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Abstract

Associated with an m × n matrix with entries 0 or 1 are the m-vector of row sums and
n-vector of column sums. In this article we study the set of all pairs of these row and column
sums for fixed m and n. In particular, we give an algorithm for finding all such pairs for a given
m and n.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Row; Column; Matrix; Partition; Dominant

1. Introduction

This work was motivated by a question posed by the second named author to the
first named author about a game that goes by many names but we will refer to it here
as the nonogram game. We first describe a nonogram. The starting point is an m × n

board with all squares white. One puts black squares in a selection of positions on
the board for example:
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We have a “picture” in a 5 × 5 board. Now one looks at each row and puts together
a sequence of positive integers that gives a list of the numbers of contiguous black
squares and one gets a sequence of m lists. One does the same for the columns getting
n lists. The nonogram is this pair of lists of lists. Thus the nonogram associated with
the above picture is

[[1, 1], [3], [1, 1], [2, 2], [3]], [[1], [5], [1, 1], [5], [1]].
The puzzle is to be given a nonogram and to construct a picture that yields it. Thus
the picture above is a solution to the corresponding nonogram. One can see easily
that this nonogram has a unique solution (i.e. picture). We note that the two pictures
below are solutions to

[[1, 1], [1], [1, 1], [1, 1], [1, 1]], [[1, 1], [2], [1], [2], [1, 1]].

There are also nonograms that are not related to pictures. For example,

[[5], [1, 1, 1], [1], [1], [1]], [[1, 2], [5], [1], [1], [1]].
No “good” algorithms have been found to determine if a nonogram corresponds to a
picture and, if so, find a picture. In fact, this leads to an NP-complete problem.

Having described the actual puzzle let us describe the question. We simplify the
nonogram and replace the arrays of arrays with row sums and column sums where
we think of the original picture as an m × n matrix with entries consisting of 0 or
1. Thus the first picture above yields (2, 3, 2, 4, 3) for the rows and (1, 5, 2, 5, 1) for
the columns. The second pair give (2, 1, 2, 2, 2), (2, 2, 1, 2, 2). The question is how
many possible pairs of row sums and column sums are there for m × n matrices with
entries consisting only of 0 or 1? Is there a method of finding all such possiblities? For
example the impossible nonogram above corresponds to (5, 3, 1, 1, 1), (3, 5, 1, 1, 1)

which is not even possible as a row and column sum of such a 5 × 5 matrix. The
second named author found that for 1 × 1, 2 × 2, 3 × 3, 4 × 4 the number of such is
respectively, 2, 15, 328, 16145.

In this paper we give a method of answering both questions. It is very intriguing
that this seemingly innocent question led us to look at fairly deep aspects of the
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combinatorics of the symmetric group and a further property of Young’s raising
operators (actually we do lowering) and Schur functions. We also develop a q analogue
of the question and a conjecture about divisibility by the q-analogue of n + 1, for the
case of n × n matrices (notice that the numbers above are respectively divisible by
2, 3, 4, 5). Goldstein and Stong [2] have proved recursion formula for this q analogue
and in particular give a relatively fast recursion to count the possible pairs and a proof
of the conjecture.

Goldstein and Stong have pointed out to the authors that the main theorem in
this paper, Theorem 6, can be found in the standard literature (cf. [1,3]). Our method of
proof is different and it yields an algorithm for constructing the pertinent
matrices.

2. Row and column sum

We denote by Bm,n the set of all m × n matrices with entries in the set {0, 1}. If M ∈
Bm,n then we write M = [mij ]. We set xi(M) = ∑

j mij for i = 1, . . . , m and set
yj (M) = ∑

i mij for j = 1, . . . , n. We put x(M) = (x1(M), x2(M), . . . , xm(M))

and y(M) = (y1(M), y2(M), . . . , yn(M)). In what follows the notation will not be
consistent with right and left actions of groups. The lemma below should clarify
the inconsistencies. If σ ∈ Sm and if M = [mij ] is an m × n matrix then we set
σM = [mσi,j ] and if σ ∈ Sn then we set Mσ = [mi,σj ]. If v = (v1, . . . , vn) then we
set vσ = (vσ1, . . . , vσn) for σ ∈ Sn. The following result is proved by the obvious
calculation.

