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Abstract A novel fluorescent pH sensor based on 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-por-

phyrin, as sensing agent, has been developed. The carboxyl functionalized asymmetric porphyrin

has been synthesized and characterized by high performance liquid chromatography (HPLC), thin

layer chromatography (TLC), proton nuclear magnetic resonance (1H NMR), Fourier transform

infrared spectroscopy (FT-IR), ultraviolet–visible (UV–vis), emission, excitation and mass spec-

trometry (MS) spectra. Optical and fluorescence behaviors were investigated in relationship with

variation of acid concentration in the range of acid pH from 1.5 to 5.5. Upon increasing the acidity

of the solution, the decrease of the fluorescence intensity was noticed, as a linear function of pH.

Different metal ions were tested to put into evidence the changes regarding the fluorescence inten-

sity, but the fluorescence obtained results revealed no significant interference on pH determination.

The conclusion is that the proposed fluorescent sensor can measure pH in acid range in the presence

of different metal ions making this sensor a proper one for pH determinations in leaching solutions

of the recyclable processes of valuable metals.
ª 2014 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

In the last decade, many amazing reports focused on applica-

tions of functional nanomaterials based on porphyrin for
information storage (Lindsey et al., 2011), induced lumines-
cence (Liu et al., 2008) photocatalysis (Cai et al., 2009; Yao
et al., 2012) sensors (Lvova et al., 2013; Vlascici et al., 2005;

Vlascici et al., 2012) and multisensor approach (known as elec-
tronic tongue (ET) systems) (Paolesse et al., 2008; Lvova et al.,
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Figure 1 The structure of 5-(4-carboxy-phenyl)-10,15,20-tri-

s(phenyl)-porphyrin.
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2006) and also on hybrid porous materials with enhanced opti-
cal properties (Fagadar-Cosma et al., 2009a,b; Dudas et al.,
2010) able for gas sensing (Çaycı et al., 2011; Popescu et al.,

2011) and gas storage (Oztek et al., 2011). Highly sophisticated
materials explored the potential applications of porphyrin
derivatives for diagnosis (Spagnul et al., 2013) and noninvasive

treatment of cancer (PDT) (Wang et al., 2012; Senge and
Radomski, 2013).

Due to its high selectivity and sensitivity, fluorescence

method has gained much interest for the detection and quanti-
tative determination of heavy metals (Delmarre et al., 1999).
Huge amount of work was done to use porphyrins as sensing
elements for optochemical sensors immobilized in organic or

inorganic matrices. The reaction between the analyte and the
sensitive dye will produce changes regarding the absorption
or fluorescence behavior of the sensitive molecule. The use of

5,10,15,20-tetra(p-sulfonatophenyl)porphyrin as fluorescence
indicator generated a highly sensitive device for mercury detec-
tion (Plaschke et al., 1995). Heavy metal cations such as: Fe2+,

Co2+, Ni2+ and Cu2+ quenched the emission of meso-tetra
(4-N,N,N-trimethylanilinium)porphyrin-Pd, demonstrating
its capability to detect these ions in water samples, with wide

linear range, low detection limits and good precision (Hu
et al., 2009). A new optical sensor for sensing of Pb2+ by using
5,10,15,20-tetra(3-bromo-4-hydroxyphenyl)porphyrin was also
developed (Bozkurt et al., 2009).

Based on our previous work that put into evidence the
capacity of a water soluble metalloporphyrin, 5,10,15,20-tetra-
kis(N-methyl-4-pyridyl)porphyrin-Zn(II)tetrachloride, to act

as an optical pH sensor in the 5.5–10.5 domain (Fagadar-
Cosma et al., 2011), the present study explored the potential
application of an asymmetrical A3B porphyrin for realizing a

fluorescent sensor for pH measurements. An asymmetrical
A3B porphyrin can be usually obtained by a multicomponent
reaction between pyrrole and two different substituted alde-

hydes and is containing three substituted phenyl rings derived
from one aldehyde and one substituted phenyl ring derived
from the other.

Because less attention was paid on the fluorescent amphi-

philic compounds which are pH sensitive in the lower pH
region (pH <4) (Tian et al., 2012) much attention must be
given to synthetic methods (Fagadar-Cosma et al., 2007a,

2012) in order to obtain A3B differentially functionalized por-
phyrins exhibiting the required properties.

