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A b s t r a c t - - T h i s  paper is concerned with partial difference equations with several delays of the 
form 

r 

aAm+l,n + bAm,n+l -- dAm,n + E P i  (re, n) Am-#~ . . . .  ~ = O, m , n  = O, 1, 2 , . . . ,  
i = l  

where a, b, and d are three positive real constants, ai, ri, and r are positive integers, and {pi(m, n)} 
are real double sequences, i = 1, 2 , . . . ,  r. Some new frequent oscillation criteria for this equation are 
derived. (~) 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - P a r t i a l  difference equation, Delay, Frequent oscillation. 

1. I N T R O D U C T I O N  

Recently, there are many papers that  have been devoted to the development of qualitative theory 
of difference equations [1-6]. In this paper, we shall consider the difference equation of the form 

aAm+l.,~+bA,~,,~+l-dA,~,,~+Ep~(m,n)A,~-~,~-~, = 0 ,  m , n  = 0 , 1 , 2 , . . . ,  (1) 
i=1 

where a, b, and d are positive real constants, (r~, Ti, and r are positive integers, and {pi(m, n)}m~,~=0 
are real double sequences, i = 1, 2 , . . . ,  r. 

By a solution of (1), we mean a nontrivial double sequence, {A,~,n}, which is defined for 
m _> - -u  and  n > - v ,  and  satisfies (1) for m > 0 and  n >_ 0, where  

u = m a x { ~ l ,  ~ 2 , . . .  , ~ )  and v = m a ~ { ~ l ,  ~ 2 , . . .  ,~}. 

Partially supported by NNSF of China (No. 60325310 and 60374017) and partially supported by NSF of Shenzhen. 

0898-1221/04/$ - see front matter (~) 2004 Elsevier Ltd. All rights reserved. Typeset by A,A/~S-'I~_tX 
doi: 10.1016/j .camwa. 2004.06.027 



336 S.L. XIE AND C. J, TIAN 

The usual concept of oscillation of a sequence {Am,~} is the following: the sequence {Am,n} is 
said to be eventually positive (or negative), if Am,n > 0 (or A,~,h < 0), for all large m and n. It 
is said to be oscillatory, if it is neither eventually positive nor eventually negative. 

If r = 1 and a = b = d = 1, then, equation (1) leads to 

Am+l,n +Am,~+l - Am,,~ + pm,~A,~-~,~-r = 0, m,n  = 0 ,1 ,2 , . . . ,  (2) 

which has received much attention in literature. In particular, Zhang, et al. [1] proved that every 
solution of equation (2) oscillates, if p,~,~ _> 0 eventually and 

(a + T) ~+~ 
lira inf pm,~ > (3) 
.~,.~---,oo (o" + T + 1) "+~ '+1  " 

Since the above usual concept of oscillation does not catch all the fine details of an oscillatory 
sequence, a strengthened oscillation called frequent oscillation has been posed by Tian et al. 
in [2], by introducing the concept of frequency measure. Since frequent oscillation implies usual 
oscillation, the obtained frequent oscillation criteria in [2,3] are also oscillation ones of (1). For 
example, Tian and Zhang [3] proved that every solution of equation (2) is frequently oscillatory 
(and, hence, oscillatory), if p.~,u k 0 eventually and 

1 n! 
lim inf pm,~ > Ca k -- (4) 
,~,~-~oo ( a + ~ +  1) /f~2r ' k ! ( n - k ) ! '  

V ~ 2 ~ r + 2 ~  - 

where n[ = n(n - 1). . .  2 .1,  for any integer n > 0. Obviously, (4) improves (3). 
In this paper, we shall be interested in establishing some new frequent oscillation criteria of 

all solutions for equation (1). For the sake of completeness, the definitions of frequency measure 
will be briefly sketched as follows. 

