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Local duality between B-splines and Polya curves is examined, mostly from the 
viewpoint of computer-aided geometric design. Certain known results for the two 
curve types are shown to be related. A few new results for Polya curves and a curve 
scheme related to B-splines also follow from these investigations. ‘C’ 1991 Acadermc 

Press. Inc 

1. INTR~~xJCTI~N 

A powerful technique for investigating the properties of B-splines is to 
exploit the properties of the functions tii(t)= njL:+, (I,--1) (where the tj 
are knots and the spline is of degree n (order n + 1)) which bear an 
intimate relationship to B-splines (see, e.g., [7]). These functions are also 
quite similar to the blending functions of the Polya curves presented in 
[lo] and further developed in [ 1, 23. Polya curves are polynomial 
generalizations of Bezier curves, and share many of the features which 
make Bezier curves suitable for CAGD (computer-aided geometric design). 
Because of the similarity of the Polya curve blending functions to the func- 
tions 1+5~(r), there is an intimate relationship between B-splines and Polya 
curves. The main purpose of this paper is to examine this relationship from 
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the viewpoint of CAGD, and note the connection between certain results 
for B-spline curves and certain results for Polya curves. 

The paper is structured as follows: in Section 2 we set some notation, 
explain our approach, and review some known results. Section 3 begins the 
discussion of the relationship between B-splines and Polya curves, and Sec- 
tion 4 continues this discussion by examining change of basis procedures. 
In Section 5 we employ some of the results from Section 4 to generate a few 
new results for Polya curves and another curve scheme which is related to 
B-spline curves. Section 6 contains concluding remarks. 

2. APPROACH, NOTATION, AND BASIC RFSULTS 

Polya curves are polynomial, B-spline curves are piecewise polynomial. 
To achieve greater compatibility between these two schemes we will deal 
with B-splines local&-that is, over one knot interval. Some of the results 
we obtain extend readily to results about B-sphne curves; indeed certain of 
the results are modifications of results given, using the tii, in [7, 123. 
However, this paper differs from those in that our primary intent is not to 
derive properties of B-spline curves but to note the interplay between 
features of B-spline curve segments and features of Polya curves. 

For a given knot sequence t, B-spline basis functions can be defined 
recursively by 

hj’(x) = 1 SE Cl,* I,+ I) 

=o else 

(1) 

where the superscript denotes the degree and the subscript the leftmost 
possible point of support (i.e., h:(r) vanishes outside of [ti, f,,. + ,)). An 
nth degree B-spline curve can be written as 

b(x) = C h:(x) Pi, (2) 

where the Pi are control vertices. 
The B-spline curve segment over the single interval [f,, f,, + ,) is then 

b(x) I - i (m-r) Pl)lrr,.r,-,)9 r+tqcI) - (3) 
,=q n 

since the other basis functions vanish over [t,, f, + ,). Therefore b(x)] C,r.,q+,, 
depends only on the 2n knots 1, ,, , ,. . f,, ,,. 
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Before Polya curves are introduced, this setup must be generalized some- 
what since Polya curves can be defined by a knot sequence which is not 
necessarily nondecreasing (as long as, in our case, 1, _ i - I,, + , +, # 0 for all 
i, j > 0, i + j < n, in order to avoid singularities), and can also be defined 
over all the reals. Since the B-splines are considered locally, it is possible 
to modify the above definitions to accommodate these generalizations. The 
functions in (1) are redefined by 

hy(.r) E 6,, 

=o else, 

over all the reals, and used in (2) to get what we will call the “generalized 
B-spline segment” b,(x). Note that although (4) differs slightly from (1) 
over [r,, fy+ I) they are equivalent in the usual B-spline context (non- 
decreasing knot sequence). 

The Polya blending functions have a recursion formula similar to 
Eq. (4). Define the blending functions by 

d: ‘(z)+~ ‘-“‘; d:‘;,‘W q-n<ibq (5) 
,+)I + I !+I 

=O else 

and the n th degree Polya curve by 

d,(t)= i d;(l) P,. 
1=y ” 

(f-5) 

Note that although both the Polya and the generalized B-spline curve 
segment basis functions depend on q, this dependence is not represented 
in the notation. Also, Eqs. (5) and (6) differ from the presentation of Polya 
curves given in [ 1,2] where shape parameters p, and v, are used instead 
of knots; however, the two forms are related by 

Pi= -1, I v, = t y+,+ 1- 1. (7) 

Moreover, the basis functions are labeled here differently, with the function 
d:(r) in [ 1,2] corresponding to daei(r) of this paper. 

Since the functions d:(t) and b:(x) are 0 if i < q - n or i > q. when we 
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mention the set of functions d;(f) or the set of functions h;(x) below we 
mean only those for which q - n d i < q. 

