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1. Introduction

The theory of impulsive differential equations has found wide applications in many branches of physics and technical
sciences; see the monographs of Lakshmikantham et al. [ 1], Bainov and Simeonov [2], Benchohra et al. [3], and the papers of
Rogovchenko [4] and the survey papers of Rogovchenko [5], Bainov [6] and the references therein. Recently, much attention
has been paid to existence results for the impulsive differential and integrodifferential equations in abstract spaces; for
example, see [7-13]. In this paper, we are concerned with the following impulsive partial functional integrodifferential
equations with nonlocal conditions

t
X (t) = Ax(t) +F <t,x(a1(t)), cey x(an(t)),/ h(t,s, X(Un+l(5)))d5) ,
0

teJ=1[0,b], t £t k=1,....m, (1.1)
x(0) +g() = xo, (12)
Ax(tk) = Ik(x(tk))a k = 17 ML m7 (1.3)

where the unknown x(-) takes values in the Banach space X, and A is the infinitesimal generator of a compact, analytic
semigroup T(t),t > 0;0 < t; < --- < t, < b, are prefixed points and the symbol Ax(t;) = x(t,:r) — x(t, ), where x(t, ")
and x(t,j’) represent the right and left limits of x(t) at t = ¢, respectively. F, h, g, [, and 0;,i = 1,...,n + 1, are given
functions to be specified later.

Nonlocal conditions were initiated in [ 14,15] when he proved the existence and uniqueness of mild and classical solutions
of nonlocal Cauchy problems. As remarked in [15,16], the nonlocal condition can be more useful than the standard initial
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condition to describe some physical phenomena. For other contributions on the nonlocal problems; see [17-23] and
the references therein. Very recently, there has been extensive study of impulsive differential equations with nonlocal
conditions, and concerning this matter we cite the pioneer works; Liang et al. [24], and Anguraj and Karthikeyan [25]
have studied the existence, uniqueness and continuous dependence of a mild solution of a nonlocal Cauchy problem for
an impulsive neutral functional differential evolution equation. The purpose of this paper is to continue the study of these
authors. We get the existence results for mild solutions of problem (1.1)-(1.3) with an ¢-norm as in [19], assuming that F is
defined onJ x X"*1, the nonlocal item g only depends upon the continuous properties on C(J, X,,), where X, = D(A%), for
some 0 < o < 1, the domain of the fractional power of A. Our results are based on the analytic semigroup theory of linear
operators, the Banach contraction principle and the Leray-Schauder alternative.

The rest of this paper is organized as follows: In Section 2 we recall briefly some basic definitions and preliminary facts
which will be used throughout this paper. The existence theorems for problem (1.1)-(1.3) and their proofs are arranged in
Section 3. Finally, in Section 4 an example is presented to illustrate the applications of the obtained result.

2. Preliminaries

In this section, we shall introduce some notations, definitions and lemmas which are used throughout this paper.
Let (X, || - ||) be a Banach space. C(J, X) is the Banach space of continuous functions from J into X with the norm

lIx[l; = sup{lIx(t)[| = t € J}
and let L(X) denote the Banach space of bounded linear operators from X to X. A measurable function x : | — X is Bochner

integrable if and only if ||x|| is Lebesgue integrable (for properties of the Bochner integral; see [26]). L' (J, X) denotes the
Banach space of measurable functions x : ] — X which are Bochner integrable normed by

b
I1x]l 1 =/ Ix(6)lde forallx e L'(J, X).
0

The notation B, [x, X] stands for the closed ball with center at x and radius r > 0in X.