The need for monitoring the pH levels of strongly acidic

media sprung from the knowledge that such media are found
in the human body or in industrial used waters.

Besides, many chemical and biological processes occur in
acid water environment and might involve significant pH

changes. Medical monitoring of the pH in acidic media is a
must regarding the study of strongly acidic medium which
exists in the human stomach or with respect to acidic lyso-

somes and endosomes in living cells (Vasylevska et al., 2007)
or in cancerous tissues (Fagadar-Cosma et al., 2007a).

Although the glass electrode is recommended as the pre-

ferred tool for pH measurements, this approach suffers from
many drawbacks: it is invasive and might create the risk of
electric shock during in vivo measurements (Callan et al.,

2005).
Fluorescent pH sensors, based on more hydrophobic dyes

are the best alternative for in situ applications due to strong
limitations of leaching and to the huge potential to be
Please cite this article in press as: Fagadar-Cosma, E. et al., Novel fluorescent pH
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improved by covalent immobilization of the dye into a solid
matrix permeable to protons (Ferrari et al., 2013), such as: a
hybrid sol–gel silica nanomaterial (Fagadar-Cosma et al.,

2014) or an appropriate polymeric membrane.
In order to tune the solubility, chemical recognition and

aggregation, the so-called amphiphilic porphyrin molecules

have been synthesized, since the porphyrin ring is hydropho-
bic, but it is possible to substitute the phenyl rings with polar
groups.

Porphyrins meso-phenyl substituted with carboxy-
functional groups have been reported (Bakar et al., 2009) as
efficient second generation photosensitizers for PDT (having
the capacity to absorb at long wavelength in the red region

of the visible spectrum; k > 630 nm). Besides, they can both
alter the amphiphilicity of the macrocycle and exhibit specific
chemical interactions that recommend them to be used as

building blocks.
A previous paper (Amao et al., 1999) reported the quench-

ing of palladium tetrakis(4-carboxy-phenyl)porphyrin self-

assembled membrane on an alumina plate with the increase
of oxygen concentration, proving that this membrane is a
highly sensitive device for oxygen concentration.

In order to achieve the goal of developing a novel chemo-
sensor for pH sensing in acid media, 5-(4-carboxy-phenyl)-
10,15,20-tris(phenyl)-porphyrin (Fig. 1) was obtained by using
the Lindsey method (Lindsey and Wagner, 1989; Lindsey

et al., 1987) for preparation of 4-(methoxycarbonyl)phen-
yltriphenylporphyrin, followed by hydrolysis of ester-type por-
phyrin (Matsumoto et al., 2008).

2. Material and methods

2.1. Chemicals

Reagents p.a. grade: benzaldehyde, p-methoxy-carbonylbenz-

aldehyde, pyrrole, BF3ÆOEt2, THF, CH2Cl2, hexane, EtOH,
EtOAc and hydrochloric acid 1 M, purchased from Fluka,
Merck and Sigma–Aldrich, were used as received. The solu-

tions for the selectivity measurements were prepared using
the chloride salts of the given cations (Merck, Darmstadt, Ger-
many). All aqueous solutions were prepared with distilled
water. Thin-layer chromatography (TLC) was performed

using Merck 60 F254 silica gel. Silica gel 60 (70–230 mesh,
sensor based on 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin. Arabian
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Merck) was used for column chromatography. The pH values
were verified with buffer solutions provided from Sigma–
Aldrich: pH = 4.65 (sodium acetate/acetic acid), pH = 4

(potassium hydrogen phthalate/formaldehyde) and pH =
2.06 (HCl/KCl).

2.2. Apparatus

UV–visible spectra were recorded on a UV/VIS PERKIN
ELMER, LAMBDA 12 spectrometer and on a JASCO UV–

visible spectrometer, V-650 model. The photoemission and
photoexcitation spectra were recorded in THF/distilled water:
1/1 (v/v) with the help of a Perkin Elmer LS55 luminescence

spectrometer. FT-IR spectra were registered as KBr pellets
on a Jasco 430 instrument in the 4000–400 cm�1 range.
Thin-layer chromatography (TLC) was performed on silica
gel plate 60 F254 pre-coated aluminum sheets from Merck.