Let Z = { . . . , - 1 , 0 , 1 , . . . } ,  N~ = {k , k+  1 , k + 2 , . . . } ,  for any k E Z, and 

Z 2 = {(re, n) [m,n e Z} and N 2 -- {(re, n) [m,n  e Nk}. 

An element of Z 2 is called a lattice point. The union, intersection, and difference of two sets A 
and B of lattice points will be denoted by A + B  (or AuB) ,  A . B  (or A n B )  and A - B  (or A\B),  
respectively. Let fl be a set of lattice points. The size of fl is denoted by Ifl[, i.e., I~1 denotes 
the number of all elements in the set ft. Given integers m and n, the translation operators X m 
and yn  are defined by 

X m l 2 = { ( i + m , j )  e Z 2 1 ( i , j ) E l 2  } and Y n f l = { ( i , j + n )  e Z 2 1 ( i , j ) E f l  }, 

respectively, and ~1 ('~'") = {(i, j)l(i , j  ) E fl, i < m, j < n}. Let a,  j3 and 0, (f be integers, such 
that a </3 and 9 E 5. The union Y~=a Y~d=0 X~YJ~ is called a derived set of ~. Hence, [2] 

(i , j)  e Z  ~ \ y ~ X ' Y  j ( a ) <  > ( i - k ,  j - 0 •  z 2 \ ~ ,  (S) 
i = a  j = 0  

for a < k < f~ and 9 < l < 5. 

DEFINITION 1.1. Let ~ be a set of integers. HlimsuPm,n._,oo ]f~(m'n)[/mn ex/sts, then, the limit, 
denoted by tz* ( ~ ), will be called the upper frequency measure of ~. Hliminf  . . . .  oo [f~('~'n) ] /mn  
exists, then, the limit, denoSed by #.(~), will be called She lower frequency measure of ~. If  
#*(~2) = #.(~), then, the common limit, denoted by #(~), will be called the frequency measure 
of ft. 
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DEFINITION 1.2. Let A = {Am,~Im >_ -u ,  n k - v }  be real double sequence and A E [0, 1] be a 
constant. I f  lz*(A <_ O) <_ A, then, A is said to be frequently positive of upper degree A, and ff 
# * ( A >_ O) <_ A, then, A is said to be frequently negative of upper degree A. The sequence A is said 
to be frequently oscillatory of upper degree A, i£ it is neither frequently positive nor frequently 
negative of the same upper degree A. The concept of frequently positive of lower degree, etc., is 
similarly defined by means of# . .  I f  a sequence A is frequentIy oscillatory o£ upper degree O, it is 
said to be frequently oscillatory. 

Obviously, if a double sequence is eventually positive (or eventually negative), then, it is 
frequently positive (or frequently negative). Thus, if the sequence is frequently osciflatory, then, 
it is oscillatory. 

We will adopt the usual notation for level sets of a double sequence, that is, let A : g/-* R be a 
double sequence, then, the set {(m, n) C ~[A,,,,, <_ c} will be denoted by (A _< c) or (Am,~ <_ c), 
where c is a real constant. The notations (A _> c), (Am,~ < c), etc., will have similar meanings. 

We first recall three results from [2] needed in the following. 

LF, MMA 1.1. Let fl and F be subsets of N 2, where k E Z. Then, 

,* (~ + r)  < ,* (~) + ,* (r) .  

Furthermore, if ~ and F are disjoint, then, 

~. (fl) + ~, (r) < ~. (~ + r)  < ~. (n) + ~* (r) _< ~* (fl + r)  < ~* (~) + ~* (r) ,  

so. that, #.(•) + #*(N~ -~'/) = 1. 

LEMMA 1.2. Let ~ and F be subsets of Nk 2. If  # ,  (~) + #* (F) > 1, then, ~ M F is an infinite set. 