Throughout this paper, A : D(A) — X is the infinitesimal generator of a compact analytic semigroup of uniformly
bounded linear operators T(t). Let 0 € p(A). Then it is possible to define the fractional power A%, for 0 < « < 1, as a closed
linear operator on its domain D(A%) (see [27]). Furthermore, the subspace D(A%) is dense in X and the expression

lxlle = IIA*]|, x € D(A%),
defines a norm on D(A%). Let X,, be the Banach space D(A*) endowed with the norm | ||, and in the following, we use || - ||,
to denote the operator normin X,,. Then foreach0 < o < 1, X, isa Banach space,and X, < Xg for0 < 8 < o < 1andthe

imbedding is compact whenever the resolvent operator of A is compact. For semigroup {T (t);>o}, the following properties
will be used:

(a) thereisan M > 1 such that ||T(t)|| < M, forall0 <t < b;
(b) forany 0 < o < 1, there exists a constant M, > 0 such that

M,
I T < . 0<t<b.

In order to define the solution of (1.1)-(1.3), we introduce the space PC([0, b], X,) = {x : ] — X, : x(t) is continuous at
t # t, and left continuous at t = t;, and the right limit x(tk+) exists for k = 1, 2, ..., m}, which is a Banach space with the
norm

xllpc == sup [IX(t)l|a-
tef
Then PC(J, X,) is a Banach space.

To simplify the notations, we put ty = 0, t,; = b and for x € PC([0, b], X,) we denote by X, € C([ty, trr1]; Xo), k =
0, 1, ..., m, the function given by

s o Jx(@®)  fort e (f, tys1l,
X(t) = {x(t,:“) fort = t;.

Moreover, for B C PC([0, b], X,,) we denote by BAk, k=0,1,...,m, theset l§k ={X :x €B).

Definition 2.1. A function x(-) € PC(J, X,) is said to be a mild solution to problem (1.1)-(1.3) if it satisfies the following
integral equation

x(t) = T(Dxo — g1+ Y T(t — 6)l(x(t))

O<t<t

t S
+/ T(t —s)F (s, x(m(S)),--.,X(Gn(S)),/ h(s, r,X(on+1(r)))dr> ds, 0<t<bh (2.1)
0 0
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Lemma 2.1. A set B C PC([0, b], X,) is relatively compact in PC([0, b], X,) if and only if, the set Lfk is relatively compact in
C([tk, tir1]; Xo), forevery k =0, 1, ..., m.

Lemma 2.2 (Leray-Schauder Nonlinear Alternative [28]). Let X be a Banach space with Z C X convex. Assume that U is a
relatively open subset of Z with0 € U and P : U — Z is a compact map. Then either

(i) P has a fixed point in U, or
(ii) there exists a point v € dU such that v € AP(v) for some A € (0, 1).

3. Main results
In this section, we state and prove the existence theorem for problem (1.1)-(1.3). Let us list the following hypothesis: for
somea € (0, 1),

(H1) The function F : | x X(;‘“ — X is continuous and there exist constants L > 0,L; > 0, such that for all
Xi,yi € Xy,i=1,...,n+ 1, we have

n+1
IF(t, %1, X2, - Xng1) = F(E Y1, Y20 - Yng) | < L [Z Ix; —yina} :

i=1
and

Ly = max ||F(t,0,...,0)|.
tef

(H2) The function h : | x J x X, — X, is continuous and there exist constants N > 0, N; > 0, such that forall x, y € X,

[h(t, s, x) — h(t, s, e = NlIx = ylla,

and
Ny = max |[h(t,s,0)|lq.
0<s<t<b
(H3) 0;: ] —> J,i=1,...,n+ 1, are continuous functions such that o;(t) < t,i=1,...,n+ 1.
(H4) I, € C(Xy,Xy),k = 1,...,m are all compact operators, and there exist continuous nondecreasing functions
¥, :[0,00) = (0,00),k=1,...,m,suchthat

k)l < Pi(llxllo), foreachx € X,.