Lemma 1. With these notations in place we have

x(σM) = x(M)σ, y(σM) = y(M)

and

x(Mσ) = x(M), y(Mσ) = y(M)σ.

We set RC(m, n) = |{(x, y)|x = x(M), y = y(M), M ∈ Bm,n}|. We are inter-
ested in calculating this function. We setRC(m, n) = {(x, y)|x = x(M), y = y(M),

M ∈ Bm,n}. Clearly, RC(m, n) = |RC(m, n)|. We will now give a preliminary
description of RC(m, n).

We say that an element x ∈ Nn is dominant if xi � xi+1 for i = 1, . . . , n − 1. If
x ∈ Nn then there exists a unique dominant element of the form xσ with σ ∈ Sn. Set
RC+(m, n) = {(x, y) ∈ RC(m, n)|x, y dominant }. If x ∈ Nn is dominant then we
set orbn(x) = {xσ |σ ∈ Sn}. For such x we define l1, . . . , lp > 0 with l1 + · · · + lp =
n and x1 = · · · = xl1 , xl1+1 = · · · = xl1+l2 , xl1+l2+1 = · · · = xl1+l2+l3 , . . . Then
|orbn(x)| = n!

l1!···lp ! . We set λn(x) = (l1, . . . , lp). If α ∈ Np then we set α! = α1! · · ·
αp!.
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Lemma 2. We have

RC(m, n) =
∑

(x,y)∈RC+(m,n)

|orbm(x)||orbn(y)|

= m!n!
∑

(x,y)∈RC+(m,n)

1

λm(x)!λn(y)! .

Our problem is, thus, to determine the elements ofRC+(m, n). Ifx = (x1, . . . , xm)

is dominant and x1 � n then we can define M ∈ Bm,n by m1i = 1 for i = 1, . . . , x1,
m2i = 1 for i = 1, . . . , x2, etc. and all other entries 0. Then x = x(M) and we set
µ(x) = y(M). In the theory of partitions µ(x) is the dual partition of x possibly
expanded to have n rows by including 0 rows. We note that (x, µ(x)) ∈ RC+(m, n).
If x is dominant and x1 � n then we set Y (x) = {y|(x, y) ∈ RC+(m, n)}. Thus
µ(x) ∈ Y (x).

We now define two orders on Nn (N = {0, 1, 2, . . .}). The first is the lexicographic
order that is x > y if xi = yi for i < j and xj > yj . The other is the root order (or
dominance order) which is only a partial order that is x � y if

∑
i�j (xi − yi) � 0 for

all j = 1, . . . , n and at least one of these sums is positive. If 0 � r � mn we define
νr = νr,m,n a dominant element of Nn as follows: Let c � 0 be defined by

(c − 1)n < r � cn.

Then since r � mn we see that 0 � c � m. Define (νr )i = c for i = 1, . . . , r − (c −
1)n, and (νr )i = c − 1 for i > r − (c − 1)n. Notice that if r = 0 then c = 0 and r −
(c − 1)n = n so ν0 = (0, . . . , 0). If 0 < r � n then c = 1 and νr = (1, 1, . . . , 1, 0,

. . . , 0) with r ones. If r > n then c > 1 we have νr is dominant and

∑
i

(νr )i = c(r − (c − 1)n) + (c − 1)(n − r + (c − 1)n)

= c(r − (c − 1)n) + (c − 1)(cn − r) = r.

In general if x ∈ Nn then we set |x| = x1 + · · · + xn.

Lemma 3. Let 0 � r � mn and let Pm,n(r) denote the set of all x dominant with
xi � m and |x| = r. Then νr,m,n is the unique minimal element in Pm,n(r) relative to
both the lexicographic and the root order.

