C by Lemma 3.11.

For |ν| < ‖B‖−1, we may expand (1 − νB)−1A as a power series in ν,

(1 − νB)−1A =
∑
k�0

BkAνk.

Hence

(
(1 − νB)−1A

)n =
(∑

BkAνk

)n

.

k�0



3150 M. Kennedy, H. Radjavi / Journal of Functional Analysis 256 (2009) 3143–3157
The coefficient of νk in the above expansion is BkA, and for n � 1, the coefficient of ν is

BAn + ABAn−1 + · · · + An−1BA.

But we may also expand the constant function tr(((1 − νB)−1A)n) as a power series in ν, and
the linearity of the trace implies that for n = 1, the coefficient of νk in this expansion is tr(BkA),
and for n � 1, that the coefficient of ν is

tr
(
BAn + ABAn−1 + · · · + An−1BA

) = n tr
(
AnB

)
.

Comparing the coefficients on the left- and right-hand sides of the equation tr(((1−νB)−1A)n) =
tr(An) therefore gives tr(AnB) = 0 for all n � 1, and ABk = 0 for all k � 1.

Now suppose that B is of finite rank. The function ν → (1 − νA)−1B is analytic for
ν−1 /∈ σ(A), with quasinilpotent values by Lemma 3.7. Taking nth powers, the function
ν → ((1 − νA)−1B)n is also analytic with quasinilpotent values for ν−1 /∈ σ(A). This means
tr(((1 − νA)−1B)n) = 0 for all ν /∈ σ(A).

As above, for |ν| < ‖A‖, we may expand ((1 − νA)−1B)n as a power series in ν,

(
(1 − νA)−1B

)n =
(∑

k�0

AkBνk

)n

.

For n = 1, the coefficient of νk in the above expansion is AkB , and for n � 1, the coefficient of ν

is

ABn + BABn−1 + · · · + Bn−1A.

Proceeding as before, we may also expand the constant function tr(((1 − νA)−1B)n) as a power
series in ν, and the linearity of the trace implies that for n = 1, the coefficient of νk in this
expansion is tr(AkB), and for n � 1, that the coefficient of ν is

tr
(
ABn + BABn−1 + · · · + Bn−1AB

) = n tr
(
ABn

)
.

Comparing the coefficients of the left- and right-hand sides of the equation tr(((1 −
νA)−1B)n) = 0 therefore gives tr(AkB) = 0 for all k � 1, and tr(ABn) = 0 for all n � 1. �
4. Spectral conditions on a Lie algebra of compact operators

In this section we study Lie algebras of compact operators which satisfy spectral properties
like sublinearity and submultiplicativity.

Recall that an operator Lie algebra L is a subspace of B(X ) which is closed under the Lie
commutator product [A,B] = AB − BA, for A,B ∈ L. A Lie ideal I of L is a Lie subalgebra
of L such that [A,B] ∈ I whenever A ∈ L and B ∈ I . For A in L, we define the bounded linear
operator adA on L by adA(B) = [A,B].

Definition 4.1. An operator Lie algebra L is said to be an Engel Lie algebra if adA is quasinilpo-
tent for every A in L. An ideal of L is said to be an Engel ideal if it is an Engel Lie algebra.
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There are two particularly important classes of Engel Lie algebras:

(1) Commutative operator Lie algebras are Engel Lie algebras, since adA = 0 for every A ∈ L.
(2) Operator Lie algebras in which every element is compact and quasinilpotent are Engel Lie

algebras. Indeed, for A ∈ L, adA is the restriction of LA −RA to L, where LA and RA denote
the (commuting) operators of left and right multiplication by A on B(X ) respectively. We
always have σ(LA) ⊆ σ(A) and σ(RA) ⊆ σ(A), so LA and RA are quasinilpotent. It follows
that LA − RA is quasinilpotent, and hence so is its restriction to L.

