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We test the validity of the QCD sum rules applied to the meson Z+(4430), by considering a diquark–
antidiquark type of current with J P = 0− and with J P = 1−. We find that, with the studied currents,
it is possible to find an acceptable Borel window. In such a Borel window we have simultaneously a
good OPE convergence and a pole contribution which is bigger than the continuum contribution. We
get mZ = (4.52 ± 0.09) GeV and mZ = (4.84 ± 0.14) GeV for the currents with J P = 0− and J P = 1−,
respectively. We conclude that the QCD sum rules results favors J P = 0− quantum numbers for the
Z+(4430) meson.

© 2008 Elsevier B.V. Open access under CC BY license.
During the past years, a series of exotic charmonium-like
mesons, called X , Y and Z , have been discovered in B mesons
decays. Among them, the charged resonance state Z+(4430), ob-
served by Belle Collaboration [1] in the Z+ → ψ ′π+ decay mode,
is the most intriguing one since it cannot be described as ordinary
cc̄ meson.

The nature of the Z+(4430) meson is completely open and
there are already many theoretical interpretations about its struc-
ture [2–19]. However, an intriguing possibility is the interpretation
as tetraquark or molecular state. In Ref. [5], the closeness of the
Z+(4430) mass to the threshold of D∗+(2010)D̄1(2420) lead the
authors to consider the Z+(4430) as a D∗ D̄1 molecule. This hy-
pothesis was tested in Ref. [9] by using the QCD sum rules ap-
proach, with a good agreement with the experimental data. The
interpretation of Z+(4430) as tetraquark state was done in Refs.
[3,4,7].

Since Z+(4430) was observed in the ψ ′π+ channel, it is an
isovector state with positive G-parity: IG = 1+ . However, noth-
ing is known about its spin and parity quantum numbers. For a
D∗ D̄1 molecular state in s-wave, the allowed J P are 0−,1− or
2− , although the 2− assignment is probably suppressed in the
B → Z(4430)K decay, by the small phase space. In this work we
use QCD sum rules (QCDSR) [20–22], to study the two-point func-
tion of the state Z+(4430) considered as a tetraquark state with
J P = 0− and J P = 1− .
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In previous calculations, the QCDSR approach was used to study
the X(3872) by using a diquark–antidiquark current [23], the
Z+(4430) meson, by using a D∗D1 molecular current [9] and the
Y mesons [24] by using molecular and diquark–antidiquark type of
currents. In all cases a very good agreement with the experimental
mass was obtained.

Let us consider first the Z+(4430) by using a diquark–anti-
diquark current with J P = 0− and positive G parity. One can
invoke simple arguments using constituent quark model to show
why the tetraquark with the suggested quantum number could
be stable. In the constituent quark model, a multiquark exotic is
expected to have some scalar diquark component in the color anti-
triplet configuration, as this is the most attractive quark–quark
channel. However, when a tetraquark has J P = 0+ quantum num-
ber, it would energetically be more favorable to decay in s-wave
into two pseudo-scalar mesons. In terms of the spin–spin inter-
action, one can say that the attraction in the quark–antiquark
configuration in the two pseudo-scalar mesons is phenomenolog-
ically more than a factor 3 larger than that in the two scalar
quark–quark channel in the tetraquark [25]. However, when the
tetraquark configuration has J P = 0− quantum number, at least
one of the diquark could be in the attractive channel, while the
remaining diquark is in the pseudo-scalar channel. On the other
hand, it cannot decay into final states containing a pseudo-scalar
meson in s-wave; hence the tetraquark could be quasi-stable. To
test such configuration in a non-perturbative way, we are imple-
menting the QCD sum rule method.

A possible current describing such state is given by

j = iεabcεdec√ [(
uT

a Cγ5cb
)(

d̄dCc̄T
e

) − (
uT

a Ccb
)(

d̄dγ5Cc̄T
e

)]
, (1)
2
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where the index T means matrix transposition, a,b, . . . are color
indices and C is the charge conjugation matrix.