LF.MMA 1.3. Let f~ C N~, a,/3, 0 and 5 be integers, such that a <_/3 and 0 <_ (f. Then, 

) ~* ~ x'Y j (~) 
i=a j=O 

"* Z x~Y~ (a) 
j=8  

<__ ( /3-  a + 1) ( 5 -  0 + 1)/z* (~),  

_< ( /3 -  a +  1) ( 5 -  0 +  1)# ,  (~) ,  

2. P R E P A R A T O R Y  L E M M A S  

To obtain our main results, we need the following technical lemnos. 

LEMMA 2.1. Let k, m, and n be three positive integers, and let {A~,j} be a sequence, such that 
A~ 5 > 0 for i 6 {m, m + 1 . . . .  , m + k} and j E {n, n + 1 , . . . ,  n + k}. IfdA~,j >__ aA~+l,j + bA~5+l, 
fori  C { m , m  + l , . . . , m  + k} and j e {n,n + l , . . . , n  + k}, then, 

k 

dkAm,n >-- E ak-~b~C~Am+k-i,'*+i" (6) 
i=O 

PROOF. Obviously, (6) holds for k = 1. Assume that (6) holds for an integer s E {1, 2 , . . . ,  k - l } .  
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Then, in view of the following inequality 

$ 

~-~ aS-ibiCi A.~ s (aAm+8+l-i,n+i + bAm+s-~,n+i+l) 
i=0  

s 

~s+l~ E s+l--i  i i A m + s + l _ i , n + i  > ~ -'~m+8+z,,= + a b C~ 
/.=1 

s - - 1  

s--i 1+i i + E a b C~Am+8-~,,+~+I + bS+ZAm,~+,+l (7) 
i=0  

8 

_> + 

i=1 

s + l  
~-'~ as+ l - i b i C  i 

-~ ~ s+l~'~m+s+l--i,n+ i '  
i=0  

(6) holds for s + 1. By  induction, (6) holds, and this completes the proof. | 

LEMMA 2.2. Let  k, m, and n be three positive integers, such that m > 2u and n >__ 2v. Assume 
that equation (1) has a solution {A~d} , such that A~ 5 > O, for i E {m - 2u,. . .  ,m + k} and 
j E { n -  2 v , . . . , n + k } ,  p,( i , j )  > q, > O, fori E { m - u , . . . , m + k }  and j  E { n - v , . . . , n + k } ,  
where qs are real constants, s = 1, 2 , . . . ,  r. Then, 

k + l  k 

K-~ a~+Z-ib~C ~ A + (k + 1) q Z.., k m+k-~-~,,~+~-p dk+~Am,~ >- Z~ /~+1 m+k+t-i,n+~ K-~a k-~b~C~A 
i=0  i=0  (8) 

i=1 j = 0  

where a = min{al ,  ~ 2 , . . . ,  a~} and fl = min{ri ,  r2,. . . ,  r~}, and 

us a . - a + r . - f l  
q = da_a+r_  ~ (9) 

PROOF. In view of (1), for any i E {m -- u , . . . ,  m + k} and j E {n - v , . . . ,  n + k}, we have 

dAij  = aAi+z5 + bAij+l + E p 8  (i,j) A~ -~ j - r .  >_ aAi+ld + bA~j+l. 
s~-i 

Then, from Lemma 2.1, for any i E {m, . . . ,  m + k} and j E { n , . . . ,  n + k}, we get 

da'+~*-~-PAi-¢,,J-r, >- = " ~a.+r,-a--f~'~t--~,a--P, S = 1, 2 , . . . ,  r, 

and so that ,  

dAij  >__ aA~+zj + bAij+l + p~ (i,j) ,,~+~. _~_~ ~ )  A~_~j_~ 

= aAi+lj -t- bAij+l + qi,jAi-e~,..4-~, 

where 
g4 ~ a~r.-abr.-PC r,-[~ 

P 8  ~ ,  J , /  O" s - - a " ~ T , - - [ ~  

qi,j = da.+r_~_ # 
s = l  

(lO) 