We require the following two important results of Shulman and Turovskii. The first result
from [10, Corollary 11.6] is an extension of Engel’s well-known theorem to Lie algebras of
compact operators. The second result from [11, Corollary 4.20] establishes the abundance of
finite-rank operators in an irreducible Lie algebra of compact operators.

Theorem 4.2. A Lie algebra of compact operators which contains a nonzero Engel Lie ideal is
reducible. In particular, an Engel Lie algebra of compact operators is triangularizable.

Theorem 4.3. A uniformly closed Lie algebra of compact operators which does not contain any
nonzero finite-rank nilpotent elements is triangularizable.

For a general Lie algebra of compact operators, it is often more tractable to study its ideal
of finite-rank operators due to such niceties as the existence of a trace, so we are especially in-
terested in situations when the reducibility of this ideal implies the reducibility of the entire Lie
algebra. Shulman and Turovskii raised the question [11] of whether a Lie algebra of compact
operators is reducible whenever its ideal of finite-rank operators is reducible. That such a result
holds for an associative algebra of compact operators is a consequence of Lomonosov’s Theo-
rem (see for example [9, Theorem 7.4.7]). The next result, a generalization of [5, Lemma 2.3],
provides at least one example of a situation in which this type of result is true in the Lie algebra
case.

Theorem 4.4. Let L be a uniformly closed Lie algebra of compact operators. If L contains a
nonzero element A, with the property that tr(AF) = 0 for every finite-rank operator F in L, then
L is reducible.

Proof. Let F denote the ideal of finite-rank operators in L, and let I = {A ∈ L: tr(AF) = 0
for all F ∈ F }. Using the identity

tr
([A,B]F ) = tr

(
A[B,F ]),

it is easy to verify that I is a Lie ideal of L. Consider the Lie ideal IF = I ∩ F . If IF = 0, then
I is triangularizable by Theorem 4.3, and thus L is reducible by Theorem 4.2. Hence we may
suppose that IF 
= 0.

We have tr(AB) = 0 for all A,B ∈ IF , which implies by [4, Theorem 4.5] that [IF , IF ]
consists of nilpotent elements. Note that [IF , IF ] is a Lie ideal of L. Indeed, for A ∈ L and
F,G ∈ IF ,

[
A, [F,G]] = −[

F, [G,A]] − [
G, [A,F ]]
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by the Jacobi identity. Hence IF is triangularizable by Theorem 4.2. If [IF , IF ] = 0, then IF is
a commutative Lie ideal, and hence is triangularizable by Theorem 4.2. Otherwise, the triangu-
larizable ideal [IF , IF ] is nonzero. Either way, L has a nonzero triangularizable ideal, which
implies by Theorem 4.2 that it is reducible. �
Lemma 4.5. Let L be a Lie algebra of compact operators with a nonzero element T . If L has
T -stable spectrum, then L is reducible.

Proof. By the continuity of the spectrum of compact operators, we may suppose that L is uni-
formly closed. Let F be the Lie ideal of finite-rank operators in L. By Lemma 3.12, tr(FT ) = 0
for all F in F , so the result follows by Theorem 4.4. �
Theorem 4.6. A Lie algebra of compact operators with subadditive spectrum is triangularizable.

Proof. Let L be a Lie algebra of compact operators with sublinear spectrum. By the Triangu-
larization Lemma and Lemma 2.2, it suffices to show the reducibility of L. As in the proof of
Lemma 4.5, we may suppose that L is uniformly closed. Then by Theorem 4.3, if L does not con-
tain a nonzero finite-rank nilpotent element, then it is reducible; hence we may suppose that some
nonzero T in L is nilpotent, and of finite rank. Then by the hypothesis of sublinear spectrum,
L has T -stable spectrum, so the result follows by Lemma 4.5. �
Theorem 4.7. A Lie algebra of compact operators with submultiplicative spectrum is reducible.

