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Abstract Reactive oxygen species (ROS) produced by the in-
nate immune system work as effectors to destroy pathogens
and to control cellular responses. However, their role in the
adaptive immune response remains unclear. Here we studied
the effect of exogenous ROS on CD40-induced B cell activation.
H2O2 treatment inhibited CD40-induced immunoglobulin pro-
duction of B cells, DNA binding of NF-jB, IjBa degradation
and IKK phosphorylation. On the other hand, H2O2 treatment
did not induce obvious B cell death after 30 min of stimulation.
Although the ligation of anti-CD40 antibody was not disturbed
by H2O2, TRAF2 recruitment to CD40 was inhibited. These re-
sults suggest that exogenous ROS play a negative role in CD40
signaling during B cell activation.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

When pathogens invade host, macrophages are activated

and produce pro-inflammatory cytokines, chemokines, growth

factors, and proteases [1]. Besides, the activated macrophages

produce reactive oxygen species (ROS) such as H2O2 and other

metabolites by the respiratory burst [2]. The produced H2O2

subsequently affect other cell types, such as T cells and B cells,

and impact immune responses. Activated B cells have been

shown to produce ROS and the role of endogenous ROS in

B cell function has been studied [3–5]. However, less attention

was paid for the exogenous ROS for B cell activation and func-

tion.

CD40 belongs to the TNFR superfamily and is expressed on

a variety of cells, such as B cells, DCs, and epithelial cells [6–8].

In B cells, the ligation of CD40 delivers activation signal that

lead to proliferation, differentiation, Ig production, and cyto-

kine secretion [9,10]. CD40 signaling is initiated by the interac-

tion of CD40 with specific TNFR-associated factor (TRAF)

molecules. Among the TRAF family, TRAF2, 3, 5, 6 were

the most extensively studied in CD40 signal transduction

[11–14]. Especially, TRAF2 is known to be important for B

cell maturation and activation [15,16].
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Nuclear factor jB (NF-jB) was firstly identified in B cells as

a key transcription factor for IgG production. Each NF-jB/

Rel protein forms different homo- or heterodimers with other

members of the family. The most typical NF-jB complex is

a p50/p65 heterodimer. NF-jB is largely sequestered in the

cytoplasm through its association with an inhibitor of jB

(IjB). Upon stimulation, the IjB proteins are phosphorylated

by the IjB kinases (IKK-a, -b, -c), following ubiqutinylation,

and then are degraded in a proteasome dependent manner.

The degradation of IjB thereby allows the NF-jB complex

to translocate into the nucleus [17].

ROS are known to involve in many important cellular

events, which include the activation of transcription factor, cell

proliferation, and apoptosis. They also act as second messen-

gers in the signal transduction pathway of various receptors,

including TNF family receptors [18–23]. The CD40-induced

endogenous ROS production is important for the downstream

signal events that lead to the activation of JNK, NF-jB, and

interleukin (IL)-6 secretion in B cells [4]. However, many stud-

ies were done using antioxidants such as ROS scavenger and

NADPH inhibitor in different cell types. Several studies also

revealed that chemicals itself affect cellular responses. For

example, Hayakawa et al. reported that NAC, which is a

well-known antioxidant, directly affect TNF receptor signaling

pathway independent of its antioxidant character [24]. There-

fore, it is important to investigate the direct effect of ROS on

cellular events without using antioxidants.

In this study, we investigated the effect of exogenous ROS on

primary B cell activation, especially its role in CD40 signaling-

mediated NF-jB activation.
2. Materials and methods

2.1. Mice
Female BALB/c mice (5–8 weeks) were purchased from Charles

River Laboratories Japan (Yokohama, Japan). These mice were main-
tained in the Animal Research Center at the University of Occupa-
tional and Environmental Health under specific pathogen-free
conditions. All animal experiments were performed according to the
guideline for the care and use of animals approved by the University
of Occupational and Environmental Health.