The HPLC analysis was performed on a JASCO apparatus
equipped with a silica gel KROMASIL 100 SIL 5 lm
250 · 4.0 mm column and a MD 1510 detector, at ambient

temperature, using UV detection at 417 nm. 1H NMR spectra
were registered in CDCl3 on a Bruker DRX 400 apparatus at
400 MHz. Proton chemical shifts, expressed in d (ppm), were

internally referenced to the residual proton resonance in
CDCl3 (d 7.26). A Bruker esquire HCT series mass spectrom-
eter with Atmospheric Pressure Interface–Electrospray Ioniza-
tion was used for registering MS. The pH values of the

solutions were measured with a PH60 EXTECH pH-meter.

2.3. Spectroscopic studies

Absorption and fluorescence spectra were recorded using 1 cm
path length cells, at ambient temperature. The luminescence
spectra were recorded at 100 nm/min rate with constant slit

widths: 3 nm for excitation and respectively, 3.4 nm for emis-
sion. A 515 nm cut-off filter, to eliminate harmonic or scatter-
ing peaks, was used. For introducing acidic conditions,

standard solutions of 1 M HCl were used. The concentration
of 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin was
kept constant in all measurements.

2.4. Preparation of 5-(4-carboxy-phenyl)-10,15,20-
tris(phenyl)-porphyrin

Preparation of 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-por-

phyrin was performed using the multicomponent modified
Lindsey method to obtain 5-(4-methoxycarbonyl-phenyl)-
10,15,20-tris(phenyl)-porphyrin (Lvova et al., 2006, 2013;

Oztek et al., 2011; Paolesse et al., 2008; Plaschke et al., 1995)
which was transformed via base-hydrolysis using NaOH–
EtOH (Bakar et al., 2009) into the desired carboxy-phenyl

substituted porphyrin. Chromatography on column of silica
gel, eluted with CH2Cl2/EtOAc = 3/1 was used for separation,
followed by evaporation of the solvent to gave a dark-purple
solid.

2.5. 5-(4-Carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin

Dark purple solid; yield: 11.3%; mp over 300 �C; FT-IR (KBr)

(m, cm�1): 3443.28 (m N–H), 3054.69 (m C–HPh); 1686.44 (m
Please cite this article in press as: Fagadar-Cosma, E. et al., Novel fluorescent pH
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C‚O), 1603.52 and 1558.2 (m C‚CPh), 1470.46 (m C‚CPh);
1419.35 (m COO); 1348.0 (m C–N); 1279.54 (m C–O–H);
1179.26 (d C–HPh), 1073.19 (d C–Hpyrrol); 964.23 (d C–Hpyrrol);

797.42 (c C–Hpyrrol); 725.10 (c C–Hph); 700.99 (c C–Hph);
1H

NMR (CDCl3), ppm: 8.91 (d, 2H, b-pyrrole), 8.84 (bs, 4H,
b-pyrrole), 8.77 (d, 2H, b-pyrrole), 8.55 (d, 2H, H-2,6 phenyl),

8.32 (d, 6H, H-2,6 phenyl) 8.17–8.22 (d, 2H, H-3,5 phenyl),
7.50–7.58 (m, 6H, H-3,5 phenyl), 7.35–7.39 (m, 3H, H-phenyl),
�2.77 (br s, 2H, internal-NH-pyrrole); UV–vis, THF (kmax

(log e)): 417.0(5.48), 513.0(4.21), 547.0(3.92), 590.5(3.76),
647.5(3.64). HPLC RT, min: 10.09 (eluting with acetone: tolu-
ene = 1:1, v/v); TLC (silica gel 60 Å, indicator F254, CH2Cl2/
EtOAc = 3/1, v/v), Rf: 0.61; MS (ESI+): [C45H30N4O2]

calcd for diprotonated porphyrin [M+2H]+ 717.68 g/mol;
found 717.5 g/mol.
3. Results and discussion

3.1. The influence of pH on the UV–vis absorption spectra

The UV–vis spectra of the 5-(4-carboxy-phenyl)-10,15,20-tri-
s(phenyl)-porphyrin were performed both for bare porphyrin

in THF-water system (Fig. 2-right corner detail) and also by
addition of acid, continuously changing the pH values
(Fig. 2). The initial pH of the porphyrin solution in THF/water

system is 5.5.
Porphyrins are recognized as photosensitizers because of

their very strong absorption in the 400–450 nm region (Soret

band) as well as absorptions in the 500–700 nm visible region
(Q-bands). Those Q bands are numbered with IV–I, in accor-
dance with the increasing of their wavelength position. The
most red shifted is the QI band.