Proof. Let x ∈ Pm,n(r) and suppose that x1 < c then x1 � c − 1 thus |x| � (c −
1)n < r . Set k = r − (c − 1)n. Then if xi = c for i < j � k and xj < c then the
same argument shows that |x| < r . Thus we must have xi = c for i = 1, . . . , k. Now
assume that |x| = r and x � ν in the lexicographic order. Thus we have xi = c for i =
1, . . . , k and xk+1 � c − 1. If xi = c − 1 for i = k + 1, . . . , k + l − 1 but xk+l <

c − 1 then |x| < r . Thus the assertion about the lexicographic order follows. We will
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now prove the assertion about the root order. We first observe that if x, y ∈ Nn and
if x � y and if |x| = |y| then

x = y +
∑
i<j

aij (ei − ej ),

with ei the usual vector with a one in the ith position and all the other entries 0 with
each aij a non-negative integer and some aij > 0. Assume that aij = 0 for i < i0 and
a = ∑

j ai0j > 0. Then xi = yi for i < i0 and xi0 = yi0 + a > yi0 . Thus if x � y

then x > y. This implies that νr is a minimal element relative to the root order. We
will now show that it is the only one. We note that λ(νr) = (r − (c − 1)n, cn − r) (if
c = 0 then r = 0 and we should interpret this as only having one entry, similarly for
r = un so c = u). Ifx ∈ Pm,n(r) and ifxi − xi+1 � 2 thenx − ei + ei+1 ∈ Pm,n(r).
So x cannot be minimal in Pm,n(r). Thus if x is minimal then xi − xi+1 � 1. Sup-
pose now that λ(x) = (l1, . . . , lp) with p � 3. Then x − el1 + el1+l2+1 ∈ Pm,n(r).
Thus if x is minimal with respect to the root order then p = 1 or 2. If p = 1 then
x = (u, . . . , u) and so r = un and νr = x. If p = 2 then if x were minimal then
x1 = u and xl1+1 = u − 1. Thus we have

ul1 + (u − 1)l2 = r

and

l1 + l2 = n.

Hence l2 = un − r . Since l2 > 0 we see that u � c. If u > c then l1 = n − l2 =
n − un + r = r − (u − 1)n < 0. Thus u = c so x = νr . �

The technique in the proof of the preceding lemma suggests some operations on
the elements of RC+(m, n) which we will make precise in the next section.

3. Some operations on dominant elements

If x ∈ Pm,n(r) recall that Y (x) = {y ∈ Pm,n(r)|(x, y) ∈ RC+(m, n)}. In this
section we study two operations on Y (x) that decrease elements in the root order.

Move 1. If y ∈ Y (x) and yi − yi+1 > 1 then y − ei + ei+1 ∈ Y (x).

Indeed, let M ∈ Bm,n be such that x = x(M) and y = y(M). Suppose that mki = 1
implies that mki+1 = 1 for all k = 1, . . . , n. Then yi � yi+1. Since we have assumed
the contrary, there exists k so that mki = 1 and mki+1 = 0. Thus if M ′ = [

m′
rs

]
with

m′
rs = mrs for (r, s) /∈ {(k, i), (k, i + 1)} and m′

ki = 0, m′
ki+1 = 1 then x(M ′) = x

and y(M ′) = y − ei + ei+1. Since yi � yi+1 + 2, y − ei + ei+1 is dominant.
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Move 2. If y ∈ Y (x) and if yi > yi+1 � yi+2 � · · · � yi+k > yi+k+1 then y − ei +
ei+k+1 ∈ Y (x).

Indeed, let M ∈ Bm,n be such that x = x(M) and y = y(M). Arguing as in the jus-
tification of Move 1 we see that there exists 1 � l � n with mli = 1 and ml,i+k+1 = 0.
Define M ′ as above to have all entries but the ones in the l, i and the l, i + k + 1
positions the same as those of M but with the two indicated values interchanged.
Then as above x = x(M ′) and y − ei + ei+k+1 = y(M ′) ∈ Y (x).

Lemma 4. Let 0 � r � mn and let x ∈ Pm(r). Then µ(x) is the maximum element
of Y (x) with respect to the lexicographic order and it is the unique maximal element
of Y (x) with respect to the root order. Also νm,n,r is the minimal element in Y (x)

with respect to the lexicographic order and the unique minimal element in Y (x) with
respect to the root order.