2.2. Cell preparation and culture
B cells from spleen cells were negatively selected by B cell Isolation

Kit (Miltenyi Biotec, Auburn, CA) according to the manufacturer’s
instructions, and cells were 97 � 99% B220 positive. A20 cells, mouse
B lymphoma cell line, were obtained from Cell Resource Center for
Biomedical Research, Tohoku University (Sendai, Japan). Cells were
cultured in humidified 5% CO2/95% air at 37 �C in RPMI 1640 med-
ium (Nissui Seiyaku, Tokyo, Japan) supplemented with 10% fetal
blished by Elsevier B.V. All rights reserved.
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bovine serum (Bio Whittaker, Walkersville, MD), 2 mM LL-glutamine,
50 U/ml penicillin and 50 lg/ml streptomycin (Gibco, Grand Island,
NY).

2.3. Reagents and antibodies
Hydrogen peroxide was purchased from Wako (Osaka, Japan). N-

acetylcysteine (NAC) was purchased from Sigma (St. Louis, MO).
NAC was resolved in RPMI 1640 medium and the solution was
adjusted to pH 7.0 by 8 N NaOH. Anti-mouse CD40 antibody
(MAB440) was obtained from R&D Systems (Minneapolis, MN).
Anti-NF-jB p65 antibody (sc-372 X), anti-Stat5 antibody (sc-835
X), anti-PU.1 antibody (sc-352 X), anti-rabbit HRP antibody (sc-
2030), anti-TRAF2 antibody (sc-876), anti-IjBa antibody (sc-371)
and Protein A/G PLUS-Agarose (sc-2003) were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA). Anti-phospho-IKKa(Ser180)/
b(Ser181) antibody (#2681), anti-IKKa antibody (#2682) and anti-
IKKb antibody (#2684) were obtained from Cell Signaling Technol-
ogy (Danvers, MA). Anti-b-actin antibody (A5441) was purchased
from Sigma (St. Louis, MO).

2.4. Proliferation assay
B cells were stimulated with anti-CD40 antibody (1 lg/ml) with or

without several concentrations of H2O2 for 3 days. The cells were
labeled with 0.5 lCi of tritiated thymidine ([3H]-TdR; specific activity
6.0 Ci/mmol; Amersham, Aylesbury, UK) for the last 16 h and were
harvested with the aid of a semiautomated cell harvester (Abe Kagaku,
Chiba, Japan). The amount of radioactivity incorporated into the
DNA in the cells as measured with a liquid scintillation counter (Alo-
ka, Tokyo, Japan). The results were expressed as the mean count per
min (cpm) of [3H]-TdR incorporated by the cells with S.D. in quadru-
plicate cultures.
2.5. Enzyme-linked immunosorbent assay (ELISA)
ELISA was performed as previously reported [25]. Briefly, rabbit

anti-mouse IgG capture antibody (Medical & Biological Laboratories,
Nagoya, Japan) was coated into 96-well plate at 37 �C for 2 h. After
the blocking with 1% BSA–PBS, culture supernatants of B cells were
incubated in duplicate in the plate at 37 �C for 1 h. Subsequently, per-
oxidase-conjugated anti-mouse IgG Fc fragment-specific antibody
(Jackson ImmunoResearch, West Grove, PA) was incubated at
37 �C for 1 h for IgG detection. Finally, 2-2 0-Azino-bis (3-ethyl-
benzo-thiazoline-6-sulfoic acid) diammonium salt (ABTS) (Sigma, St.
Louis, MO) substrate solution was added to the plate at room temper-
ature. Color development was detected at 405 nm. IgM was detected
using mouse IgM ELISA quantitation kit (Bethyl, Montgomery,
Texas), according to the manufacturer’s protocol.
2.6. Electrophoretic mobility shift assay (EMSA)
EMSA was performed as previously described [26]. B cells were lysed