The UV–vis spectrum of bare-porphyrin displays etio type
shape (absorption intensity continuously decreasing from
QIV to QI band) with the maximum of the Soret band at

417 nm and the four Q-bands in the visible region, having
maxima around 513, 547, 590.5 and 647.5 nm, respectively.
The Soret band is due to the transition a1u (p) � eg

* (p) and
all the other QI–IV bands correspond to a2u (p) � eg* (p)
transitions.

With increasing acidity from pH = 5.5 to pH = 1.5 (Fig. 2-
main), two additional protons can be bonded to the nitrogen

atoms in the porphyrin core. The generation of porphyrin
dication determined important changes in UV–vis spectral
allure. The most pregnant changes produced by increasing

acidity are the splitting of the Soret band into two individual
Lorentzian bands located around 417 nm and 445 nm respec-
tively, accompanied by the continuously broadening of the

Soret bands. This last mentioned feature is indicating some
degree of J-type aggregation of the protonated species. Similar
changes in UV–vis spectra due to variation of the ionic

strength of acidic solution of porphyrins have been previously
assigned to the formation of aggregates (Augulis et al., 2004).

The other changes are with respect to the Q I band, which is
forbidden otherwise, the UV–vis spectra show both an increase

of the intensity and a significant bathochromic shift from
647 nm (pH= 5) to 665 nm (pH = 4).

The equilibrium between the monomer and the J aggre-

gated protonated species is justified by the presence of the isos-
bestic point around 427 nm (Fig. 3). As can be seen in Fig. 3,
sensor based on 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin. Arabian
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Figure 2 Dependence of UV–vis spectra of porphyrin upon addition of HCl (from pH = 5.5 to pH= 1.5) in THF-water solution; in

detail the spectrum of porphyrin-base in non-acid THF-water system Cporphyrin = 6.34 · 10�6 M.

Figure 3 Equilibrium between monomer (417 nm) and J aggregated species (445 nm) in UV–vis spectra. Details of isosbestic point on

Soret and magnified Q bands (right corner).
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the protonated species coexist up to pH 2, but decreasing it to
pH 1.5 solely the dicationic species are present.

Another major change is that, in acidic media, the Q bands
are reducing to only one both hyperchromically and batho-

chromically shifted toward 665 nm. The decrease in the num-
ber of Q bands is due to an increase of symmetry to D4h by
protonation, and generation of the more symmetrical dication

species (Fig. 3) (Fagadar-Cosma et al., 2007b).

3.2. The influence of pH on fluorescence spectra

The emission spectra of the porphyrin dye show two bands,
assigned to Q(0,0) and Q(0,1) transitions, one of higher inten-
sity around 653.5 nm, and a weaker one in the red region, at

718.4 nm, so that we can consider this porphyrin as belonging
to second generation photosensitizers (it has also the capacity to
absorb at long wavelength in the red region of the visible spec-
trum; k > 630 nm).
Please cite this article in press as: Fagadar-Cosma, E. et al., Novel fluorescent pH
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The emission spectra of 5-(4-carboxy-phenyl)-10,15,20-tri-
s(phenyl)-porphyrin performed at different acidic pH values
in THF-water solution (1:1; v/v) are presented in Fig. 4.

The variation of pH was realized by adding 0.1–0.2 ml of

HCl solutions of 0.001 M; 0.01 M; 0.02 M; 0.04 M; 0.06 M;
0.08 M; 0.1 M; 0.2 M; 0.4 M, 0.6 M; 0.8 M and 1 M, obtained
from standard solution of 1 M, to 5 ml solution of porphyrin

in THF/water 1/1 (v/v) system.
By continuously monitoring the variations in the main

band intensity of the porphyrin emission spectra, induced by

the exposure to different concentrations of acid, we noticed
the linearity of the response at different pH values, in the acid
range (Fig. 5), with a good correlation coefficient. A change in

porphyrin color from red to emerald green was also noticed.
The emission spectra when pH is lower than 1.5 are repre-

sented in Fig. 6. Decreasing the pH of the porphyrin solution,
produces a red shift of the Q(0,0) band from 653 to 690 nm

and the band Q(0,1) is disappearing. The first phenomenon
sensor based on 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin. Arabian
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Figure 4 Dependence of the emission spectra of 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin performed at different acidic pH

values (pH 1.5–5.5) in THF-water solution.
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Figure 5 Dependence of the fluorescence intensity of the porphyrin function of pH variation.