Both the generalized B-spline and the Polya blending functions have 
natural probabilistic interpretations and can be generated from simple 
stochastic models. Consider an urn which initially contains M’ white and h 
black balls. One ball at a time is now drawn at random from the urn, and 
its color inspected; then the ball is returned to the urn. Additional balls are 
then added to the urn in the following manner. 

Polya model: If the ball was the ith white ball [ith black ball] to be 
chosen, then (;(w + h) additional white balls [d,(~*+ h) additional black 
balls] are added to the urn. 

B-spline model: If the ball was thejth white ball [ith black ball] to the 
chosen, then d,(u + h) additional black [c,(w + h) additional white balls] 
are added to the urn. 

Let 
H’ 

,y=t=- 
it’ + tJ 

1, if1 c, = -t, , 
t - I, 

d,=yl+l-& 

- 1, 
i= 1, . ..) n - 1 (8) 

4+1 Yfl 

2:: i(r)= the probability of selecting exactly i white balls in the first n 
trials from the Polya urn model 

e ,,+,(x) = the probability of selecting exactly i white balls in the first 
n trials from the B-spline urn model. 

Then it is easy to show probabilistically that the functions 
d:w - I,)i(f,+ 1 - tq) and hy(x - t,)/(f, + r - t,)) satisfy (5) and (4). respec- 
tively. Therefore they are the B-spline and Polya blending functions. This 
construction can be generalized further by permitting negative values for c,, 
u’,, and letting x and t range over all the reals. Further details are given in 
[l, 10, 111. 

These urn models for B-spline and Polya blending functions are related 
in an obvious manner: in the Polya model only balls of the same color as 
the color chosen are added to the urn; in the B-spline model only balls of 
the opposite color to the color chosen are added to the urn. One would 
therefore expect some interesting relationships between these probability 
distributions. These relationships are the major theme of this paper. 

As mentioned above, Polya curves share many features with Bezier 
curves. A few features we shall use in this paper are derived in [ 1, 23 and 
are listed below: 

(1) Sum to unity, 
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(2) (Nearly) explicit formula, 

,--I- I 

where the i,,,, are constants which can be found recursively. 

(3) Basis. The ti:‘( I) form a basis for the space of all degree n (or 
less) polynomials iff [,,., # 0 for i = q - n, . . . . q. The functions d:(t)/< ,,,, will 
always form a basis, even if one or more of the (,,, = 0. 

(4) Degree elevation, 

(11) 

(5) Interpolation at “endpoints,” 

4,UJ = P, and dyk, + 1 1 = p, - ,,’ (12) 

(6) Reparametrization. Let &‘(r) denote the Polya curve blending 
functions defined by the knot vector 

(i, ,I + I , .“, L/ + ,,I 

( 

1, n+l -c 1 y- nt2-L‘ 1, fy+,-C t(/+,,--c 
= 

a ’ 
9 ..., 

(I a ’ a ’ -’ (I > 

Then 

d:(ar + c) = df( t). (13) 

3. B-SPLINES, P~LYA CURVES, AND DUALITY 

We are now ready to examine the relationship between generalized 
B-spline segments and Polya curves. The main tool will be the de Boor-Fix 
form of the dual basis for B-splines. Since a slightly modified case is 
studied, a proof of this result is included. It is then used to establish some 
relationships between the two curve schemes. A few preliminary lemmas 
are needed. 

LEMMA 1 (Marsden [ 131). 

(14) 

Note that the inclusion of the normalizing factors into the d:(f) necessitates 
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the denominator. The case where ;,,, = 0 (which may occur-see [ 1,2]) 
presents no problem since ;,,,, also appears in the numerator in C/;(I). 

Proof By induction on n. The result is certainly true for n = 0. Observe 
that for any i 

(15) 

By the inductive hypothesis 

(.Y-fy= i 
(x-tt)h:‘- ‘(.r)d:’ ‘(t) 

Y 
I = ,, II + 1 c ,I I.1 

This equals, by use of ( lo), 

= i h:‘t~yy 

,=y ,I 

by (4). 

Define linear functionals A; (for i = q - n, . . . . q) by 

Q.E.D. 

where the value r at which we evaluate the derivatives can be any real 
number. 

That these are indeed functionals on the space of all polynomials of 
degree n or less follows from the next lemma. 

LEMMA 2 (see [S, p. 1271). If f’ is a poiynumia~ of‘ degree less thun or 
equal to n, rhen i.; ,f‘ is a constant. 

ProqjI This follows from the easily verified fact that the derivative of 
[i.:fJ with respect to T is identically 0. 
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LEMMA 3. 2:(x- t)“=d:‘(r)/< ,,,, 

Proof: In (16)[(x-f)]“‘l,-, may be evaluated at any hoice of T; 

choosing T = f reduces ( 16) to dy( f )/<,,,,. 

THEOREM I (de Boor and Fix [6]). i:‘h:’ = d,,. 