Proof. Let L be a Lie algebra of compact operators with submultiplicative spectrum. As in the
proof of Lemma 4.5, we may suppose that L is uniformly closed. Let F be the ideal of finite-rank
elements in L. By Theorem 4.3, if L does not contain a nonzero finite-rank nilpotent element,
then it is reducible; hence we may suppose that some nonzero T in L is nilpotent, and of finite
rank. Then for every F in F , σ(FT ) = 0 by the hypothesis of submultiplicative spectrum, so
tr(FT ) = 0. Hence L is reducible by Theorem 4.4. �
Theorem 4.8. Let L be a uniformly closed Lie algebra of compact operators with the property
that tr(FGH) = tr(FHG) whenever F,G,H ∈ L are of finite rank. Then L is reducible.

Proof. Let F be the ideal of finite-rank operators in L. If F is commutative, then it is an Engel
ideal of L, and L is reducible by Theorem 4.2. Hence we may suppose that [G,H ] 
= 0 for some
G,H ∈ L. Then for all F in F , tr(F [G,H ]) = 0, so L is reducible by Theorem 4.4. �
Theorem 4.9. Let L be a uniformly closed Lie algebra of compact operators with the property
that tr(F 2) = 0 for every finite-rank element F in L. Then L is reducible.

Proof. Let F be the ideal of finite-rank operators in L. Then for any F,G ∈ F ,

0 = tr
(
(F + G)2)

= tr
(
F 2) + tr

(
G2) + tr(FG + GF)

= tr(FG + GF)

= 2 tr(FG),
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so tr(FG) = 0. If F = 0, then L is reducible by Theorem 4.3. Otherwise, L is reducible by
Theorem 4.4. �
5. Spectral conditions on a Jordan algebra of compact operators

In this section we turn our attention to Jordan algebras, and show that most of the results we
obtained for Lie algebras are also true in this setting.

An operator Jordan algebra J is a subspace of B(X ) which is closed under the Jordan anti-
commutator product {A,B} = AB +BA, for A,B ∈ J . It is easy to verify that this is equivalent
to J being closed under taking positive integer powers. A Jordan ideal I of J is a Jordan subal-
gebra of J such that {A,B} ∈ I whenever A ∈ J and B ∈ I .

The methods of this section will differ from those used in the section on Lie algebras. This
is mainly because for obtaining reducibility results, the closest Jordan analogue of an Engel Lie
ideal will be a Jordan ideal in which every element is quasinilpotent. This is due to the following
result, the Jordan analogue of Theorem 4.2, which was recently obtained in [5, Theorem 11.3].

Theorem 5.1. A Jordan algebra of compact operators with a nonzero ideal of quasinilpotent
operators is reducible. In particular, a Jordan algebra of compact quasinilpotent operators is
triangularizable.

Let J be a uniformly closed Jordan algebra of compact operators, and let A be a non-
quasinilpotent element of J . For nonzero λ in σ(A), it is well known that the Riesz projection Pλ

of A corresponding to λ is of finite rank, and moreover that it may be written as a uniform limit
of polynomials in A with zero constant coefficient. It follows that Pλ ∈ J . This fact, combined
with Theorem 5.1, implies the following result.

Theorem 5.2. A uniformly closed Jordan algebra of compact operators which does not contain
any nonzero finite-rank operators is reducible.

For Jordan algebras, we are also interested in situations when the reducibility of this ideal im-
plies the reducibility of the entire Jordan algebra. The next result establishes the Jordan analogue
of Theorem 4.4.

Theorem 5.3. Let J be a uniformly closed Jordan algebra of compact operators. If J contains
a nonzero element A with the property that tr(AF) = 0 for every finite-rank operator F in J ,
then J is reducible.

Proof. Let F denote the Jordan ideal of finite-rank elements in J , and let I = {A ∈ J :
tr(AF) = 0 for all F ∈ F }. Using the identity

tr
({A,B}F ) = tr

(
A{B,F }) = 0,

it is straightforward to verify that I is a Jordan ideal of J . We claim that I consists of quasinilpo-
tent elements. Indeed, suppose otherwise that for some A ∈ I , λ ∈ σ(A) is nonzero, and let Pλ be
the Riesz projection of A corresponding to λ. Then Pλ belongs to J , and tr(PλAPλ) = nλ, where
n is the spectral multiplicity of λ. But
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tr(PλAPλ) = tr
(
AP 2

λ

) = tr(APλ) = 0

by hypothesis, which gives a contradiction. The result now follows by Theorem 5.1. �
Using the structure which is presented in a general Jordan algebra of compact operators, and

applying what we know about operators with stable spectrum, we are able to prove the following
result.