Figure 6 Comparison of the emission spectra of 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin performed at acid pH values and

lower than pH 1.5, in THF-water solution.
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after increasing of acidity lower than pH 1.5, shows the pres-
ence of the Q(0,0) band in the emission spectra as a pro-
nounced shoulder on the novel bathochromically shifted

band from 690 nm, but eventually, this is no more visible.
So, the porphyrin is not suitable for measurements lower than
pH = 1.5.

3.3. Selectivity

It must be checked if the proposed pH sensor revealed good

selectivity toward a group of transition metal ions, because it
is well known that the nitrogen donor atoms coordinate the
transition metal ions to form metal complexes (Tutulea-

Anastasiu et al., 2013).
Considering that inner nitrogen can bind in the porphyrin

core various metal ions in solution, it is mandatory to deter-
mine whether other cations are potential interferents. A series

of experiments conducted at pH 2.5, 3.5 and 4.5, consisting in
addition of 1000-fold (molar) amounts of Na+, K+, Mg2+,
Ca2+, Ba2+, Zn2+, Ni2+, Cu2+, Co2+, Mn2+, Pb2+, and

Hg2+, as chlorides, to the 5-(4-carboxy-phenyl)-10,15,20-tri-
s(phenyl)-porphyrin solution, maintaining the other experi-
mental condition unchanged, produced no changes regarding

fluorescence intensity (Fig. 7).
Moreover, the influence of a mixture of metal cations sim-

ilar to those existing in leaching solutions from Li-ion batteries
recyclable processes upon the porphyrin emission spectra was

checked (Fig. 7 illustrates the experiment at pH = 4.7). Syn-
thetic leach liquors from spent lithium ion batteries, similar
to the real ones (Granata et al., 2012), containing

1.36 · 10�2 M Mn2+, 8.48 · 10�2 M Ni2+, 1 M Li+,
3.56 · 10�2 M Fe3+, 0.17 M Co2+ and 4.7 · 10�2 M Cu2+
Figure 7 Comparison of the emission spectra of 5-(4-carboxy-phenyl)

and without metal cations. Detail: emission spectra of metal cations.

Please cite this article in press as: Fagadar-Cosma, E. et al., Novel fluorescent pH
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were prepared by weighting the appropriate amount of each
salt in double distillated water.

This can be explained by the knowledge that metallopor-

phyrins cannot be generated into acidic media, so that 5-(4-
carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin can accu-
rately measure pH changes in the presence of various metal

cations.
In basic media fluorescence is significantly quenched by the

metal cations, so that there is no availability of the sensor for

these environments.

4. Conclusions

A potential fluorescent pH sensor based on 5-(4-carboxy-phe-
nyl)-10,15,20-tris(phenyl)-porphyrin as sensing agent has been
presented. Upon increasing the acidity of the porphyrin solu-

tion the quenching of the fluorescence intensity was noticed,
as a linear function of pH, with a good correlation coefficient.

Interference with various metal ions was tested to put into
evidence the changes regarding the fluorescence intensity of the

porphyrin, but the obtained results proved no significant
changes on pH determination. The main conclusion is
that 5-(4-carboxy-phenyl)-10,15,20-tris(phenyl)-porphyrin can

measure pH in acid range in the presence of different metal
ions making this sensor a proper one for pH determinations
in leaching solutions of the recyclable processes of valuable

metals.
Carbon nanotubes (CNTs) will be used to improve perfor-

mance. Other approaches to improve the novel sensor will be
performed by covalent immobilization of the dye into a hybrid

sol-gel silica nanomaterial (Fagadar-Cosma et al., 2014) or an
appropriate polymeric membrane.
-10,15,20-tris(phenyl)-porphyrin performed at acid pH values, with
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