Proqf By Lemma 1 (X - r), = x:,“=, ,I d;(l) h:‘(.u)/[ ,,.,. Apply i: to both 
sides and use Lemma 3 to get 

d;(r) d”(f) 
-= ” i + i:‘hj’. 
4 ),.I I-Y ,I in., 

(17) 

The result now follows from the linear independence of the functions 
qwi,,, Q.E.D. 

Note that Theorem 1 implies that the h:(x) are always linearly indc- 
pendent. (Apply 1-J’ to both sides of Cp_, n c,&‘(x) = 0 to get c, = 0 for 
every j.) Thus they form a basis and the i.; comprise the dual basis. 

Theorem 1 will be used to show how the possession of a desirable feature 
by generalized B-spline segments affects Polya curves, and vice versa. We 
begin with some simple properties, first noting a relationship between the 
basis functions’ lead coefficients, then mentioning a condition for non- 
degeneracy of Polya curves, and finally looking at a few interpolation 
results. 

First note, by differentiation of (lo), that [d:(r)]‘“’ = n!( - I )” c,,,. 
Furthermore, by differentiating (14) n times with respect to I, using (9) 
and the fact that the functions {d:(r)j[,,.,} are linearly independent one 
obtains [6:‘(.u)]‘“’ = n!{,,, = ( - 1)” [d:( t)lfn’. Since we can therefore 
replace the constants i,,, in Marsden’s identity (14) or the de Boor-Fix 
formula (16) by either [h~(.~)]~“‘/n! or ( - 1)” [J:(r)]““ln!, these formulas 
arc (save for a factor of ( - 1)“) symmetric in J:(r) and h:(x). 

A curve scheme in CAGD is said to be nondegenerate if the only time 
the curve collapses to a single point is when all the control vertices arc 
located at that point. A necessary and sufficient condition for a curve 
scheme to be nondegenerate is that its blending functions be linearly inde- 
pendent [lo]. Polya curves are thus nondegenerate iff no c,,, = 0. From the 
preceding remarks it follows that 

THEOREM 2. Over a knot t:eclor t, nth degree Pdlya curves are non- 
degenerate $,f the blending functions of the corresponding generalized 
B-spline segment are all of exact degree n. 

One aspect of Polya curves which makes them noteworthy is their inter- 
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polatory properties [ 1, 23. Suppose a nondegenerate Polya curve always 
interpolates P, at i. Then r/?(i) = 6,j. 

THEOREM 3. A nondegenerate Pblya curve of degree n otter a knot vector 
t interpolates Pi at i ~jjj‘ the generalized B-spline segment blending ,finc.tion 
b:(x) = in,,(x - i)“. 

ProoJ By Theorem 1 and Lemma 3 6;(x) = c,.j(s - i)” iff 6, = 
i;[c,,,(?r- i)“] iff S,= c,,,,d;(i)/[,., iff the Polya curve interpolates P, at i. 

Q.E.D. 
Given values s,,, . . . . s,, if we choose the knots ty+ , -, = s, , and 

I 4+i- - s, , , , for j= 1, . . . . n, the Polya blending functions become the 
Lagrange cardinal functions Cl, 23. We therefore get the following 
corollary. 

COROLLARY. A Pblya curve is the Lagrange interpolating curve ~xf the 
generalized B-spline segment blending functions by(x) = i,,,, (x -s, _ ,, y)“. 

As with B-splines, a generalized B-spline segment will interpolate at t, or 
t g+, to P,., or P, if fy-n+,=fq ,r+2= .‘. =I, or fy+,=fy+2= ... = 
1 q+n, respectively. This gives us the following result. 

THEOREM 4. b&r,,) = P, _ n ifs d; J I) = [n.y _ .( t, - 1)“. bq( t, + , ) = P, $j” 
d;(t) = L&+ , - [I”. 

4. CHANGE OF BASIS PROCEDURES 

We now examine change of basis. Here duality has many interesting 
manifestations. 

To begin, consider a simple change of basis to the generalized B-sphne 
segment blending functions from some set of functions g:(x) i = q - n, . . . . q 
which form a basis for degree n or less polynomials. Then there exists a 
matrix B such that b,“(x) = x;=, ,I B,g:(x). In fact, it will be useful to 
look at a more general case involving derivatives of the b;(x). Consider the 
matrix B such that 

[b;+‘(x)]‘“’ = i BVg:(x). 
t-q--n 

(18) 

Note that B is an n + 1 by n + s + 1 matrix with row indices running from 
q -n to q and column indices from q-n -.s to q. Below, B[n] is used 
instead of B to indicate dependence on n. 
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This matrix is related to the n +s+ 1 by n+ 1 matrix D (as with B, we 
shall write D as D[n] if necessary) specilied by 

h:(f)= i D,rd;+W, (19) 
, = ,, -- ,I -- , 

where the h:(r), i = q - n, . . . . q, are the unique polynomials of degree n or 
less such that 

(-u- 1)” = i g,(x) h,(r). (20) 
I - 0 

These h,(r) must exist because the g,(x) are a basis for degree n or less 
polynomials, and (x - 1)” is a degree n polynomial in x with coefficients 
degree n or less polynomials in 1. Note that differentiating (20) with respect 
to x and evaluating at x = 0 shows that h,(r) also form a basis. 

