On multidegrees of tame and wild automorphisms of \mathbb{C}^{3}

Marek Karaśa,*, Jakub Zygadło ${ }^{\text {b }}$
a Instytut Matematyki, Uniwersytetu Jagiellońskiego, ul. Łojasiewicza 6, 30-348 Kraków, Poland
b Instytut Informatyki, Uniwersytetu Jagiellońskiego, ul. Łojasiewicza 6, 30-348 Kraków, Poland

A R T I C L E I N F O

Article history:

Received 10 December 2010
Received in revised form 28 February 2011
Available online 13 May 2011
Communicated by C.A. Weibel

MSC: 14Rxx; 14R10

Abstract

In this note we show that the set $\operatorname{mdeg}\left(\operatorname{Aut}\left(\mathbb{C}^{3}\right)\right) \backslash \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ is not empty, where mdeg denotes multidegree. Moreover we show that this set has infinitely many elements. Since for Nagata's famous example N of a wild automorphism, $\operatorname{mdeg} N=(5,3,1) \in$ $\operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$, and since for other known examples of wild automorphisms the multidegree is of the form ($1, d_{2}, d_{3}$) (after permutation if necessary), we give the very first example of a wild automorphism F of \mathbb{C}^{3} with $\operatorname{mdeg} F \notin \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right.$).

We also show that, if d_{1}, d_{2} are odd numbers such that $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$, then $\left(d_{1}, d_{2}, d_{3}\right) \in \operatorname{mdeg}\left(\right.$ Tame $\left.\left(\mathbb{C}^{3}\right)\right)$ if and only if $d_{3} \in d_{1} \mathbb{N}+d_{2} \mathbb{N}$. This a crucial fact that we use in the proof of the main result.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let us recall that a tame automorphism is, by definition, a composition of linear automorphisms and triangular automorphisms, where a triangular automorphism is a mapping of the form

$$
T: \mathbb{C}^{n} \ni\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right\} \mapsto\left\{\begin{array}{l}
x_{1} \\
x_{2}+f_{2}\left(x_{1}\right) \\
\vdots \\
x_{n}+f_{n}\left(x_{1}, \ldots, x_{n-1}\right)
\end{array}\right\} \in \mathbb{C}^{n}
$$

Recall also that an automorphism is called wild if it is not tame.
The multidegree of any polynomial mapping $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, denoted as mdeg F, is the sequence $\left(\operatorname{deg} F_{1}, \ldots, \operatorname{deg} F_{n}\right)$. We will denote by $\operatorname{Tame}\left(\mathbb{C}^{n}\right)$ the group of all tame automorphisms of \mathbb{C}^{n}, and by mdeg the mapping from the set of all polynomial endomorphisms of \mathbb{C}^{n} into the set \mathbb{N}^{n}. In [3] it was proved that $(3,4,5),(3,5,7),(4,5,7),(4,5,11) \notin \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$. Next in $[5]$ it was proved that $\left(3, d_{2}, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$, for $3 \leq d_{2} \leq d_{3}$, if and only if $3 \mid d_{2}$ or $d_{3} \in 3 \mathbb{N}+d_{2} \mathbb{N}$, and in [4] it was shown that for $d_{3} \geq d_{2}>d_{1} \geq 3$, where d_{1} and d_{2} are prime numbers, $\left(d_{1}, d_{2}, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if and only if $d_{3} \in d_{1} \mathbb{N}+d_{2} \mathbb{N}$. In this paper we give a generalization of this result (Theorem 2.1 below), and using this fact we show the following theorem.
Theorem 1.1. The set $\operatorname{mdeg}\left(\operatorname{Aut}\left(\mathbb{C}^{3}\right)\right) \backslash \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ is infinite.
Notice that the existence of wild automorphisms does not imply the above result. For example Nagata's famous example is wild, but its multidegree is (after permutation) $(1,3,5) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right.$), because for instance the map $\mathbb{C}^{3} \ni$ $(x, y, z) \mapsto\left(x, y+x^{3}, z+x^{5}\right) \in \mathbb{C}^{3}$ is a tame automorphism.

[^0]
2. Tame automorphisms of \mathbb{C}^{3} with multidegree $\left(d_{1}, d_{2}, d_{3}\right)$ with $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$ and odd d_{1}, d_{2}

In the proof of Theorem 1.1 we will use the following generalization of the result of [4].
Theorem 2.1. Let $d_{3} \geq d_{2}>d_{1} \geq 3$ be positive integers. If d_{1} and d_{2} are odd numbers such that $\mathrm{gcd}\left(d_{1}, d_{2}\right)=1$, then $\left(d_{1}, d_{2}, d_{3}\right) \in \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ if and only if $d_{3} \in d_{1} \mathbb{N}+d_{2} \mathbb{N}$, i.e. if and only if d_{3} is a linear combination of d_{1} and d_{2} with coefficients in \mathbb{N}.