The QCD sum rules for the meson mass are constructed from
the two-point correlation function:

Π(q) = i

∫
d4x eiq.x〈0|T [

j(x) j†(0)
]|0〉. (2)

Phenomenologically, the correlator can be expressed as a dis-
persion integral

Πphen(
q2) =

∫
ds

ρphen(s)

s − q2
+ · · · , (3)

where ρphen(s) is the spectral density and the dots represent sub-
traction terms. The spectral density is described, as usual, as a
single sharp pole representing the lowest resonance plus a smooth
continuum representing higher mass states:

ρphen(s) = λ2δ
(
s − m2

Z

) + ρcont(s), (4)

where λ is proportional to the meson decay constant, f Z , which
parametrizes the coupling of the current to the meson Z+:

〈0| j
∣∣Z+〉 = f Z m4

Z = λ. (5)

It is important to notice that there is no one to one corre-
spondence between the current and the state, since the current
in Eq. (1) can be rewritten in terms of sum a over molecular type
currents, by the use of the Fierz transformation. However, the pa-
rameter λ, appearing in Eq. (5), gives a measure of the strength of
the coupling between the current and the state.

We follow the prescription that the continuum contribution to
the spectral density, ρcont(s) in Eq. (4), vanishes bellow a certain
continuum threshold s0. Above this threshold, it is given by the
result obtained with the OPE [26]:

ρcont(s) = ρOPE(s)Θ(s − s0). (6)

On the OPE side, we work at leading order in αs and consider
the contributions of condensates up to dimension eight. To keep
the charm quark mass finite, we use the momentum-space expres-
sion for the charm quark propagator. The light quark part of the
correlation function is calculated in the coordinate-space. Then, the
resulting light-quark part is Fourier transformed to the momen-
tum space in D dimensions and it is dimensionally regularized at
D = 4. The correlation function in the OPE side can be written
as

ΠOPE(q2) =
∞∫

4m2
c

ds
ρOPE(s)

s − q2
+ Πmix〈q̄q〉(q2), (7)

where ρOPE(s) is given by the imaginary part of the correlation
function: πρOPE(s) = Im[ΠOPE(s)].

After equating the two representations of the correlation func-
tion, assuming quark–hadron duality, making a Borel transform to
both sides, and transferring the continuum contribution to the
OPE side, the sum rule for the pseudo-scalar meson Z+ , up to
dimension-eight condensates, is given by

λ2e−m2
Z /M2 =

s0∫
4m2

c

ds e−s/M2
ρOPE(s) + Πmix〈q̄q〉(M2), (8)
where

ρOPE(s) = ρpert(s) + ρ〈q̄q〉(s) + ρ〈G2〉(s) + ρmix(s) + ρ〈q̄q〉2
(s), (9)

with

ρpert(s) = 1

29π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)

[
(α + β)m2

c − αβs
]4

,

ρ〈q̄q〉(s) = 0,

ρ〈G2〉(s) = 〈g2G2〉
28π6

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ
[
(α + β)m2

c − αβs
]

×
(

m2
c

1 − α − β

3α
+ (α + β)m2

c − αβs

4β

)
,

ρmix(s) = 0,

ρ〈q̄q〉2
(s) = −m2

c 〈q̄q〉2

12π2

√
1 − 4m2

c /s, (10)

Πmix〈q̄q〉(M2) = m2
c 〈q̄gσ .Gq〉〈q̄q〉

24π2

1∫
0

dα
e

−m2
c

α(1−α)M2

1 − α

[
m2

c

αM2
− α

]
. (11)

The integration limits are given by αmin = (1 −
√

1 − 4m2
c /s )/2,

αmax = (1 +
√

1 − 4m2
c /s )/2 and βmin = αm2

c /(sα − m2
c ).