( 1 1 )  
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Obviously, q/,j > q, for i e {m - u , . . . ,  m + k} and j ~ {n - v , . . . ,  n + k}. Hence, from (10), we 
obtain 

dAm,,~ >_ aAm+~,n + bA~,,~+~ + q~,~Am-,~,n-Z, 

and 

dAm+l,,~ >_ aAm+2,n + bAm+l,,~+l + q,~+l,,~A,~+l . . . . .  ~, 

dA,~,~+~ >_ aA~+l,,~+l + bA~,,~+2 + qm,n+lAm--a,n+l--~, 
dA . . . . . .  ~ >__ aA.~+l . . . . .  ~ + bAm_~,,~+~_~ + q . . . . . .  ~Am-2 . . . .  2~. 

Thus, from the above inequalities, we have 

d2A~,,~ >_ a2A~+2,,~ + 2abA,~+l,~+l + b2A~,~+2 + a (qm,n + q~+l,~) A~+I-~ ,~-~  
(12) 

+b (qm,.~ + qm,,~+~) Am-,~,n+~-~ + (q.%,~q.~-~,~-~) A.~-2 . . . .  2~. 

Hence, 

2 1 

~A~,° > Z a2-'b'C~A~+~-~,~+ ' + 2q ~ a~-~b'ClA~+l_,_.,~+/_~ 
i = 0  i=0  

1 i--1 

+ q~ Z ie~-' Z a~-~-~ C~_ ~Am÷/-1-~-~,o+~-.. 
i = l  j = 0  

Assume that (S) holds for a positive integer s E {1 ,2 , . . . ,  k}. Then, from (7), (10), and the 
assumption, 

dk + l A m , n  

k 

>- E ak-%/C~ (aA~+k+l-i,n+/ + bA~+k-/,~+l+i + qA~+k-i-~,~+i-~) 
i = 0  

k - 1  

+kq E ak-l-/b/C~-I (aA~+k-~ . . . .  +i-~+bA~+k-l-i-~,,~+l+i-~+qAm+k-l-i-2~,n+i-2~) 
i---0 

k--1 i - 1  
• k - i  i - l - j  " j . . . + q 2 E z d  E a  b3 C~_ 1Am+,- 1-,-2,~,=+,-2f~ 

i=1  j = 0  

k + l  k 

ak+l-/biC ~ A . + K-"ak-ib~C i A >-- ~ k+l  m'i-k+l--i,nZc i q A.~ k m-4-k - i -a ,nT i - f l  
i = 0  i=0  

k k - 1  

a k - i b i V i A  k - 1  m + k - l - i - 2 a , n + i - 2 ~  + kqz.., k m + k - i - ~ , n + i - j 3  -~ kq 2 Eak-l-ib~C~ A 
i = 0  i=0  

k - - I  i--1 

+q2Eid~-' E /-~-~" ~ a b~C~_lAm+i_l_~_2a,n+j_2 ~ 
i=1  j = 0  

k + l  k 
k + l - i  i i = ~ a  ~C;+~A.,+~+~_/,,,+/+(~ + ~)qFa~-'b~C~.4.~+~_~_~,o+~_~ 

i = 0  /=0  

k i--1 

+ q~ ~ ~,~-/~ a'-~-J~cL1A.,,+/-1-~-~.,o+3-.. 
/=1  j = 0  

Hence, (8) holds, and this completes the proof. | 
From Lemma 2.2, we can obtain the following corollaries. 
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COROLLARY 2.1. Assume that a > 0 and ~ > O, and for integers m > 3u and n > 3v, 
equation (1) has a solution {A~,j}, such ~hat A~,j > O, for "i E {m - 3u, . . .  ,m  + v} and 
j e { n - 3 v , . . . , n + u } ,  ps(i,j) >_ qs >- 0 fori e { m - 2 u , . . . , m + v }  and j  e { n - 2 v , . . . , n + u } ,  
where q is defined in (9). Then, 

> a b C~+~A~,~. (13) 

PROOF. From (1), for i E {m - 2u . . . .  , m + v} and j E {n - 2v , . . . ,  n + u}, we have 

dAi-  1,j ~ aAi j  and dAi j_  1 >_ bAij. 