Lemma 5.4. Let J be a Jordan algebra of compact operators with T in J . If J has T -stable
spectrum, then AT is quasinilpotent for all A ∈ J .

Proof. For A ∈ J , νA + ν2A2 + · · · + νnAn + λT ∈ J , for all n � 1 and λ, ν ∈ C. Also,

σ
(
νA + ν2A2 + · · · + νnAn + λT

) = σ
(
νA + ν2A2 + · · · + νnAn

)
,

so

σ
(
1 + νA + ν2A2 + · · · + νnAn + λT

) = σ
(
1 + νA + ν2A2 + · · · + νnAn

)
.

For sufficiently small ν, taking n → ∞, and using the continuity of the spectrum of compact
operators gives

σ
(
(1 − νA)−1 + λT

) = σ
(
(1 − νA)−1).

Hence (1 − νA)−1 has T -stable spectrum, so by Lemma 3.7, (1 − νA)T = T − νAT is
quasinilpotent for sufficiently small ν. For such ν, the subharmonic function ν → log(r(T −
νAT )) satisfies log(r(T − νAT )) = −∞, so by H. Cartan’s Theorem, log(r(T − νAT )) = −∞,
i.e. T − νAT is quasinilpotent for all ν ∈ C. But this means T has AT -stable spectrum, so AT is
quasinilpotent by Lemma 3.6. �
Lemma 5.5. Let J be a Jordan algebra of compact operators, and let T be a nonzero element
of J . If J has T -stable spectrum, then J is reducible.

Proof. By the continuity of the spectrum of compact operators, we may suppose that J is uni-
formly closed. Consider the Jordan ideal F of finite-rank operators in J . By Theorem 5.2, if
F is zero then J is reducible; hence we may assume that F is nonzero.

For A in J and F in F , {A,F } belongs to F , so by Lemma 3.12,

tr
({A,F }T ) = tr

({F,T }A) = 0.

If {F,T } 
= 0 for some F in F , then J is reducible by Lemma 5.3. Otherwise, if {F,T } = 0 for
all F in F , then

tr(T F ) = tr

(
1

2
{F,T }

)
= 0

for all F in F , which by Lemma 5.3 again implies the reducibility of J . �
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Theorem 5.1 roughly says that a Jordan algebra of compact operators with too many
quasinilpotent operators is reducible. The next result says that a Jordan algebra of compact op-
erators with too few quasinilpotent operators is also reducible. For its proof, we will require two
classical theorems. The Motzkin–Taussky Theorem states that a linear space of finite-rank diago-
nalizable operators is commutative (see for example [3, Theorem 2.7]). The Kleinecke–Shirokov
Theorem states that if A and B are bounded operators on a Banach space, and if [A, [A,B]] = 0,
then [A,B] is quasinilpotent (see for example [1, Theorem 5.1.3]).

Theorem 5.6. Let J be a uniformly closed Jordan algebra of compact operators. If J does not
contain any nonzero finite-rank nilpotent elements, then J is reducible.

Proof. Suppose J does not contain any nonzero finite-rank nilpotent elements, and let F be the
Jordan ideal of finite-rank elements in J . For F ∈ F , since J contains every polynomial in F

with zero constant coefficient, in particular it contains the polynomial

p(F) = F
∏
α

(α − F),

where the product is taken over all nonzero α in σ(F ). Since some power of p(F) is zero,
p(F) is nilpotent, and hence p(F) = 0 by hypothesis, which implies that F is diagonalizable.
Hence every element in F is diagonalizable, so by the Motzkin–Taussky Theorem, the elements
of F pairwise commute.