One should note that a evaluation of the higher-dimension con-
densate contributions is technically difficult and non-trivial, which
cannot be obtained by a simple routine iteration of the quark prop-
agator in an external field. Violation of the factorization hypothesis
become increasingly important in higher dimensions and so the re-
sults become increasingly model dependent, as more condensates
will have to be introduced if factorization is not valid [27].

Similarly to the results in Ref. [9], the current in Eq. (1) does
not get contribution from the quark and mixed condensates. This
is very different from the OPE behavior obtained for the diquark–
antidiquark current used for the X(3872) and Y (4660) mesons in
Refs. [23,24], but very similar to the OPE behavior obtained for
the axial double-charmed meson Tcc , also described by a diquark–
antidiquark current [28].

In the numerical analysis, the input values are taken as [22,
29]: mc(mc) = (1.23 ± 0.05) GeV, 〈q̄q〉 = −(0.23 ± 0.03)3 GeV3,
〈q̄gσ .Gq〉 = m2

0〈q̄q〉 with m2
0 = 0.8 GeV2, 〈g2G2〉 = 0.88 GeV4.

We evaluate the sum rule in the Borel range 2.2 � M2 �
3.5 GeV2. To determine the allowed Borel window, we analyse the
OPE convergence and the pole contribution: the minimum value of
the Borel mass is fixed by considering the convergence of the OPE,
and the maximum value of the Borel mass is determined by im-
posing that the pole contribution must be bigger than the contin-
uum contribution. To fix the continuum threshold range we extract
the mass from the sum rule, for a given s0, and accept such value
of s0 if the obtained mass is around 0.5 GeV smaller than

√
s0.

However, in this case, to be able to compare our results with the
results obtained by using a molecular type current in Ref. [9], we
use the same continuum range as in Ref. [9]: 4.8 � √

s0 � 5.0 GeV.
From Fig. 1 we see that we obtain a quite good OPE conver-

gence for M2 � 2.3 GeV2. Therefore, we fix the lower value of M2

in the Borel window as M2
min = 2.3 GeV2. This figure also shows

that the dimension-eight condensate contribution is very small as
compared with the four-quark condensate contribution.

The comparison between pole and continuum contributions for√
s0 = 4.9 GeV is shown in Fig. 2, from where we see that the

pole contribution is bigger than the continuum for M2 � 3.1 GeV2.
The same analysis for the other values of the continuum threshold
gives M2 � 2.9 GeV2 for

√
s0 = 4.8 GeV and M2 � 3.3 GeV2 for√

s0 = 5.0 GeV.
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Fig. 1. The OPE convergence in the region 2.2 � M2 � 3.5 GeV2 for
√

s0 = 4.9 GeV.
Perturbative contribution (dotted line), 〈g2G2〉 contribution (dashed line), 〈q̄q〉2

contribution (long-dashed line), 〈q̄gσ .Gq〉〈q̄q〉 (dot-dashed line) and the total con-
tribution (solid line).

Fig. 2. The dashed line shows the relative pole contribution (the pole contribution
divided by the total, pole plus continuum, contribution) and the solid line shows
the relative continuum contribution for

√
s0 = 4.9 GeV.

To extract the mass mZ we take the derivative of Eq. (8) with
respect to 1/M2, and divide the result by Eq. (8). In Fig. 3, we
show the Z+ meson mass, for different values of

√
s0, in the rel-

evant sum rule window, with the upper and lower validity limits
indicated. From this figure we see that the results are very stable
as a function of M2.