In view of Lemma 2.2 and the inequality, C~ + C~ -1 = C~+ 1, we have 

da+OAm-c"n-~ > E ~a+[3-- i l~ ign i  A _ ,* v ~ a + f l ~ m + / 3 _ i , n _ ~ + i  

i = 0  

a+fl- I 

+ q(~ + ~) ~ o~+~-~-~'~ 
,.~ v ,,..,,a+fl_ l Z ' X m + f l _  l _ i _ w , n + i _ 2 ~  

/ = 0  

+ fl) qa b C~+~_lAm_a_l,n_ ~ 
+ (a ,~ ~-i ~-I + fl) qa b C~+~_IA,,~_,~,~_Z_a 

_> aab~C~+oAm,n + (a + fl)q (a~bd~) C~+O Am - a,n • 

Hence, (13) holds, and this completes the proof. | 

COROLLARY 2.2. Assume that a > 0 and ~ > O, and for integers m > 2u and n > 2v, 
equation (1) has a solution {Ai,j}, such that Ai,j > 0, for i E {m - 2u, . . .  ,m + u + v + 1} 
and j e { n -  2 v , . . . , n  + u + v +  1}, and ps(i,j) >_ as ~ o, for i E { m -  u , . . . , m + u + v }  
and j E {n - v , . . . ,  n + u + v}. Let q be defined in (9). Then, 

( d a + ~ - q d - l a % P ( l  +13)C~+z)Am+l,, >_ (a+B)qaa-%f~C~+z_lAm,m (14) 

and 

[ - -  q d - l a ( ~ b ~ ( l  ,,a,~b~-lC/3-1 A (15) 

PROOF. From (1), we have dAm+l,,~-I >_ bAm+l,,~. From (10), for any i E {m, . . . ,  m + u + v} 
and j ~ {n , . . . ,  n + u + v}, we obtain 

dAi,j > qAi_,~j_~. 

In view of Lemma 2.2, we get 

dC~+~Am+l'n > E o~+[3-i i i 
_ a b CZa+~Am+l+a+~_i,n+i 

i = 0  

a+/~--I 

i=0 

>_ a%~C~+~A~+~+~,~+~ + (a + ~) qa~-~b~C~+~_~A~,. 

B~ aa%~-~C ~-~ A ÷ (0~ ÷ r - ,  ~ v~.{-Z_ 1 mT1,n--1 

>_ qd-'a"b'C~+~A~+~,. + (a + fl) qa"-~b'C2+~_~A.~,. 
+ q~-~ (~ + ~) ~c.";~_~a. .+~, .  

= qd-~a%f~(1 + Z)C2+zA.~+~,. + (~ + ~) ~-~ ~ ~ qa b Co~+fl~lAm, n. 

Hence, (14) holds. Similarly, (15) holds, and this completes the proof. | 
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COROLLARY 2.3. Assume that a > 0 and fl > O, and for integers m >_ 2u + v and n >_ 2v + u, 
equation (1) has a solution {Ai,~}, such that Ai j  > 0, for i E {m - 2u - v , . . . ,  m + 2u + v + 1} 
and j E { n - 2 v - u , . . . , n + u +  2v+ l}, and ps(i,j) >_ qs >_ O, fori ~ { m - u - v , . . . , m +  2u+v} 
and j E { n - v - u , . . . , n + u + 2 v } .  Then, 

d~+~+lAm_h,n+h > (a +/3 + 1) qa~+hb~-hc~+~A . . . .  (16) 

w~here q is defined in (9) and - a  < h < ~. 