(H5) (i) The function g(-) : PC(J, X,) — X, is continuous and there exists a § € (0, t1) such that g(¢) = g(¥) for any
¢, € PC(J, Xy) with ¢ = ¢ on [§, b].
(ii) There is a continuous nondecreasing function A : [0, o0) — (0, 00) such that
lg@lle = All@llrc), ¢ € PCU, Xa)-
(H6) There exists a constant M* > 0 such that

M*

> 1, (3.1)

m
|:M* +MAM*) +M Y 'Jlk(M*):| e
k=1

Mg L(n+Nb)b!— _ Mgb' =% (BLN1+L;)
“ T—« s M, —M”XOHa + = 1—« =

where n =

Theorem 3.1. Let xo € X,,. If assumptions (H1)-(H6) are satisfied, then the impulsive nonlocal Cauchy problem (1.1)-(1.3) has
at least one mild solution on J.

Proof. Let Ly > 0 be a constant chosen such that

t
q = sup {LMa(n + Nb)/ e lot=9 ¢ _ s)“’ds} <1,
0

tef

and we introduce in the space PC(J, X,) the equivalent norm defined as

@l == supe ™ (|p(0)]|-
tef
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Then, it is easy to see that V := (PC(J, X,), || - |lv) is a Banach space. Fix v € PC(J, X)) and for t € J, ¢ € V, we now define
an operator

Q@) (1) =TO[x —gW)]+ Z T(t — t)(v(te)

O<ty<t
t S
+ [ ra-sr (s, B, .00, [ hs.r. ¢(on+1(r))>dr) ds. (32)
0 0
Since T(-) (xo — g(v)) € PC(J, X,), it follows from (H1)-(H3) that (Q,¢)(t) € V forall ¢ € V.Let ¢, ¥ € V, we have

t
e Q) (1) — Q) Olle < e_L"t/
0

A*T(t —s) [F <S, ¢(01(5)), - - -, ¢(0n(5))7/ h(s, 7, ¢(0n+1(f)))df)
0

—F (S,Iﬁ(al(s)) ,,,,, ¥ (on(s)), / h(S,T,W(GnH(f)))df)] ds
0

t
< LMa/ e ot —s5)® [II¢(O’1 () =¥ (1)) e
0

+ -+ l@on(s) = ¥ (on)) e + H/ h(s, 7, ¢(on41(7)))dz
0

}ds

<UV1/ e lof(t — [L"‘”(S)SU}JEL‘)Slltb(S) V() lla

_ / hs, T, ¥ (0ns1 (2)))dT

+ - 4 €0 sup e g (s) — Y () [l

sejf

+ N/ l¢(ont1(T)) — ¢(0n+1(f))||adf] ds
0
t
< LMa/ e Nt — )7 [neL‘)s supe [ (s) — ¥ (5)la
0 sej

+ Nbeloon+1©) sup e ™15 || (s) — ¥ (s) “"] ds

sejf

t
< LM, / e 0t —s5)7 [n supe [l (s) — ¥ (5)la
0 s€]
+ Nbsupe™|p(s) — 1//(S)|Ia]ds
sef

t
< LM, (n + Nb) f e (¢ — )~ ds|g — ¥ Iy
0

=qll¢—vlv, te],
which implies that
e Q) (1) — QYO lla < qllp —Yllv., te].
Thus
Q¢ —Q¥llv =gl —¥lv, ¢, ¥ V.

Therefore, Q, is a strict contraction. By the Banach contraction principle we conclude that Q, has a unique fixed point ¢, € V
and Eq. (3.2) has a unique mild solution on [0, b]. Set

e ifte 3, bl,
v(t) '_{U(S) ift e [0, 8],

From (3.2), we have

¢5(t) = T(O[x —g@)] + Z T(t — t)l(v(te))

O<tp<t
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Consider the map I" : PCs = PC([8, b], X,) — PC; defined by
(Iv)(t) = ¢s(t), te€ls,b]. (3.4)

We shall show that I” satisfies all conditions of Lemma 2.2. The proof will be given in several steps.

Step 1. I maps bounded sets into bounded sets in PCs.