Fix some F ∈ F . For A in J , [F, [F,A]] is of finite rank and belongs to J , since
[
F, [F,A]] = {

F, {F,A}} − {
A, {F,F }}.

From above, we therefore have that F and [F, [F,A]] commute, i.e. that [F, [F, [F,A]]] = 0,
so the Kleinecke–Shirokov Theorem implies that [F, [F,A]] is nilpotent. Since, by hypothesis,
J does not contain any nonzero finite-rank nilpotent elements, [F, [F,A]] = 0, and applying
the Kleinecke–Shirokov Theorem again implies that [F,A] is nilpotent. But then [F,A]2 is also
finite-rank and nilpotent, and moreover, it belongs to J since

[F,A]2 = {A,F }2 + 2
{
A2,F 2} − {

A,
{
A,F 2}} − {

F,
{
F,A2}}.

Hence [F,A]2 = 0, where we again use the hypothesis that J does not contain any nonzero
finite-rank nilpotent elements.

Let B ∈ J with nonzero β ∈ σ(B), and let P be the Riesz projection of B corresponding to β .
Then P is of finite rank, so from above, for A ∈ J ,

0 = [P,A]2 = (PA)2 − PA2P − APA + (AP )2.

Now consider (1 − P)AP + PA(1 − P) = {A,P } − 2PAP , which belongs to J . We have

(
(1 − P)AP + PA(1 − P)

)2 = (1 − P)APA(1 − P) + PA(1 − P)AP

= −(
(PA)2 − PA2P − APA + (AP )2)

= −[P,A]2

= 0,
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which implies that the finite-rank element (1 − P)AP + PA(1 − P) is nilpotent. Since by
hypothesis, J does not contain any nonzero finite-rank nilpotent elements, it follows that
(1 − P)AP + PA(1 − P) = 0 for all A ∈ J .

We have

0 = (1 − P)AP + PA(1 − P) = AP + PA − 2PAP,

so AP = 2PAP − PA. Multiplying on the left by P then gives PAP = 2PAP − PA = PA,
so it follows that the range of P is invariant under A. Since P was chosen to be nontrivial, this
shows that J is reducible. �
Theorem 5.7. A Jordan algebra of compact operators with subadditive spectrum is triangular-
izable.

Proof. Let J be a Jordan algebra of compact operators with sublinear spectrum. By the conti-
nuity of the spectrum of compact operators, we may suppose that J is uniformly closed. As in
Theorem 4.6, it suffices to show the reducibility of J . By Theorem 5.6, if J does not contain
any nonzero quasinilpotent elements, then J is reducible; hence we may suppose that J contains
a nonzero quasinilpotent element T . By the hypothesis of sublinear spectrum, J has T -stable
spectrum, so the result now follows from Lemma 5.5. �
Theorem 5.8. A Jordan algebra of compact operators with submultiplicative spectrum is re-
ducible.

Proof. Let J be a Jordan algebra of compact operators with submultiplicative spectrum. As in
the proof of Theorem 5.7, we may suppose that J is uniformly closed. Let F be the ideal of
finite-rank elements in J . By Theorem 5.6, if F does not contain a nonzero nilpotent element,
then J is reducible; hence we may suppose that some nonzero T in F is nilpotent. Then for
every F in F , σ(FT ) = 0 by the hypothesis of submultiplicative spectrum, so tr(FT ) = 0.
Hence J is reducible by Theorem 4.4. �
Corollary 5.9. Let J be a uniformly closed Jordan algebra of compact operators with the prop-
erty that tr(F 2) = 0 for every finite-rank element F in J . Then J is reducible.

Proof. Let F be the ideal of finite-rank elements in J . The hypothesis implies that every F ∈ F
is nilpotent; indeed, otherwise some F ∈ F would have nonzero α ∈ σ(F ), and the Riesz pro-
jection of F corresponding to α would have tr(P 2) 
= 0, since σ(P ) = {0,1}. Hence the result
follows by Theorem 5.1. �
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