PIFtOOF. For any - a  < h < fl, from Lemma 2.2, we get 
a+fl 

d~+f~+lAm_h,~+h >_ (a + ~ + 1) q E a~+~-~biC~+f~Am-h+~+~-i-~, ~+h+i-f~ 
i=0 

1~ naa+hb fl-hf~fl-h A > (~ + ~ + , ~ ~ + ~ , ~  

Hence, (16) holds, and this completes the proof. | 

THEOREM 3.1. 
Oi >_ O, and w E [0, 1], such that #* {pi(m,n) < qi} = Oi >_ O, i = 1, 2, . . .  ,r, and 

_ -Dd-la~b~+lr. ~+1 da+~+l < q2{Dd-laa+lbflC~+fl+l + ~a+tY+l 

+ (~ + ~ + 1) ~ Ea~°a~c~÷~ + ~-~ (~ + ~) B~°b'C~+,}, 
and 

3 .  M A I N  R E S U L T S  

Assume that a > 0 and fl > O, and there exist nonnegative constants q~ >_: O, 

(4u + 2v + 1) (2u + 4v + 1) (01 + . . .  + 0~) + (5u + 2v + 2) (2u + 5v + 2) w < 1, 

E = 1/d ~+~+1, 

where q is defined in (9) and 

B = aab~C~+~ 

(d°+~ - q (a + ~) (a°b~/d)cL~ ) ' 

D = (a +/3) a"-lb/3C~+~_ 1 

{d ~+~ -qd-la~b~ (1 + fl) C~+~} ' 

b = (OL -~ ~) aabt3-1C~'~ l~_p_l 

(a + 

(17) 

s = l  i=--2u--v j=--u--2v 

+#* N 2 \  ~ ~ XWJ(A<-  O) 
i=--2u--v--1 j=--u--2v--1 

= 2 - . *  E E XiYJ(P~(m'n)<q")  
s = l  i~--2u--v j=--u--2v 

- . ,  ~ ~ x~YJ (A <_ o) 
i=--2u--v--1 j=--u--2v--1 

> 2 -  ( 4 u + 2 v +  1) ( 2 u + 4 v +  1) (01 + . . .  + 0r) 

- (Su + 2 .  + 2) (2~ + 5~ + 2) ~ > 1. 

Then, every solution of equation (1) is fxequently oscillatory of lower-degree w. 

PI~OOF. Suppose to the contrary, let A = {Am,,~} be a frequently positive solution of equation (1), 
such that ~.{A _< 0} <__ w. In view of Lemma 1.1 and 1.3, we have 

~ x~Y ~ (ps(m,n) < qs) 
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Hence, by L e m m a  1.2, the intersection 

I ~ 2uWv uW2v ) 

s=l i-..~--2u--v j=--u--2v 

3u+v u+3v 

E E 
i=--2u--v--1 j=--u--2v--1 

X~Y ~ (A <__ O)} 

is an infinite subset  of No ~, which together  with (5) implies t ha t  there exists a latt ice point  (m, n), 
such tha t  Ai,j > 0, for i E { m - 3 u - v , . . .  ,m+2u+v+l}  a n d j  E { n - 3 v - u , . . .  ,n+u+2v+l},  
and ps(i,j) >as, f o r i e  { m -  2 u - v , . . . , m  + 2u +v} and j E { n -  2 v - u , . . . , n  + u + 2v}, 
s = 1 , 2 , . . . , r .  

If  a > fl, then, from (10) and Corollary 2.1-2.3, we get 

1 ~aaa+hb fl-hg'yfl-hA Am-h,n+h >_ E(a + 8 + ~ "-',~+~,,m,n, for - c, < h < 8, 

dAm+a+l,n+fl ~ qAm+l,n, dAm+a,n+#+l ~_ qAm,n+l, 

A,n+i,n >_ DqAm,n, dA,.,,,~+l >_ Z)qA,%~, 

Am-a-~,n-~ > BAm-l,n, dAm-l,n >_ aAm,n, dAm,n-1 >_ bAm,n. 