Now by the same argument we used for the Polya and generalized 
B-spline segments we get 

” (-1)” ’ 

’ n! 
[h:(r)]“’ -‘) [g;(r)](‘)=h,,. 

,=O 
(21) 

Sometimes it is advantageous to replace h:(f) by h?(t)/c,., for some 
constants c,,,. In this case (20) and (21) become 

(x- ,),,= i g,(x)Mt) 
c ,Y” t1.t 

(22) 

and 

n (-1)” ’ 
c I ,=" n. c,., 

[h:(r)]‘“-” [g;(r)]“‘= 6,,. (23) 

Define linear functionals on the space of polynomials of degree at most 
n by 

e;/(x)= i (-,I yr [h:(r)]‘“.-” [f(r)]“‘. 
,=o n. b., 

Then by (21) the 0: are the dual basis for the g:(x). 
Also define 

57f(x) = i (- 1 y-. Cyr)il(” Cf(T)l’” “( 

r=O n. I 

(24) 

(25) 



12 BARRY. GOLDMAN. AND DEROSE 

Note that in order for 5: to be defined it is necessary that c,,, #O for all 
i. Therefore for the remainder of this paper, unless otherwise stated, i,,, # 0 
(or, equivalently, the corresponding Polya blending functions form a basis). 
From Theorem 1, r:d; = 6,, i.e., the <: form the dual basis for the Polya 
blending functions. 

Applying 0: to (18) yields 

B,, = i ( ,!‘% ’ [j:‘(r)]‘“-” [by+ yT)](r+sl. 
,=” n, I 

(26) 

Applying s’; +’ to ( 19) yields 

O/j=,;” (n+s)! in+.,., 
?I+.! (- *Y-’ ’ [j;(t)]‘“+.Y-” [h;+“(r)]“’ 

= i (-*)+ ,=o(n+~~Vin+.L, 
[jyr)]‘“-” [h,“’ .yr)]” t .s). (27) 

Comparing (26) and (27) provides the relationship 

(28) 

By interchange of the roles of the Polya and generalized B-spline segment 
blending functions and using techniques similar to those employed above, 
it follows that 

A,, = n! c,,,( - 1 )” Z 

(n + .y)! i,, + .,., “’ 
(29) 

where fi and 6 are the matrices such that 

&g(x)= i B&+"(x), [dy+‘(1)p= i 6,;iqf). (30) 
r=y- ,I -, j-y- n 

Some dual properties that spring from (28) and (29) are now considered. 
To begin, take the case s = 1, g:(x) = b:(x). Then if c,,, = c,,,, it follows 

that h:(t) = d:(t). This case applied to (28) therefore implies that the simple 
two-term differentiation formula for B-splines [ 51 

[by + ‘(x)]’ = (n + 1) 
[ 

h,“(x) y+ ,(-v) 
(31) 1 n+,+ I -t,-L,,?--,+I I 

can be derived from the the simple two-term degree elevation formula (11) 
for Polya blending functions, and vice versa. Further (29) implies that 
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degree elevation of generalized B-spline segments (a different process than 
degree elevation for B-spline curves) is related to differentiation of Polya 
curves; while neither of these processes is simple, the main point here is 
that an algorithm for one will provide an algorithm for the other. 

In the remainder of the cases, let .s=O. 
Consider now a change of basis to or from the power basis. That is, let 

,q:i ..,l , ,(.Y) = Y. It is not difkult to verify that 

+T, n! (‘;)y(‘,,) , [?“-‘I”, ” [T’y’=h,,. 
I 

(32) 

Thus if c,,~. ,t + , = ( - I )” ’ (T) ‘, then /I: ,, . ,(I) = I” ‘. Therefore trans- 
forming generalized B-splint segments to and from the power basis is dual 
to transforming Polya curves from and ro the power basis. 

As an example in this context, in [I, p. 463 a recursion formula for the 
matrix D[n] transforming the Polya basis to the power basis is given by 

”  

D,,[nl= jfi L/1/ 
L,.,(~,+,- ‘,I 

D,,,+,[n-I] 

Y  
beI.,+ It”./+ I D 

i,,.,(~,, t, t I - ‘,+ I) ,+ ,.,+,[n- 11 q-T?<idq- I 

D&l] = 1. (33) 

Therefore, using (28) we get that the matrices given by 

t 
-A B 

f ?I t, - 1, 
,+,.,C~Z- 11 1 q-ndi<q-1 

Nnl,, = 1 (34) 

transform the power basis to the generalized B-spline segment basis. 
Note that the matrices for transforming to the power basis (from both 

generalized B-spline segment blending functions and Polya blending 
functions) can also be found explicitly by Marsden’s Lemma. 