Indeed, it is enough to show that there exists a positive constant £ such that for each v € B,(§) = {¢ € PCs;
sups<<p lP(O)lle < r} onehas [I"vflpc < L.

Let v € B;(§), then for t € (0, b], we have

los(lle = IT®O[X — g@)]lla +

t
+/
0

m t
< MIlIxo + g lla] + M > 1wt e + M, f (r—sr“[HF(s, $5(@19)). ... i (0n(5)),
0

k=1

/ h(s, T, ¢g(on+1(r)))dr> —F(s,0,...,0) ” + |IF(s, 0, ..., 0)||] ds
0

DT — wh(v(t)

O<ty<t

o

T(t —s)F <S’¢i(01(s))’~-~7¢D(Gn(5))s/ h(s,f,¢a(0n+1(f)))df) ds
0 o

< M[lIxolla + Ig@® o] + M D Wie(llv(t) o)
k=1

t
+Ma/ (t—s9)"" {L[ sup |¢s(s)lle + -+~ + SUP 163 (5) Il
0

s€(0,b] s€(0,

+ / LIhGs, T, @5 (oni1(7))) = h(s, T, 0)||l« + [IACs, T, O)IIa]dT] + Ll} ds

0

< Mlllxolle + AIDlIpc)] +M Z (v (i lle)
k=1

+ My /(t—s) ¢ {L[" SIJP l¢5(S)lle + BN SEJP |I¢U(S)|Ia+N1)]+L1}dS

<m, +MA<r)+MZwk<r)+M L(n + Nb) / (£ =97 sup ¢s(5)]ds,
s€(0,b]

1—a
where M, = M||xo|l¢ + W Using the Gronwall inequality we get

-«

sup gzl =< [1\/1 +MA(r) + Z Wi (r)
te(0,b] k=1

Thus

] Ma L(n+Nb)b1 o

MaL(n+Nb)b] o
ITvllpe < | My +MA() + Z W (r) =L
k=1

Step 2. I" is continuous on B, (§).
From (3.2) and (H1)-(H5), we deduce that for v, v, € B (8), t € (0, b],
Pz, (©) — s, Dl < IT@®)[&(01) — g@)]lle +
t

‘]

0

- F (S, ¢ﬁ2 (01 (5)), RN} ¢1)_2 (Gﬂ(s))a / h(sv T, ¢l_)2 (Un+l(r)))dr)i|
0

DT = k(i) — Y Tt — t)l(va(te)

O<ty<t O<tp<t

o

AaT(t - S) [F (S, ¢l~)1 (Ul (S))7 LR ¢v~1 (Un(s))’ / h(S, T, ¢1~)1 (O'n+1(T)))dT>
0

< Mlig() —g@)lla + M Z i (1 (ti)) = Le(2(t) o
k=1
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+LMa/O (t—9"" [Ilqﬁm (01(5)) = @3, (01Dl + -+ + D3, (n(5)) — b3, (On($)) [l

]ds

4 H / h(s. 7. s, (Onsr (1)))dT — / h(s. 7. s, (ons1 (£)))de
0 0

= Mlg@) —g@)lla + M Z (1 (ti)) — T2 () [l

k=1

t
+LMaf (t—S)‘“[ sup @5, () — @3, (S) Il
0 s€[0,b]

+ -+ sup 1@y, () — dy, (9]l + N/ L5, (Gnt1(2)) — &3, (0n+1(f))||a]df] ds
0

s€[0,b]

< Mlig(v1) —g@)lla + M Z (V1 () — Te(2 () [l
k=1

t
+LMa/ (t—9)"" [n sup ¢, () — ¢w,(S)lla + Nb sup [[¢s, (s) — ¢ﬁz(5)||a]ds
0 s€[0,b] se[0,b]

= Mlig(v1) —g@)lla +M Z (1 (t) — L2 (i) [l

k=1
t
+ LM, (n + Nb) / (t =) sup [|¢g,(s) — ¢3,(5)]la ds.
0 se[0,b]