Hence, from L e m m a  2.2, 

a+fl-t-1 
da+fl+lAm'n > E aa+fl+l-ilJf~i _ u ~.Fo~W3+l.'~m+a+fl+l_i,n+ i 

i=0 
~+# 

+ (~ + 8 + 1) q ~ o"+~-'~'," ,.., ,.,.~ ce_~ fl .,",.mT c~ Jc f~_ i_ oq n T i_ fl 
i----0 

aTfl  i--I  
i - l ~ j  ' j . . + q2 ~ id,~+~-~ E a b3Q_lAm+i.l_3_2a,n+:_2# 

i=1 j=O 

a + l  hflf~p /~ a a ~ f l + l ~ f l + l  v > a - ~ + ~ + ~ A . ~ + . + I , ~ + ~  + 

2~ 
a+fl-i i i + q ( a  + 8 + 1) ~ a b C~+~Am+~-i,n+~-~ 

i=0 

a~'b~-~C a-~ A + q2 (Or -~ 8 )  a+,8--1 m-o~,n-fl-1 

2 -~ ,~+1 Z , , 2~d - l ,~b~+~of l+ l  "~ (q Dd a b~C~+#+~ "~" "1 ~ ~ ~a+f l+ l ]  A,~,n 

+ (a  + 8 + 1) 2 q 2Ea2~b2z ~Z.~ "-.'a+~ a+~ ] Am,,~ 
\ i = 0  / 

a #  f~ + q2d-~B (a + 8) a b C2+~A~,n. 

5. C~+~C~i have In view of the equality, ~ i = o  = C~+2~ ,  we 

+(a + 8 + 1 ~ _ ~ . ~ 2 ~  + g-~s(~ + 8)a"b"C~+.} 

which is contrary  to (17). 



F r e q u e n t  O s c i l l a t o r y  C r i t e r i a  343 

If a < ~, then, similar to the above proof, 

/ ,2 nd- la~+ lb~C~ ,2 Dd- l  a~b~+ l ~ +  l d~+~+lAm,~ > \~ ~ ~+[~+l + ~ ~,+~+l] Am,~ 

+ (a + ~ + 1)2q2Eae~b ~ ~ + ~ . ~ + ~  ] A,~,,~ 
V=~-~ / 

+ q~d-lB(a + fl)a~b~C~+~A,~,~. 

In view of the equality, 

c~+fl a+p 2 a  
C i p2~-i  c' = = z ~  ~ + ~ + ~  = c 2 ~ + 2 ~  = c ~ + 2 ~ ,  

similar to the above proof, we also obtain a contradiction to (17), and this completes the proof. | 

COROLLARY 3.1. Assume that a > 0 and ~ > O, and there exist positive constants qi >_ O, such 
that #{pi(m,n) < q~} : 0, i = 1 ,2 , . . .  ,r, and 

d~+~+l 
q > ~ (18) 

(a +/~ + 1) a~b~/C~Pa+2~ 

Then, every solution of equation (1) is frequently oscillatory of lower-degree w (and hence, oscil- 
latory), where  ~ e [ 0 , 1 / ( ~  + 2~ + 2 ) ( 2 ~  + ~ + 2)) .  

In fact, in view of d ~+~+1 = Ed 2(~+~+1), from (18), we have 

d~+~+l < q2 (a + ~ + 1) 2 Ea2~b2¢C2~+2Z. 

Hence, (17) holds. From Theorem 3.1, Corollary 3.1 holds. 

Similarly, from Theorem 3.1, it is easy to obtain the following corollaries. 

COROLLARY 3.2. Assume that a > 0 and T > O, and 

{ 1 } 
p,~,~ > =1. (19) 

[ ~r+v--1 ~+I"+I + ~a+f- - l~a+r+l  t \ 2  ¢'~2r 

'Then, every solution of equation (2) is frequently oscillatory of lower degree w (and hence, oscil- 
latory), where w E [0, 1/(5u + 2v + 2)(2u + 5v + 2)). 