The Bernstein basis functions satisfy the relation 

c 

’ (-I)'"-"[(;-,)5"-'(h)']'" "[(:)T'(l-T)" ']"'=, 
,,’ (35) 

,=O n!( - 1)” -’ (.1 ,) 

so transforming generalized B-spline segments to and from Bezier curves is 
dual to transforming Polya curves from and to Bezier curves. 
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Formula (35) is a consequence of Theorem I because if 1, n+l = ... = 
r,=Q and ty+, = ... =fy+,,= 1, then the B-spline segment curve scheme 
and the Polya curve scheme coincide, and are actually just the Bezier curve 
scheme. Therefore, the formulas for generalized B-spline segments and 
Polya curves can be particularized to results about Bezier curves. 

Next suppose that the g?(x) are generalized B-spline blending functions 
over another knot vector i. Then the h:(r) are the Polya blending functions 
over i. Thus, transforming generalized B-spline segment blending functions 
over the knot vector t to generalized B-spline segment blending functions 
over the knot vector i is equivalent to transforming Polya blending func- 
tions over i to ones over t. More specifically, it follows from (28) that 

B,, = + D,,. (36) 
i n. , 

This, also, has many interesting special cases. 
By (13) subdividing a Polya curve by reparametrizing it is equivalent to 

transforming it to another type of Polya curve [ 1,3]. For example, to sub- 
divide between I = 0 and r = r, it is necessary to find the matrix S(r) such 
that d:(ar) = x, S(r),, d;(t). From S(a) and (36) one can obtain the matrix 
which will transform the hn(ax) to the h:(s). Therefore the matrix S( I/r) 
provides the subdivision matrix for generalized B-spline segments. (Note 
that subdivision by reparametrization is different from the usual B-spline 
technique of subdivision by knot insertion). Subdivision will be discussed 
further in the next section. 

Now define the knot vector i[m] by 

i,=r, i<m 

=I i=m+l 

= I, I i>m+ 1. (37) 

That is, insert i as the (m + 1)st knot. 
In the case that m < q note that since in definitions (4) and (5) the curves 

are “centered” on the interval [r,, I~+ ,) = [i,, , , i,,, *), it is only necessary 
to consider the blending functions indexed from q--n + 1 to q + 1; the 
curves will depend on the knots 1,. ,,+ Z, . . . . I ,,,, i, f,,,, , , . . . . ty+“. The matrix 
indices, etc., should be adjusted accordingly. In the case where m 2 q the 
blending functions will be indexed as originally and the curve will depend 
on the knots fq-“+, , . . . . r,, i, 1, + , , . . . . I~+“-, . Now by using the degree 
elevation formula (1 1 ), it is easy to prove that the matrix D transforming 
the t Polya blending functions to the i[m] Polya blending functions is of 
the form 
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D, -1 I./ - m <.j 
G- 

D in., -- 1, + ,I - t 
,- 1.1-v 

( -1 t - [, 

m-n<j<m 
bn., I , * ,I 

D,,, = $2 

4 ,,. , ( > 

i-I, 

t , + )I - 1, 

m - n <.j < m 

D,, = 1 j < m - n 

D,,=O else. (38) 

For ifm<.i, then tiy(f)=$+,(f) from (10). Ifj<rrz-n, then cl;(r)=cj:‘(r) 
also by ( 10). If m 2.j > m - n - 1, then 

,+,I I 
j:l(f) = c,,,, (i-f) fl ([,-!I ,=,-I 

,I,, I 
=~,,.,((i-1,+,,)+(r,+,,-1)) fl (I,--1) ,=,+ I J J 
=~d:‘(r)+~(i-r,,,,)d:’ ‘(1) hII., 4 ,I I./ 

;  ̂

=+jp)++ 
Y d;(f) ‘I:’ ,(f) 

(f-f,,,,) b,l -_- 

bn., 4 ,I I./ [ i t )I + , - 1, r ,I., C"., I )I r 
5Pl.J 

=- 

I  
,  1 , I  [  

i-r, 

- 1, C,,., 

d:‘( 1) + I’,’ ” ---Id:’ , ( t )  .  

itr., I  1 
Since the matrix D expresses the functions q(r) in terms of the functions 

d;(r), it tells us how to delete the knot i from a Polya segment. The dual 
process for generalized B-spline segments is, of course, Boehm’s knot 
insertion algorithm [4] for B-splines in this context. By (36) and (38) the 
insertion matrices are 

B -1 I., I- m <j 

B 
t , + !I -i 

,.,- I =- 
t - 1, 

m-n6jdm 
, + n 

/j,,== 
I 

m-nGj6m 
, - t, - 1, 

B,, = I ,j<m-n 

B,, = 0 else. (39) 

Since it is not required that the knots be non-decreasing, the knot 
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insertion here does not depend on how the knots are ordered in value, but 
rather on how they are arranged in the knot vector. The processes of knot 
deletion for Polya curves and knot insertion for generalized B-splint 
segments will be used in the next section. 