Using again the Gronwall inequality, that for t, vy, v, as above

s€[0,b] k=1

Mg (n+Nb)b 1= - - i
sup [, (0) — ¢, (Dlla <Me e | [g@1) — g@)lla + Y _ I1(8)) = h(v2(t)) la | -
forallt € [0, b], which implies that

Mg (n+Nb)b1—¢
My — Fugllpe < Me™ T

m
g (1) — g(@2)lle + Z Tk (v1(te)) — Ik(vz(tk))||a:|

k=1
forallt € [§, b], v1, vy € B (8). Therefore, I" is continuous.

Step 3. I' is a compact operator.
To this end, we consider the decomposition I" = I'y + I, where Iy, I'; are the operators on B, (§) defined respectively
by

t
(I)(0) = T(Olx — g®)] + / T(t—s)
0
xF(s,¢l~,(al(s>>,...,¢,~,<an<s>>, / h(s,r,m(om(r)))dr) ds, tels,bl,
0
(D)) = Y T(t— )k@®), t€I[8,b].

O<tp<t
We first show that Iy is a compact operator.

(i) I'1(Br(8)) is equicontinuous.
Let§ < 71 < 175 < b,and ¢ > 0 be small, note that

HF (s, ¢5(01(5))»-~-s¢f;(0n(5))v/ h(5777¢ﬁ(0n+1(7)))d7> H
0

=

F (Sv ¢ﬁ(al (S)), I ¢f)(0n(5))a / h(sv T, ¢ﬁ(aﬂ+l(r)))dt) - F(57 07 DR O) H + ”F(S? 07 RN} O)”
0

J
o

N
= L[ sup [[¢s(S)lla + -+ sup [|¢5(5) e +/ [lhGs, 7, ¢3(z)) — h(s, 7, 0)[la +IhCs, T’O)”a]dri| + L
sel8.,b] se[8.b] 0

=1L [Ilfi)a(m Dlla + -+ + llPs(on()la + H/ h(s, T, ¢5(ons1(1)))dr
0
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<L [n sup ll¢s(S)le +b [N sup ¢z () lle + N1H +1L
b] s€[8,b]

sels,

=L [(n + Nb) sup |lp5(s)lla + bN1] +L
s€[$,b]

< L[(n + Nb)r 4+ bN{] + L := M**.
We have
IMv(T2) — Mv(e) e < T (12) — T(x) X0 — £0)]lla

+ / " T(e— 9F (s,%(al(s)),...,¢a<on(s>>, / h(s,r,¢f,(an+1<r>)>dr) ds
0 0

- f T(Tl - S)F (Ss ¢f1(01 (S))7 ) ¢f1(0'n(5))’ / h(s5 T, ¢ﬁ(gﬂ+1(f)))df> ds
0 0

o

< T () = T(r) %o — g ()1la + / T =) = T(r1 —9)]
0

ds

o

X F<S, ¢a(01($)),~.~,¢a(0n(5)),/ h(S,T,¢>a(0n+1(f)))dt>
0

+ / 1T — ) = T(1 = 9)] F(s,as,;(al(s)),...,¢a(an<s)>, / h(s,r,¢a(an+1(r))>dr) ds
t1—¢ 0

+/
71

T1—¢
< [T(72) = T(@)lxo = gW)]lle + IT(z2 — 71 + &) = T(e) || / AT (t1 — s — &) [M™"ds
0