To check the dependence of our results with the value of the
charm quark mass, we fix

√
s0 = 4.9 GeV and vary the charm

quark mass in the range mc = (1.23±0.05) GeV. Using 2.5 � M2 �
3.1 GeV2 we get: mZ = (4.51 ± 0.06) GeV. Including the uncer-
tainty due to the value of the continuum threshold and the value
of the Borel parameter we arrive at

mZ(0−)
= (4.52 ± 0.09) GeV, (12)

which is a little bigger than the experimental value [1], but
still consistent with it, considering the uncertainties. Comparing
our result with the result obtained in Ref. [9]: mD∗ D1 = (4.40 ±
0.10) GeV, where the Z+(4430) was considered by using a D∗D1
Fig. 3. The Z+ with J P = 0− meson mass as a function of the sum rule parameter
(M2) for different values of

√
s0:

√
s0 = 4.8 GeV dashed line,

√
s0 = 4.9 GeV solid

line and
√

s0 = 5.0 GeV dot-dashed line. The crosses indicate the region allowed for
the sum rules.

molecular current with J P = 0− , we see that the result in Ref. [9]
is in a better agreement with the experimental value. However, as
mentioned above, since there is no one to one correspondence be-
tween the structure of the current and the state, we cannot use
this result to conclude that the Z+(4430) is better explained as a
molecular state than as a diquark–antidiquark state. To get a mea-
sure of the coupling between the state and the current, we use
Eq. (8) to evaluate the parameter λ, defined in Eq. (5). We get:

λZ(0−)
= (3.75 ± 0.48) × 10−2 GeV5, (13)

while for the current used in Ref. [9] we get:

λD∗ D1 = (5.66 ± 1.26) × 10−2 GeV5. (14)

Therefore, it is possible to conclude that the physical particle with
J P = 0− and quark content cc̄ud̄ couples with a larger strength
with the molecular D∗D1 type current than with the current in
Eq. (1).

We now consider the Z+(4430) by using a diquark–antidiquark
current with J P = 1− and positive G parity. The lowest-dimension
interpolating operator describing such current is given by

jμ = εabcεdec√
2

[(
uT

a Cγ5cb
)(

d̄dγμγ5Cc̄T
e

)
+ (

uT
a Cγ5γμcb

)(
d̄dγ5Cc̄T

e

)]
. (15)

The two-point correlation function is now given by

Πμν(q) = i

∫
d4x eiq.x〈0|T [

jμ(x) j†
ν(0)

]|0〉
= −Π

(
q2)(gμνq2 − qμqν

)
, (16)

from where we get

Π
μ
μ (q) = −3q2Π

(
q2), (17)

and, therefore, we can write a sum rule for Π(q2) as before. The
spectral density is now given by

ρpert(s) = − 1

283π6s

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)

× [
(α + β)m2

c − αβs
]3[

m2
c − 2m2

c (α + β) + αβs
]
,
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ρ〈q̄q〉(s) = 0,

ρ〈G2〉(s) = m2
c 〈g2G2〉

3229π6s

αmax∫
αmin

dα

1−α∫
βmin

dβ

β3
(1 − α − β)

×
[

4(2α + 2β − 1)m2
c − 3m2

c β

α
− βs(7α − 3)

]
,

ρmix(s) = mc〈q̄gσ .Gq〉
263π4s

αmax∫
αmin

dα

α

1−α∫
βmin

dβ

β2
(2α + β)

[
(α + β)m2

c − αβs
]
,

ρ〈q̄q〉2
(s) = − 〈q̄q〉2

36π2

(
5m2

c

s
− 1

2

)√
1 − 4m2

c /s,

ρmix〈q̄q〉2
(s) = −〈q̄q〉〈q̄gσ .Gq〉

3224π2s

(
1 + 4m2

c /s
)√

1 − 4m2
c /s, (18)

Πmix〈q̄q〉(M2)
= −〈q̄q〉〈q̄gσ .Gq〉

3224π2

×
(

2

3
− 3

1∫
0

dα exp

[
− m2

c

α(1 − α)M2

][
α − 2α2 + 2m2

c

M2

])
. (19)

Although with this current we still do not get contribution from
the quark condensate, we do get contribution from the mixed con-
densate. As can be seen by Fig. 4, the mixed condensate contribu-
tion is of the same order as the four-quark condensate contribu-
tion, but with opposite signal. The contribution of the dimension-
eight condensate is now of the same order as the four-quark con-
densate contribution, for small values of M2.