In [ 1, p. 411 a method is presented to transform one type of Polya curve 
to another. This method involves fmding the transformation matrix D[n] 
recursively using a two-term recurrence relationship 

c 

[ 

c 

D[n],, = ; 4n.f 
4 ,, ,.,(f,+ n - ‘,I 

,” t - 1, 
mn - 1 I,, 

C,! l.lb%/ , I ,I 

v 

+ 
4 ?I l.,+l(~,+n.I-~r+n) 

t --I 
DCn - 11, + I., 

1 
(40) 

/+?I+, ,+I 

for j<q (there are various methods for linding the last (i.e., qth) column 
Cl]). 

Applying (36) provides the two term recurrence relationship for the 
associated transformation of generalized B-spline segments 

B[n],,= e qn- l],,+:y’-‘I:“^ Nn- ll,.,,, (41) 
/ . n I /+n+, I+ I 

for j < q. This is the recurrence relation for the Oslo algorithm [8]. 
There is, in [I], another two-term recurrence relationship for Polya 

curves similar in form to (40), 

c 

D[nlJ = r^, ,':1', i ,,., L 

i" I$, f I - I,) 

1, 1 ,I - 1, 
mn- ll,.,.l 

Y 

+ 

bn 

I  ,+n+, - t  
Db-llJ+,.,+, 1 (42) 

/+I 

for j> q -n. Substituting (36) into (42) produces another Oslo-type 
recurrence relationship for generalized B-spline segments, 

f?[n],/=~ B[n - 11, + ,., + ) ’ n + ’ 1:’ * ’ B[n- ‘I,+,./+, (43) 

,+,I I  ,+n+, I* I 

for j>q-n. 
For examples of other change of basis formulas involving Polya curves 

and generalized B-spline segments, see [ 11. 
In summary, the dual properties of Polya curves and generalized 

B-spline segments include the following: 
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Properties of 
generalized E-spline segments 

Properties of 
Polya curves 

I. [h:(s)]‘“‘=n!;,,, 
2. each /J:(X) is of exact degree )I 
3. h:‘(s) = ;,,,cs - i)” 

3a. h;(x) = i,,,(.x - .s,. ,~ q)n 
i = y - n. . . . . q 

4. interpolates P, n [resp. PyJ 

at I, Ll, f II 
5. degree elevation 
6. diflerentiation 
7. conversion IO power basis by 

Marsden’s Lemma 
8. change of basis to [from] h-curves 

8a. change of basis IO [from] power 
basis 

8b. change of basis to [from] Bezier 
Xc. subdivision (by reparamctrization) 
gd. knot insertion 
ge. Oslo algorithm 

8f. other Oslo-type result 

9. arise from opposite color urn model 

[d:(r)]‘” = II! ( - I )” ;,,, 
nondcgeneratc 
interpolates P, at i 

the d:(r) are the 
Lagrange cardinal functions 

d:, ,$(I) = ;..q .(ly - I)” 
[d;(r) = r..y(l,+ , - r,“J 

differentiation 
degree elevation 
conversion to power basis by 
Marsden’s Lemma 
change of basis from [to] R-curves 

change of basis from [to] power basis 

change of basis from [to] Bizier 
subdivision (by reparametrization) 
knot deletion 
two-term recurrence for transforming 

one type of Polya curve to another 
other two-term recurrence for 

transforming one type of Polya curve 
to another 

arise from same color urn model 

5. SOME NEW RESULTS FOR P~LYA CURVES AND 
GENERALIZED B-SPLINE SEGMENTS 

In this section we will use the results of the previous section, in particular 
the knot insertion/knot deletion techniques, to prove some new results 
about Polya curves and generalized B-spline segments. 

The underlying idea in these results is that repeated knot deletion [inser- 
tion] can be used to change one type of Pblya curve [generalized B-spline 
segment] to another. Suppose we wish to change a i Polya curve to a t 
Polya curve. A strategy for doing so is 

ALGORITHM 1. Steps k = I,..., n: delete the y - n + k th i knot and intro- 
duce as the new “first” knot the value t, + , k. 

Steps k = n + 1, . . . . 2n: delete the y + 2n + 1 - kth i knot and introduce as 
the new “last” knot the value r, n+k. 

To transform a t generalized B-spline segment curve to a i generalized 
B-spline segment curve we use knot insertion: 
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ALGORITHM 2. Steps k = I, . . . . n: insert i,,, , k as the new y + 1 -k th 
knot (thereby making the curve no longer dependent on 1, -,I , n). 

Steps k = n + I, . . . . 2,1: insert i, ,, +x as the new y-n + kth knot (thereby 
making the curve no longer dependent on f,, , ?,, ~, k). 