with 100 ll of RIPA lysis buffer (1% Nonidet P-40, 0.5% sodium deoxy-
cholate, 0.1% SDS, protease inhibitor cocktail) and used as whole cell
extracts. The nuclear extracts were prepared by nuclear extraction kit
(Sigma) according to the manufacturer’s protocol. Murine NF-jB oli-
gonucleotides: 5 0-AGTTGAGGGGACTTTCCCAGGC-30, derived
from the Igj enhancer region, was purchased from Promega (Madison,
WI). In brief, 10 lg of extracts were pre-incubated for 20 min at room
temperature in 15 ll of buffer (10 mM Tris–HCl pH 7.5, 1 mM EDTA,
1 mM b-mercaptoethanol, 4% glycerol, 40 mM NaCl) containing
0.1 lg of poly(dI-dC) and oligonucleotide labeled with T4 polynucleo-
tide kinase (New England Biolabs, Beverly, MA) and [c-32P]ATP
(3000 Ci/mmol, Amersham Pharmacia Biotech, Litle Chalfont, UK).
Protein–DNA complexes were resolved in 4% TBE polyacrylamide gels
and analyzed with or without a specific antibody.
2.7. Flow cytometry
B cell morphology was analyzed by EPICS XL flow cytometry

(Beckman Coulter, Fullerton, CA). Parameters in the histogram were
side scatter and forward scatter. To study the binding affinity of anti-
CD40 antibody to B cells, anti-CD40 antibody was conjugated with
FITC before use. B cells were incubated with FITC-conjugated anti-
CD40 antibody in the presence or absence of H2O2 (0.1 mM) for
30 min. After washing cells with PBS, FITC-positive cells were counted
by EPICS XL flow cytometry.
2.8. Western blot and immunoprecipitation
Equivalent amounts of protein (10 lg) were resolved in SDS–PAGE

gel, transferred and immobilized onto nitrocellulose membranes
(Amersham, Aylesbury, UK), and probed with appropriate primary
and secondary antibodies. Immunodetection was accomplished using
a chemiluminescence detection system (Alpha Innotech, San Leandro,
CA). For immunoprecipitation, samples were incubated with immuno-
precipitation antibody and Protein A/G PLUS-Agarose for 2 h. After
washing three times with cold PBS, the precipitated proteins were
eluted with sample buffer (0.5 M Tris, 10% SDS and bromophenol blue
in 50% glycerol).
2.9. Statistics
All experiments were repeated more than three times and represen-

tative results are shown in figures. Statistical analysis was performed
using Student’s t-test. A confidence level of <0.05 was considered sig-
nificant.
3. Results

3.1. Exogenous ROS (H2O2) inhibited B cell proliferation and

Ig production

First, the effects of H2O2 on B cell proliferation were inves-

tigated by DNA synthesis with thymidine uptake. Fig. 1A

shows that CD40 stimulation induced B cell proliferation,

which is inhibited by H2O2 treatment (0.25 mM and

0.1 mM). Next, IgG and IgM production in B cells was stud-

ied. At 5 days after CD40 stimulation, cell culture superna-

tants were harvested and assayed. ELISA showed that anti-

CD40 antibody induced IgG and IgM production, which

was dramatically inhibited by H2O2 (0.25 mM and 0.1 mM)

(Fig. 1B). The cell viability after H2O2 treatment was studied

by counting cell numbers. As shown in Fig. 1C, H2O2 treat-

ment (0.25 mM and 0.1 mM) did not markedly induce cell

death after 30 min of stimulation. Moreover, high concentra-

tion of H2O2 (0.5 mM) also had no effect on B cell viability

at 30 min of stimulation (data not shown). At 5 days after

stimulation, about 50% of B cells were alive by CD40 stimula-

tion, which was decreased to 23% in the presence of H2O2.

Although there were still enough cells to produce Ig at day

5, Ig productions in H2O2-treated B cells were completely abol-

ished. Therefore, these results indicate that the decreased Ig

production by H2O2 treatment is not only due to fewer cell

number, but also due to weakened B cell ability.
3.2. Exogenous ROS inhibited CD40-mediated NF-jB

activation

NF-jB is known as a critical transcription factor in B cells

leading to proliferation, differentiation, germinal center forma-

tion, isotype switching of Ig genes, and cytokine secretion [27].