Proof. Let z = µ(x) and let y ∈ Y (x). Let M ∈ Bn be such that x(M) = x and
y(M) = y. Then we note that the number of j with mj,1 = 1 is equal to y1 and is less
than the number of j such that xj /= 0. Thus y1 � z1 and if y1 = z1 then mj1 = 1 pre-
cisely if xj /= 0. We show by induction that if yi = zi for i � k − 1 then yk � zk and
ifyk = zk thenmjk = 1 precisely whenxj � k. We have proved this fork = 1. Assume
for k � l and we will now prove it for k = l + 1. Suppose that yk > zk . Then then the
number of j such that mjk = 1 is larger than the number of l such that xl � k. Thus
there exists l with xl � k − 1 and ml,k = 1. The inductive hypothesis implies that
mls = 1 for s = 1, . . . , xl . But then ifml,k = 1 we would havexl > xl . This contradic-
tion shows that yk � zk and that mjk = 1 implies that xj � k. We have observed that
of α � β then α > β. This shows that z = µ(x) is maximal in Y (x) in the root order.

Set Ỹ (x) = {y|(x, y) ∈ RC(m, n)}. Suppose that y ∈ Ỹ (x) is maximal in the root
order. Then we assert that y ∈ Y (x) (we will leave this as an exercise to the reader).
Thus the maximal elements of Y (x) are exactly the same as those of Ỹ (x). Now let
y ∈ Y (x) be maximal in the root order. Let M ∈ Bm,n be such that x(M) = x and
y(M) = y. Suppose that y1 < z1. Then the number of indices such that mj,1 = 1
must be less than the number of j such that xj > 0. Hence there is a j with xj > 0
and mj,1 = 0. Hence there must be a k > 1 with mj,k = 1. If we define M ′ to have the
same entries as M except that m′

j,1 = 1 and m′
j,k = 0 then x(M ′) = x and y(M ′) =

y + e1 − ek . Thus y(M ′) � y in Ỹ (x). This is a contradiction. Now suppose that we
have shown that yi = zi for i � k − 1. But yk < zk . Then we can apply the argument
in the previous part to see that xj � k − 1 if and only if mjl = 1 for j � k − 1. Now
since yk < zk there must be an index j such that xj � k but mjk = 0. There must
therefore be an index s > k with mjs = 1. We can therefore argue as in the case
when k = 1 to see that y + ek − es ∈ Ỹ (x). The obvious induction now shows that y

is greater than z in the lexicographic order.
The last assertion is implied by Lemma 3. �
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Theorem 5. Let 0 � r � mn and let x ∈ Pm(r). Then Y (x) = {y ∈ Pn(r)|µ(x) �
y � νr}.

We will actually prove a much more general result. In the following Pn(r) can be
replaced by the set of all dominant n-tuples with non-negative entries that sum to r .
The condition that the entries need be at most m can be dropped.

Theorem 6. Let z, y ∈ Pn(r) with z � y then there exist elements z(i) ∈ Pn(r), i =
0, . . . , m such that z(0) = z and z(m) = y and z(i+1) is obtained from z(i) by a Move
1 or a Move 2.

Theorem 5 follows from Theorem 6. Indeed, we have observed that these “moves”
preserve Y (x). So applying Theorem 6 to µ(x) we will have proved Theorem 5.
We note that the proof we give of Theorem 6 actually gives an algorithm for the
construction of the connecting sequence. Here is a demonstration. Consider z =
(7, 5, 5, 3, 3, 3, 2) andy = (5, 5, 4, 4, 4, 4, 2). Then z− y = (2, 0, 1, −1, −1, −1, 0).
So z � y. The method of the proof below would choose z(1) = (6, 6, 5, 3, 3, 3, 2)

by Move 1, z(2) = (6, 5, 5, 4, 3, 3, 2) Move 2, z(3) = (5, 5, 5, 5, 3, 3, 2) Move 2,
z(4) = (5, 5, 5, 4, 4, 3, 2) Move 1, z(5) = (5, 5, 4, 4, 4, 2) Move 2.

We will now prove Theorem 6. We will prove the theorem by induction on z in
the order �. If z is the minimal element, νr , of Pn(r) the result is obvious since then
y = νr and we take m = 0. So assume the result for all u ∈ Pn(r) with z � u. We
now prove the result for z. If z = y then there is nothing to prove. Thus there exists
i0 such that zi = yi for i � i0 and zi0 > yi0 .