o

T(z; —s)F (S, ¢5(01(9)), - .. ¢a(0n(5)),/ h(s, z, ¢ﬁ(0n+1(f)))df)
0

ds

1 2
+ / IA*[T(z2 — 5) = T(t1 — 9)]IM™ds + / IA“T (2 — $)[[M™ds
T1—¢

L3

o

< T (x2) = T(x)]1lxo — g)]lle + M*(t; — &)"|IT(ra — 11 + &) — T(e) ||

+ &M**[(Tz —)' T — (- —) T+ T+ ﬁM**(Tz — )’
1—« 1—«
We see that || I v(t2) — I'Tv(ty)|| tends to zero independently of v € B,(§) as o, — 71 — 0, since the compactness
of T(t) for t > 0, implies the continuity in the uniform operator topology. Thus I'; maps B;(§) into an equicontinuous
family of functions.
(ii) The set I'1(B;(5))(t) is precompact in X,.
Let§ <t <s < bbe fixed and ¢ a real number satisfying 0 < ¢ < t.For v € B,;(8), we define

1—«a

(I',ev)(t) T(t)[xo—g(f))]+/ i T(t —s)F (S, ¢13(0'1(5))v-~-s¢ﬁ(0'n(5))7/ h(S,T,¢a(0n+1(f)))df> ds
0 0

T(Ox — g(0)] +T<e)/ CTt—s—e)
0

xF (S, ¢5(01(5)), ..., ¢a(0n($)),/ h(s, 7, </>a(0n+1(f)))df) ds.
0

Using the compactness of T(t) for t > 0, we deduce that the set {({7 .v)(t) : v € B,()} is precompact v € B,(5) for
every ¢,0 < ¢ < t. Moreover, for every v € B;(§) we have

t
IO — (Mav) Ol < f ds
t—e

AaT(t - S)F (Sv ¢f)(01 (S)), LR ¢ﬁ(0n(s))7 / h(57 T, ¢f) (Un—H (T)))dt) ‘
0

t
M, (t — )" *M™ds
t—e

M M**
< o

11—«

IA

1—a

Therefore, there are precompact sets arbitrarily close to the set {(I'jv) : v € B;(58)}. Hence the set {(I'1v) : v € B;(§)}
is a precompact in X,,. It is easy to see that I'1 (B;(§)) is uniformly bounded. Since we have shown that Iy (B;(§)) is an
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equicontinuous collection, by the Arzela-Ascoli theorem it suffices to show that I'; maps B, (§) into a precompact set in
X,

Next, it remains to verify that I is also a compact operator.

We begin by showing I';(B;(8)) is equicontinuous, for any ¢ > 0and 0 < t < b. Since the functions I, k = 1,2, ..., m,
are compact in X,, we find that the set W = {I,(v(ty)) : v € B;(8)} is precompact in X,. From the strong continuity of
(T(t))t>0, for e > 0, we can choose 0 < & < b — t such that

1T+ h) = T(E)xlla < % xew,

when |h| < &.Foreach v € B;(3), t € (0, b) be fixed, t € [t;, ti+1], such that

T2l +h) = [(0)lOlle < Y ITE +h— t) = T(t — ) (te) o
k=1
< €.

As h — 0, and ¢ is sufficiently small, the right-hand side of the above inequality tends to zero independently of v, so that
[FZ@,\((S))]i, i=1,2,...,m,are equicontinuous.

Now we prove that [Fz@))]f, i=1,2,...,m,is precompact for every t € [§, b].

From the following relations

[(T0)l(6) = > T(t — t)h(v(te) € Y T(t — t)l(B(8)[0. X, ).
O<ty<t k=1

We conclude that [1“2@,\(8))]1-, i=1,2,...,m,is precompact for every t € [t;, ti11].
By Lemma 2.1, we infer that I3(B,(8)) is precompact. Now an application of the Arzela-Ascoli theorem justifies the
precompactness of I3(B;(§)). Therefore, I'; is a compact operator, and hence I” is a compact operator.