Then, we investigated the effect of ROS on NF-jB activation.

B cells were stimulated with anti-CD40 antibody for 30 min,

and the nuclear extraction was applied for EMSA using a

radiolabeled oligonucleotide, which contains the NF-jB

DNA binding site of immunoglobulin j enhancer. Consistent

with previous report, anti-CD40 antibody induced rapid NF-

jB activation (Fig. 2A, lane 4). This protein–DNA complex

was supershifted by anti-p65 antibody (Fig. 2A, lanes 5 and

9), but not Stat5 or PU.1 antibodies (Fig. 2A, lanes 10 and

11), indicating that this complex contains NF-jB molecules.

CD40-induced DNA binding activity of NF-jB was inhibited

by H2O2 (Fig. 2A, lanes 6 and 7). Because H2O2 treatment of

30 min did not induce cell death (Fig. 1C), the inhibited NF-jB
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Fig. 1. CD40-induced IgG production was inhibited by H2O2. (A) B cells (2 · 105/well) were stimulated with anti-CD40 antibody with or without
H2O2 (from 0.25 mM to 0.025 mM) for 3 days. The cells were labeled with [3H]-TdR for the last 16 h and then harvested. The amount of [3H]-TdR,
which was incorporated by the cells, was counted. Results are expressed as mean cpm of [3H]-TdR uptake and S.D. from quadruplicate cultures. (B)
B cells (3 · 106/ml) were stimulated with anti-CD40 antibody in the presence or absence of H2O2 for 5 days. IgG or IgM productions in culture
supernatants were assayed by ELISA. (C) After the indicated stimulations, a cell suspension was mixed with 0.1% trypan blue solution and the viable
cells were counted. Cell viability was expressed as a percent ratio of the starting cell numbers. Results are representative of at least three similar
experiments. * Significantly decreased from the 0 mM H2O2 control (P < 0.05).
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activation was not due to decreased cell viability. These results

indicate that CD40 signaling induces NF-jB activation in pri-

mary B cells, which is disturbed by exogenous ROS.

It is shown that endogenous ROS in B cell line act as signal

mediators and subsequently affect cell function, using antioxi-

dant such as N-acetylcysteine (NAC) [4]. To study the effect of

endogenous ROS to our assay system, we added NAC in the

stimulation of B cells. As shown in Fig. 2B (lane 4), CD40-in-

duced NF-jB activation was enhanced by NAC treatment.

Surprisingly, NAC itself also induced DNA binding activity

of NF-jB (lane 2), which was observed until 12 h after stimu-

lation. By flow cytometry, we also found that NAC itself in-

duced B cell blast formation (Fig. 2C). These results indicate

a unique role of NAC on NF-jB activation, independent of

its antioxidant character. Therefore, it is important to study

the direct effect of ROS on cell function without chemicals

such as antioxidant.

3.3. IjBa degradation and IKK activation were inhibited by

ROS

Upon stimulation, IjBa is phosphorylated, ubiquitinylated

and degraded, resulting in the nuclear translocation of p50
and p65 [17]. To study the mechanism by which H2O2 inhibits

NF-jB activation, the kinetics of IjBa degradation after

stimulation was investigated. As shown in Fig. 3A, CD40-

induced IjBa degradation was observed at 15 min after stim-

ulation and started to recover at 30 min. However, the pres-

ence of H2O2 absolutely abrogated CD40-induced IjBa
degradation. Stimulus-induced IjB degradation is controlled

by IjB kinase (IKK), which phosphorylates two N-terminal

serines [28,29]. Therefore, the effect of H2O2 on IKK activa-

tion was studied by Western blot. Anti-CD40 antibody in-

duced IKKa/b phosphorylation after 30 min stimulation

(Fig. 3B, lane 4), which is inhibited by H2O2 treatment (lanes

5 and 6), although H2O2 slightly induced IKK phosphoryla-

tion in the absence of anti-CD40 antibody (lane 3). These re-

sults suggest that H2O2 blocks CD40 signaling from upstream

of IKK and IjBa, and subsequently inhibited NF-jB activa-

tion.