If zi0 > zi0+1 + 1 then we may apply Move 1 to z and get z(1). We show that z(1) �
y. Indeed we have z

(1)
1 = y1, z

(1)
2 = y2, . . . , z

(1)
i0−1 = yi0−1 thus

∑
i�j (z

(1)
i − yi) = 0

for j < i0.
∑

i�i0
(z

(1)
i − yi) = zi0 − yi0 − 1 � 0 and

∑
i�k(z

(1)
i − yi) = ∑

i�k(zi −
yi) for k > i0. Since z � z(1) the inductive hypothesis implies the result in this case.
We may thus assume that zi0 � zi0+1 + 1.

If zi0 = zi0+1 + 1. Then since we have zi0 > yi0 � yi0+1 we see that zi0+1 �
yi0+1. Now suppose that we have zj = zi0+1 for all j � i0 + 1. Then it is easily
seen (arguing as in the proof of the minimality of νr ) that this is impossible. Thus
there exists a first j such that j � i0 + 1 and zj > zj+1. We can apply Move 2 to z

and get z(1) = z − ei0 + ej+1. We will now show that z(1) � y which will complete
the induction in this case. We note that we have zi0+1 = · · · = zj > zj+1. Since
yi0+1 � · · · � yj � yj+1 we have zk � yk for i0 + 1 � k � j . This implies that∑

i�k

(z
(1)
i − yi) � 0

for k � j . Now
∑

i�j+1(z
(1)
i − yi) = ∑

i�j (z
(1)
i − yi) + zj+1 − yj+1 + 1 =∑

i�j+1(zi − yi) � 0 and
∑

i�k(z
(1)
i − yi) = ∑

i�k(zi − yi) � 0 for k > j + 1.

Thus z(1) � y.
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We are left with the case when zi0 = zi0+1. We note that since |z| = |x| there must
be a first j such that zk = zi0 for k � j and zj+1 < zj . There are two cases. First, if
zj > zj+1 + 1. Then we can do Move 1 to get z(1) = z − ej + ej+1. As in the other
cases we have zk > yk for all k = i0, . . . , j . So the argument for the first part of the
proof implies that z(1) � y. We may thus assume that zj = zj+1 + 1. Now as above
there must be another descent that is l > j such that zk = zj+1 for j + 1 � k � l

and zl > zl+1. We now do Move 2 to get z(1) = z − ej + el+1. We note that as before
zk � yk for j + 1 � k � l and so the argument above implies that z(1) � y. The proof
is now complete.

4. A q-analogue

In this section we will study

RC(q, m, n) =
∑

(x,y)∈RC(m.n)

q |x|.

The results of the previous section imply that

RC(q, m, n) = m!n!
∑

r

qr
∑

x∈Pm(r)

1

λm(x)!
∑

y∈Pn(r)
µ(x)�y

1

λn(y)! .

We note that the polynomial RC(q, n, n) is of degree n2 and that it is easily seen
that the coefficient of qj is the same as that of qn2−j for 0 � j � n2.

Conjecture 7. The polynomial RC(q, n, n) = RC(q, n) is evenly divisible by 1 +
q + q2 + · · · + qn.

Here are some examples.

RC(q, 1) = 1 + q,

RC(q, 2) = (1 + q + q2)(1 + 3q + q2),

RC(q, 3) = (1 + q + q2 + q3)(1 + 8q + 18q2 + 28q3 + 18q4 + 8q5 + q6).

This conjecture has been proved by Goldstein and Stong. They also prove that the
polynomials P(m, n) = RC(q, m, n) satisfy the following recursion. Set [m + 1]q =
1 + q + · · · + qm. Then

1. P(0, 0) = 1.

2. P(m, n) = P(n, m).

3. If m � n then P(m, n) = ∑m
i=1(−1)i+1

(
m

i

)
[m + 1]iq P (m, n − i).

Obviously, this proves the conjecture. Note that this implies that P(1, n) =
[m + 1]nq . so we could add this to stop the recursion at m = 1.
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