Step 4. We now show there exists an open set U C PCs withv ¢ AT'v for A € (0, 1) and v € dU. Let A € (0, 1) and v € PC;s
be a possible solution of v = AT"(v) for some 0 < A < 1. Thus, for each t € (0, b],

v(t) = Agy(t) = AT(O)[xo —g(W)] + A Z T(t — t)l(v(te)

O<tp<t
t s
+?»/ T(t —s)F (S, ¢ﬁ(al(5))»-~-s¢ﬁ((7n(5))7/ h(S,T,¢a(0n+1(f)))dT> ds. (3:5)
0 0

This implies by (H1)-(H5) that for each t € (0, b] we have |[v(t)|lo < ||¢3(t) |l and

5Ol < ITOX0 = gD]lla + D IT(E = 80 () 1o

k=1
t
/
0

m t
< M, +MA([lpc) + M Y %(lv(80)lla) + MaL(n + Nb) / (=57 sup 95() luds
k=1 0 se(0,

ds

o

T(t —s)F (S, ¢ﬁ(‘71(5))»-~-a¢ﬁ(0n(5))7/ h(s, L%(O’nﬂ(f)))df)
0

Making use of the Gronwall inequality, such that

N i Mo L(n+Nb)b1—%
sup 450l < M, +MA(Bllec) + MY illvllec) [e e,
te(0, k=1

and the previous inequality holds. Consequently,

m
lollec < [M* +MA([Dlec) + MY wk<||v||pc>} e,

k=1
and therefore

l[vllpc

<1

[M* +MA(||V]lpc) + MkZ l1’1<(||U||Pc):| e’
=1
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Then, by (H6), there exists M* such that ||v|| % M*. Set

U= {v e PC[8,b] : sup [[v(0)la <M*}.

§<t<b

As a consequence of Steps 1-3 in Theorem 3.1, it suffices to show that I" : U — PC; is a compact map.
From the choice of U, there isno x € dU such that v € AI"v for A € (0, 1). As a consequence of Lemma 2.2, we deduce
that I" has a fixed point v, € U. Then, we have

x(t) = T(0)xo —gBI1+ Y T(t — t)k(v(te)

O<tp<t

+ / T(t —s)F (s, x(01(5)), ..., x(0n(5)), /s h(s, T, x(crn+1(r)))dr) ds. (3.6)
0 0

Noting thatx = ¢3, = (I'V,)(t) = s, t € [8, b]. By (H5)(i), we obtain
g(x) =g,) and v, (ty) = x(f).

This implies, combined with (3.6), that x(t) is a mild solution of problem (1.1)-(1.3) and the proof of Theorem 3.1 is
complete. O

Remark 3.1. (H4) is satisfied if there exist constants a; > 0, by > 0, o € [0, 1),k =1, ..., m, such that
k@ lle < a+ bielxllgh, k=1,....m, x €Xa,

and (H5) is satisfied if there exist constants d; and d,, i € [0, 1) such that
lg@lle < di+dalldllpe, ¢ € PCU, Xa),

or (H4) is satisfied if there exist constants a, > 0, by > 0,k=1,...,m, such that
@)l < @ + billXlles  k=1,....m, x € X,

and (H5) is satisfied if there exist constants d; and d, such that

lg@)lla < di+dalipllec, ¢ € PC(, Xa).

4. Application

In this section, we shall give an example to illustrate our results. Consider the following impulsive partial functional
integrodifferential equation of the form:

z(t,X) = aa—xzzao(t, X)z(t, x) + a;(t)z(sint, x) 4+ sinz(t, x) + e /Ot a,(s)z(sins, x)ds, (4.1)
Az(ty, x) = /ﬂ Pk, Yz(t, y)dy, k=1,...,m, (4.2)
z(t,0) = z(t,orr) =0, (4.3)
z(0,x) + /51[2(5, X) +log(1+ |z(s,x)|)]Jds = zo(x), 0<t<1,0=<x<wm, (4.4)

where § > 0,zy(x) € X = L?([0, w]) and zy(0) = zy(r) = 0.
Let X = L?([0, 7r]) and the operators A : D(A) C X — X given by Au = u” with

D(A) := H3([0, 7]) = {u € X : u” € X, u(0) = u(x) = 0}.