Therefore the transformation matrices for transforming one type of 
Polya curve to another or transforming one type of generalized B-spline 
segment to another are products of at most 2n knot deletion or knot 
insertion matrices, whose forms are given in (38) and (39). The matrices 
transforming the blending functions are the same ones which transform the 
control points [9]. Therefore there are simple algorithms for these trans- 
formations. In particular, they consist of at most 2n steps; in the kth step 
new control points Ql” I are obtained from a linear combination of either 
the odd control points Ql” ‘I and Q,!: , ‘I or the old control points 
Qj k ; ” and Q,‘” ” (where the Q,!“) are the original control points, and the 
Qt”” will be the new control points). Further details are given in [I, 31. 

J 

Having briefly presented these algorithms, we will now use the techni- 
ques of knot insertion and deletion to prove some results about generalized 
B-spline segments and Polya curves. Recall from Section 3 that the h:(.u) 
always form a basis for the space of polynomials of degree at most n. Here 
is another result concerning the h:(s). 

THEOREMS 5. Let u= max, y. ,, , I. ,(,f, and h=min, yA I.. ,y I ,I 1,. !I 
u < h, then the h:(t) satis/,i* Dc~sc’urtes Law of Signs on (u. h). 

Proof: Use Algorithm 2, inserting u in steps I through n and h in steps 
n + 1 through 2n. Then the resulting blending functions are reparametrized 
Bernstein basis functions. These satisfy Descartes’ Law of Signs on (a, h). 
Moreover, the product of the insertion matrices transforms the 
reparametrized Bernstein basis functions into the original h:(x). Now if this 
product is strictly totally positive, the original /J:(X) satisfy Descartes’ Law 
of Signs on (u, h) [9]. To prove that the product is strictly totally positive, 
it is sufficient to prove that each insertion matrix is strictly totally positive. 
This, in turn, follows directly from the form of the insertion matrices given 
in (39). 

COROLLARY. b,(r) is variation diminishing on [a, h] 

Proqf This follows from Theorem 5 and the discussion of Descartes’ 
Law of Signs in [9]. Q.E.D. 

Note that since we are in a different setting the corollary is not merely 
a restatement of the variation diminishing property of B-spline curves. 

The last topic we will discuss for generalized B-spline segments is sub- 
division by reparametrization. A reparametrization result for the h:(.r) 
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similar to (13) holds [ 1, p. 961: let 61(.x) denote the generalized B-spline 
segment blending functions dependent on the knot vector 

i= 
( 

f y ncl-C I, lyt.,-C fy+n-C ~. 7 . . . . 1 ..., 
a (I ’ a > u ’ 

then 
b:‘(ax + c) = b-y(x). (4) 

Now suppose we have a generalized B-spline curve over a finite interval, 
and wish to express a portion of that curve as the same type of generalized 
B-spline curve. That is, we have two curves, the original one and the 
portion of it. Both can be represented as generalized II-spline segments with 
the same knots and domain; only the control points will differ. (Note this 
type of subdivision differs from usual B-spline subdivision by knot inser- 
tion, although it is similar to Btzier curve subdivision.) This process can be 
done by using the reparametrization result above and then doing a change 
of basis between the e(x) and the h:(x) with Algorithm 2. 

WC now turn our attention to Pblya curves. Algorithm I leads to many 
results for Polya curves. We sketch some of these here; a more detailed 
discussion is the topic of [3]. 

THEOREM 6. Let ~=rnax,~,-,,~ ,.,.,, yir and h=min,=,+ ,,,,,, y+,,jr. Ij 
u < h, then the $(I) saris/j Descartes Law qf Signs on (a, h). 

Pro@ Use Algorithm 1, introducing the value a in steps 1 through n 
and h in steps n + 1 through 2n. Then the resulting blending functions are 
reparametrized Bernstein basis fuctions, and the product of the deletion 
matrices transforms the reparametrized Bernstein basis fuctions into the 
original (i:(x). Thus, as in the proof of Theorem 5, it is sufftcient to prove 
that each deletion matrix is strictly totally positive. This will follow from 
the form of the deletion matrices given in (38) and the following observa- 
tions: when a knot is deleted in steps 1 through n, all the knots with 
smaller subscripts have value a. When a knot is deleted in steps n + 1 
through 2n all the knots with larger subscripts have value b. In steps 1 
through n the ratio of the r’s appearing in the expression for D,- ,., in (38) 
is positive and the ratio appearing in the expression for D,, in (38) is 
negative [ 1, 31 (remember the remarks concerning the indices in the 
paragraph above Eq. (38)). In steps n + 1 to 2n the ratio of the i’s 
appearing in the expression for D,. ,,, in (38) is negative and the ratio 
appearing in the expression for D,, is positive [I, 31. 