COROLLARY 3.3. Assume that ~ > 0 and ~- > O, and 

1 
l im in f  P m  n > . ( 2 0 )  

v ~- C ~ ' -1  C ~'+1 -b (o" -}- T -[- ±! ~2er+2~- 

Then, every solution of equation (2) is frequently oscillatory (and hence, oscillatory). 
Obviously, (20) improves (3) and (4). 

4. E X A M P L E S  

In this section, we give two examples to illustrate the above results. 

EXAMPLE 4.1. Consider the partial difference equation with two delays of the form 

A,~+l,n + Am,,~+l - Am,~ + p,~,~A,~-l,,~-2 + qm,~A,~-2,~-i -- 0, (21) 
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where 

p m , ~ = - I  and q m , n = - l ,  for (m,n) e S = { ( i , j ) ] i = 2  s, j = 2  t, s , t = 0 , 1 , 2 , . . . } ,  

and pm,~ = 0.05 and qm,,~ -- 0.07, for any (m, n) ~ S. 

Let  a = b = d = 1, r = 2, (y I ---- 1, T1 = 2, (72 = 2, and ~'2 = 1, then,  a = 1 and /3  = 1. I t  is 
obvious tha t  ~{Pm,n _> 0.05 = ql} = 1 and #{qm,n >- 0.07 = q2} = 1, E -- 1, and 

£ .~ aa.-,~br~-f~C'r.-f ~ 
"is a~, - c=+  ra - ,8  

q = = q l  + q2 = 0.12, 
d . . -~+ , -a -#  

a~ b,s C~+ ,8 

B =  (d,+,8_q(a+/3)d_la~b,sC~+#) > 2 ,  

D = (a 4- R'~ a~-lh,8~ ̀ 8 - -  t - /  ~ ~ a + ` 8 - 1  > ~ 9 ,  

`8 (,~o+`8 - q,~-'oob,8 (1 + ~)c :+ ,8 )  

+/3) a b ~ Ca'+,8_ 1 b . ~ _  " (OZ c~ --1 fl--1 
> 2 ,  

,8 (d a+`8 - qd-laab ̀8 (1 + a ) C : + ` 8 )  

Obviously, 

~ /Dx  C~ T D x  C2 + 9 x  C~ + 2x  B x C~ 
< 1 1 

~ / 6 ÷ 6 - F 5 4 + 8  = v / ~  < q" 

Hence, (17) holds. By  Theorem 3.1, every solution of (21) is frequently oscillatory of lower-degree 
e [0, 1/256) and hence, oscillatory. 

EXAMPLE 4.2. Consider the part ial  difference equation of the form 

Am+l,,~ + Am,n+l - Am,n -}- p,~,~A~-I,~-2 = O, (22) 

where pm,~ = 1/16, for any m, n = 0, 1, 2 . . . . .  
Let  (7 = 1 and r -- 2. I t  is easy to see tha t  Pm,n = 1/16 = 0.0625, 

(O" "~ T) a+~" 33 1 1 
((7 + ~ + 1)-+,+1 = 4-~ ~0.1055 and ((7 + ~ + 1) 2 ~  = 4 - - ~  ~0.0645,  

and 

1 1 

a-F~---I a+v4-1 ~ (dr 4- I- .I. 1~2f~2~ " - -  ] ~2cr-F2~" 

,~0.0569. 

Hence, from Corollary 3.3, every solution of (22) is frequently oscillatory, and hence, oscillatory. 
But  it is difficult to obta in  the same conclusion from the corresponding results in [1,3]. 

5.  S U M M A R Y  

In this paper,  we discuss the s t rengthen oscillation (frequent oscillation) of a class of part ial  
difference equations and obtain some new oscillatory criteria for the equations which improve the 
existing ones in the li terature.  I t  is necessary for us to continue s tudying frequent oscillation of 
another  part ial  difference equations for further research. 
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