In this case we find that the continuum threshold is in the
range

√
s0 = (5.3 ± 0.1) GeV and, from Fig. 4, we see that there

is a good OPE convergence for M2 � 3.9 GeV2.
The upper limits for M2 for each value of

√
s0 are given in

Table 1, from where we see that the Borel window in this case has
higher values of the Borel parameter, as compared with the case
for Z+ with J P = 0− .

In the case of Z+ with J P = 1− we get a worse Borel stability
than for the Z+ with J P = 0− , in the allowed sum rule window,
as a function of M2, as can be seen by Fig. 5. We also observe that
the results are, in this case, more sensitive to the values of mc .

Using the Borel window, for each value of s0, to evaluate the
mass, and then varying the value of the continuum threshold in
the range 5.2 � √

s0 � 5.4 GeV, we get mZ(1−)
= (4.80 ± 0.08) GeV.

Because of the complex spectrum of the exotic states, some
times lower continuum threshold values are favorable in order
to completely eliminate the continuum above the resonance state.
Therefore, in Fig. 5 we also include the result for

√
s0 = 5.1 GeV.

We see that we get a very narrow Borel window, and for values of
the continuum threshold smaller than 5.1 GeV there is no allowed
Borel window. Taking into account the variations on M2, s0 and mc

in the regions indicated above we get:

mZ(1−)
= (4.84 ± 0.14) GeV, (20)

which is much bigger than the experimental value and bigger than
the result obtained using the current with J P = 0− in Eq. (12).

For the value of the parameter λ defined in Eq. (5) we get:

λZ(1−)
= (8.36 ± 0.85) × 10−5 GeV5. (21)

In conclusion, we have presented a QCDSR analysis of the two-
point function of the recently observed Z+(4430) meson, consid-
ered as a tetraquark state, with a diquark–antidiquark configura-
tion. Since the spin-parity quantum numbers of the Z+(4430) me-
son are not known, we have considered two different possibilities:
Fig. 4. The OPE convergence for the sum rule for Z+ with J P = 1− , using
√

s0 =
5.3 GeV. The dotted, dashed, long-dashed, dot-dashed, solid with dots and solid
lines give, respectively, the perturbative, gluon condensate, mixed condensate, four-
quark condensate, dimension-eight condensate and total contributions.

Fig. 5. The Z+ with J P = 1− meson mass as a function of the sum rule parameter
for different values of

√
s0:

√
s0 = 5.1 GeV long-dashed line,

√
s0 = 5.2 GeV dashed

line,
√

s0 = 5.3 GeV solid line and
√

s0 = 5.4 GeV dot-dashed line. The crosses in-
dicate the region allowed for the sum rules.

Table 1
Upper limits in the Borel window for Z+ with J P = 1− .
√

s0 (GeV) M2
max (GeV2)

5.2 4.4
5.3 4.7
5.4 5.0

J P = 0− and J P = 1− . We have found a very good OPE conver-
gence for these two cases, although this is not in general the case
for tetraquark states [30]. We got a Z+ mass in some agreement
with the experimental result in the case with J P = 0− . However,
in the case J P = 1− , we got a much higher value for the mass.
This is consistent with the expectation from the constituent quark
model, since in this model the scalar diquark component in the
color anti-triplet configuration is the most attractive quark–quark
channel.
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Comparing our result, for the case J P = 0− , with the case
where the Z+(4430) meson was considered by using a D∗D1
molecular current, also with J P = 0− [9], the differences are also
not really big. Since there is no one-to-one correspondence be-
tween the structure of the current and the state, we cannot con-
clude that the Z+(4430) is better explained as a molecular state
than as a diquark–antidiquark state. However, comparing the re-
sults obtained for the quantum numbers J P = 0− and 1− , from
our calculations we conclude that the Z+(4430) is probably a
J P = 0− state.
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