COROLLARY. a,(t) is variution diminishing on [a, b]. 

One thing lacking in previous discussions of Polya curves [ 1,2] was a 
simple subdivision algorithm. However, Eq. (13) and Algorithm 1 furnish a 
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subdivision technique analogous to the technique just described for 
generalized B-spline segments, although the presence of the 7s makes the 
algorithm for Polya curves somewhat more complicated. 

Our final result concerns the fact that Polya curves interpolate their first 
and last control points. Knot removal, therefore. gives us an evaluation 
algorithm. In order to evaluate a Polya curve at s, use steps 1 through n 
to get the new 4th knot equal to .T, or steps n + I through 2n to get the new 
q + 1 st knot equal to s. In either case the deletion matrices can then be 
applied to the original control points to get a new set of control points, the 
first or last control point of which will be the desired value. Like the sub- 
division algorithm, this algorithm is complicated by the presence of the i’s 
[I, 31. 

Note that the evaluation of generalized B-spline curves can be done via 
n-fold knot insertion (essentially the de Boor algorithm) and evaluation of 
Polya curves via n-fold knot deletion. 

6. CONCLUDING REMARKS 

We have examined the relationship between two curve schemes, 
generalized B-spline segments and Polya curves, and have shown that the 
duality provided by the (modified) de Boor-Fix form of the dual basis 
connects certain results for these two schemes. Therefore these two curve 
schemes can be considered as dual in this sense. Note that many of the 
results mentioned above do not depend on particular properties of 
generalized B-spline segments of Polya curves, but work for any dual 
schemes. 

Some open questions still remain. As mentioned in Section 2, there are 
probabilistic models from which we can derive generalized B-spline 
segments and Polya curves. Many properties of these curve schemes can be 
obtained by probabilistic considerations [ 1, 10, 1 I J. Are there probabilistic 
proofs or interpretations for any of the results contained in this paper (in 
particular for Marsden’s Lemma and the de Boor-Fix formula), or does 
probability theory in any way provide insight into them? Also, can the 
results here be extended to surfaces in any way? Finally, since many of 
these results are true for any dual schemes, are there any other dual 
schemes that are of interest either in approximation theory or in CAGD? 

ACKNOWLELXMMENTS 

This work was supported in part by CDC sponsored research grant 8X101 and DOE 
Grant Contract DE-AC02-85ER12046. The authors wish IO thank Dr. Charles Micchelli of 
IBM T. J. Watson Research Center for suggesting that E-splines and Pblya curves may be 
linked via Marsden’s Lemma. 



B-SPLINES AND Pi)LYA CURVES 21 

REFERENCES 

I. P. J. BAKRY, “Urn Models, Recursive Curve Schemes and Computer Aided Geometric 
Design,” Ph. D. Thesis, Department of Mathematics, University of Utah, Salt Lake City. 
Utah. 1987. 

2. P. J. BARRY AKD R. N. GOLDMAN. Interpolation and approximation of curves and 
surfaces using generalized Polya polynomials, Compur. Vkkm Graphics Imuge Procc~.vs.. 

in press. 
3. P. J. BARRY AND R. N. GOLDMAX Shape parameter deletion for Polya curves. to appear 

in Numerical A/gorirhm.v. 

4. W. BOEHM, Inserting new knots inro B-spline curves. Compur. ,4ided Dc.\~~II 12 (1980). 
199-201. 

5. C. IX BOOK. “A Practical Guide lo Splints.” Springer-Verlag. Berlin. 1978. 
6. C. IX. Boon AND G. FIX. Spline approximation by quasi-interpolants. J. nppro.x. Throq, 

8 (1973). 1945. 
7. C. IX BOOR AND K. HOLLIG, B-splints without divided differences. in “Geometric 

Modeling’* (G. Farin. Ed.), SIAM, Philadelphia, 1987, pp. 21 27. 
8. E. COIWN. T. LYTHE. AW R. RIESESFELU. Discrete ff-splines and subdivision techniques 

in computer aided geometric design and computer graphics, Compur. Graphics fmqy 

Proc~n. 14 ( 1980), 87 I I I. 
9. R. N. GOLDMAN. Markov chains and computer-aided geometric design, I. Problems and 

constraints, ACM Trans. Gruphirs 3 (1984) 204 222. 
IO. R. N. GOLDMAN, Polya’s urn model and computer-aided geometric design. S/A&I J. 

Al&wuic Di.wre/e Me/hods 6 (1985), l-28. 
I I. R. N. GOLDMA~~;. Urn models and B-splines. Consrr. Appro.~. 4 (1988). 265 28X. 
12. E. T. Y. LEE. Some remarks concerning R-splines, Crjmpu/. Aided Gcwm. Design 2 (1985). 

307. 31 I. 
13. X4. J. MARSDES. An identity for spline functions with applications to variation- 

diminishing spline approximation, J. Appros. Theor! 3 (1970) 749. 