3.4. TRAF2 recruitment to CD40 was disturbed by ROS

Next, we examined the possibility that H2O2 interrupts the

antibody binding with CD40 on B cells. FITC-conju-

gated anti-CD40 antibody was employed to test the CD40 liga-



Fig. 2. CD40-induced NF-j B activation was inhibited by H2O2. (A) B cells were stimulated with anti-CD40 antibody and different concentrations of
H2O2 for 30 min, then nuclear extracts of B cells were subjected to EMSA using a radiolabeled oligonucleotide, which contains the NF-jB DNA
binding site of immunoglobulin j enhancer (Ig-jB). The lower arrow indicates the protein–DNA complex, and upper arrow indicates supershift.
Lower panel shows Western blot result with anti-PU.1 antibody, which indicates the loading of nuclear protein. (B) Purified splenic B cells were
stimulated with anti-CD40 antibody (1 lg/ml), in the presence or absence of NAC (10 mM), for the indicated time period. Whole cell extracts were
applied for EMSA using Ig-jB oligonucleotide. The arrow indicates protein–DNA complex. Results are representative of at least three similar
experiments. (C) B cells (2 · 106/ml) were stimulated with anti-CD40 antibody (1 lg/ml) for 24 h in the presence or absence of NAC (10 mM),
morphology of B cells were analyzed by flow cytometry. The x-axis and y-axis indicate side scatter (SS) and forward scatter (FS), respectively. The
number represents the cell population in the upper rectangle region.
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tion. After 30 min incubation, the binding of anti-CD40

antibody to B cells was not interrupted by H2O2 (Fig. 4A).

Finally, the recruitment of TRAF2 to CD40 after H2O2

treatment was examined because CD40-mediated signal trans-

duction is primarily initiated by the recruitment of specific

TRAF molecules [11–14]. Fig. 4B shows that anti-CD40 anti-

body induced TRAF2 recruitment to CD40 (lane 2) in primary

B cells, which was inhibited in the presence of H2O2 (lane 3),

without changing CD40 expression level. Furthermore, in

mouse B lymphoma cell line, A20 cells, which TRAF2 consti-

tutively binds to CD40 molecules (Fig. 4B, lane 4), H2O2 was

found to strip TRAF2 from CD40 (lane 5). The failure of

TRAF2 recruitment to CD40 explained the inhibitory effect

of H2O2 on NF-jB activation pathway. These results demon-

strate that H2O2 disturbs CD40 signaling through interrupting

TRAF2 recruitment, without affecting ligand binding.
4. Discussion

Infection of microorganisms activates the NADPH oxidase

of neutrophils and monocytes, resulting in the production of

large amounts of reactive oxygen species (ROS) [30]. These

ROS are important for killing microorganisms or infected

cells. However, the release of ROS also affects surrounding

cells and tissues, including immune cells. In this study, we

investigated the effect of exogenous ROS on B cells and found

that ROS inhibited CD40-induced B cell activation, especially

through interrupting TRAF2 recruitment.

In the studies about involvement of ROS in cellular events,

antioxidants such as NAC were commonly used [5,31]. How-

ever, the unique effects of chemicals on cells were reported.

Hayakawa et al. showed that NAC affected NF-jB activation

by lowering the affinity of receptor to TNF, independent of
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antioxidative function [24]. Our data also showed that NAC it-

self but not other antioxidants (Fig. 2B and data not shown)

induced DNA binding activity of NF-jB for a long period,

indicating its unique character independent of antioxidant ef-

fect. Thus, the study of direct effect of ROS on cells is impor-
Fig. 4. H2O2 disturbed TRAF2 recruitment to CD40, without affecting on l
CD40 antibody, in the presence or absence of H2O2, for 30 min. FITC-positi
(mean fluorescence intensity) of CD40-positive cells were indicated. (B) B cell
presence or absence of H2O2 for 30 min. Whole cell lysate were subjected
evaluated by Western blot using anti-TRAF2 antibody and anti-CD40 antibo
protein loading. Results are representative of at least three similar experime
tant for interpreting ROS-induced cellular events. Therefore,

we performed the experiments using H2O2, which is known

to be a popular member of ROS and more stable than other

ROS.