It is well known that A generates a strongly continuous semigroup T(-) which is compact, analytic and self-adjoint.
Furthermore, A has a discrete spectrum; the eigenvalues are —n?, n € N, with the corresponding normalized eigenvectors

Zn(x) = \/g sin(nx). Then the following properties hold:
(i) If u € D(A), then

o0
Au = Z (U, z,)zy.
n=1
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(ii) Foreachu € X,

1
A2u 7uzn e

- nMg
3 —_—

(iii) The operator A2 is given by

1 o0
Azu Enuz,,

n=1

on the space D % = {u(-) € X, Zn 11U, z,)z, € X} and [|A” 3 I =1.

Lemma4.1 ([29]). If m € D(A%), then m is absolutely continuous, m’ € X and ||m’|| = ||A2m]||

We assume that

(a) the functions a;(-), i =1, 2, 3, is continuous on [0, 1], and I; = supg;<¢ |a;(s)| < 1,i=1,2,3
[0,7] x [0, 7] = R, k=1,2,...,m,are continuously differentiable and

1/2

([ f (2 oe) =

foreveryk=1,2,...,m
According to paper [29], we know that, if z € X%, then z is absolutely continuous, z’ € X, and z(0) = z(x) = 0. Then, for

(t,z) € [0,1]xX1,andz € C([O, 1],X%),wecandefinerespectivelyF . [0, ]]XX% xX% — X,h:[0, 1]x][O0, 1]><X% — X%

(b) the functions py :

and g : PC([O, 1],X%) — X% by
" as(s)

t
F (t, z(o (1)), / h(t,s, z(a(s)))ds) (x) = a1(t)z(sint, x) + ax(t) sinz(t, x) +/
0 o 1+1t2

/ h(t,s, o(z(s)))(x)ds =/ as(s) z(sms x)ds,
0 o 1+t

m
@)X = / P, P2t Yy, k=1.2,....m
0

z(sins, x)ds,

and
1
g2(2) (x) = / [z(s, x) + log(1 + |z(s,x)|)]ds, z e PC(]O, 1], X1).
S 2

Then Egs. (4.1)—(4.4) takes the abstract form (1.1)-(1.3). Moreover, for z;, y; € X%, i=1,2andx € [0, 7], we have

(/n(m(t) (z1(sint, x) — zp(sint, x)))zdx>
0

+ (/”(az(t) (sinzy (t, x) — sinzy (¢, x)))zdx> ’
0

+ /”</[a3()(<n ) — z3(sin ))d)2 2
i 01+221515x 2(sins, x))ds | dx

1
(h+b+1) A2 A2 (z1 — 22) |
(h + L+ D)z —Zz||%,

A

”F(tazl,}“) - F(tazz’yz)” =

1A

1A21(2) () || = @) O

@l
_1 1
wlizl < vlA2 1 143 zZI = mlzl

IA

and

lg@lls = lAZg@ ()] = llg@)' (|
= A=zl (1 + VT + r ||Z||>
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1
_1 1
T+ A2 ]| [A2z]|

IA

( —8)||z||% 24T+

1
A=)zl (24 V7 + ———
: 1+ 1zl

It is easy to see that with these choices, assumptions (H1)-(H5) of Theorem 3.1 are satisfied. In particular, the constants are
L=lL+1L+13,N=1IL; =Ny =0and ¢, = y, c = 1 — §.If we assume that

m
1
MI(1=0Q@+Vm+) m|e™ <2,
k=1
where n; = ZM% (I + I, + I3) (1 + I3), and if we can choose the constant M* = max{8M ||z || %e’“, 1}, then

m
M [||zo||; +M* 2+ 7T+ 5) (1= 8) + M* Y yk:| el
k=1

1>
M*

Now the condition (H6) in Section 3 holds and hence by Theorem 3.1, we deduce that nonlocal Cauchy problem (4.1)-(4.4)
has a mild solution on [0, 1].
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