NF-jB plays a critical role for both the survival and activa-

tion of resting B cells, and disruption of NF-jB members has

been shown to impair B cell proliferation, survival, and Ig class

switching [32–34]. H2O2 inhibited NF-jB activation in B cells

(Fig. 2A), which may explain the decreased cell viability by

H2O2 treatment (Fig. 1C).

It is known that several stimulations induce ROS production

in B cells [4,35], and the effect of endogenous ROS was studied

using antioxidants or NADPH inhibitors [36,37]. Lee et al. re-

ported that ROS led to the activation of JNK and NF-jB in

WEHI 231 cells [4,5]. They showed the positive effect of

ROS on B cell function by applying inhibitory effect of antiox-

idant NAC. This different approach, such as using NAC, may

explain the inconsistence with our results. Additionally, the

different cell types were used, it also may be another reason.

Thus, direct ROS treatment or antioxidant treatment should

be carefully selected in the studies about ROS function.

Among members of the TRAF family, TRAF2, 3, 5 and 6

were the most extensively studied as mediators in CD40 signal-

ing. TRAF2 was shown to be most important for CD40 signal-

ing [15,38]. Our results showed that TRAF2 recruitment to

CD40 was inhibited by H2O2 treatment, which led to inefficient

IKK phosphorylation, IjBa degradation, NF-jB activation

and subsequently decreased B cell activation. It is reported

that CD40 stimulation induces TRAF2 degradation [39]. We

found that CD40 stimulation slightly reduced TRAF2 expres-

sion (Fig. 4B, TRAF2 input, lane 2), which is consistent with

the previous reports. However, TRAF2 expression level was
igand ligation. (A) B cells were incubated with FITC-conjugated anti-
ve cells were analyzed by flow cytometry and the percentage and MFI
s or A20 cells were stimulated with/without anti-CD40 antibody in the
to immunoprecipitation with anti-CD40 antibody, and subsequently

dy. TRAF2 expression in cell lysate (input) served to demonstrate equal
nts.
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not changed in the presence of H2O2 (Fig. 4B, TRAF2 input,

lane 3). Since the direct binding of TRAF2 to CD40 is neces-

sary for TRAF2 degradation [39,40], the unchanged TRAF2

level suggests the failure of TRAF2–CD40 association. Hence,

H2O2 seems to interrupt the binding of TRAF2 to CD40,

rather than to promote TRAF2 degradation. Besides the

canonical TRAF2-binding site [14], a non-canonical TRAF2-

binding domain in the C-terminus of CD40 has been recently

reported [41]. Both of these two binding sites are important

for CD40 signal transduction and subsequently B cell activa-

tion [41,42]. It is still not clear which binding site was involved

in the inhibitory effect of H2O2 on TRAF2 recruitment, how-

ever, the abolished TRAF2 binding to CD40 in IP Western

blot (Fig. 4B, lane 3) indicates that H2O2 possibly affects

recruitment of TRAF2 to both binding sites. However, the ex-

act mechanism by which ROS inhibits TRAF2 recruitment re-

mains unknown, which might involve the conformational

changes of membrane, receptors or adaptor molecules.

In this study, the effect of ROS on CD40 signaling was inves-

tigated in B cells. Because CD40 belongs to TNF receptor fam-

ily and is expressed in various cell types, such as monocytes, our

finding provides a clue for the further investigation of CD40

and ROS in other cell types. ROS is mainly produced by the

activation of innate immune system and affects the adaptive im-

mune responses. Therefore, ROS play an important role in the

connection between innate and adaptive immunity.
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