In the proof of this theorem (which is an appropriate adaptation of the proof of the result of [4]) we will need the following results that we include here for the convenience of the reader.
Theorem 2.2 (see e.g. [1]). If d_{1}, d_{2} are positive integers such that $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$, then for every integer $k \geq\left(d_{1}-1\right)\left(d_{2}-1\right)$ there are $k_{1}, k_{2} \in \mathbb{N}$ such that

$$
k=k_{1} d_{1}+k_{2} d_{2} .
$$

Moreover $\left(d_{1}-1\right)\left(d_{2}-1\right)-1 \notin d_{1} \mathbb{N}+d_{2} \mathbb{N}$.
Proposition 2.3 ([3], Proposition 2.2). If for a sequence of integers $1 \leq d_{1} \leq \cdots \leq d_{n}$ there is $i \in\{1, \ldots, n\}$ such that

$$
d_{i}=\sum_{j=1}^{i-1} k_{j} d_{j} \quad \text { with } k_{j} \in \mathbb{N},
$$

then there exists a tame automorphism F of \mathbb{C}^{n} with $\operatorname{mdeg} F=\left(d_{1}, \ldots, d_{n}\right)$.
Proposition 2.4 ([5], Proposition 2.4). Suppose that $f, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ are algebraically independent and such that $\bar{f} \notin$ $\mathbb{C}[\bar{g}], \bar{g} \notin \mathbb{C}[\bar{f}]$ (h means the highest homogeneous part of h). Assume that $\operatorname{deg} f<\operatorname{deg} g$, put

$$
p=\frac{\operatorname{deg} f}{\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)},
$$

and suppose that $G(x, y) \in \mathbb{C}[x, y]$ with $\operatorname{deg}_{y} G(x, y)=p q+r, 0 \leq r<p$. Then

$$
\operatorname{deg} G(f, g) \geq q(p \operatorname{deg} g-\operatorname{deg} g-\operatorname{deg} f+\operatorname{deg}[f, g])+r \operatorname{deg} g .
$$

In the above proposition $[f, g]$ means the Poisson bracket of f and g defined as the following formal sum:

$$
\sum_{1 \leq i<j \leq n}\left(\frac{\partial f}{\partial X_{i}} \frac{\partial g}{\partial X_{j}}-\frac{\partial f}{\partial X_{j}} \frac{\partial g}{\partial X_{i}}\right)\left[X_{i}, X_{j}\right]
$$

and

$$
\operatorname{deg}[f, g]=\max _{1 \leq i \leq j \leq n} \operatorname{deg}\left\{\left(\frac{\partial f}{\partial X_{i}} \frac{\partial g}{\partial X_{j}}-\frac{\partial f}{\partial X_{j}} \frac{\partial g}{\partial X_{i}}\right)\left[X_{i}, X_{j}\right]\right\},
$$

where by definition $\operatorname{deg}\left[X_{i}, X_{j}\right]=2$ for $i \neq j$ and $\operatorname{deg} 0=-\infty$.
From the definition of the Poisson bracket we have

$$
\operatorname{deg}[f, g] \leq \operatorname{deg} f+\operatorname{deg} g
$$

and by Proposition 1.2.9 of [2],

$$
\operatorname{deg}[f, g]=2+\max _{1 \leq i<j \leq n} \operatorname{deg}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}-\frac{\partial f}{\partial x_{j}} \frac{\partial g}{\partial x_{i}}\right)
$$

if f, g are algebraically independent, and $[f, g]=0$ if f, g are algebraically dependent.
The last result that we will need is the following theorem.
Theorem 2.5 ([6], Theorem 3). Let $F=\left(F_{1}, F_{2}, F_{3}\right)$ be a tame automorphism of \mathbb{C}^{3}. If $\operatorname{deg} F_{1}+\operatorname{deg} F_{2}+\operatorname{deg} F_{3}>3$ (in other words if F is not a linear automorphism), then F admits either an elementary reduction or a reduction of types I-IV (see [6], Definitions 2-4).

Let us recall that an automorphism $F=\left(F_{1}, F_{2}, F_{3}\right)$ admits an elementary reduction if there exists a polynomial $g \in \mathbb{C}[x, y]$ and a permutation σ of the set $\{1,2,3\}$ such that $\operatorname{deg}\left(F_{\sigma(1)}-g\left(F_{\sigma(2)}, F_{\sigma(3)}\right)\right)<\operatorname{deg} F_{\sigma(1)}$; in other words, if there exists an elementary automorphism $\tau: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ such that mdeg $(\tau \circ F)<\operatorname{mdeg} F$, where $\left(d_{1}, \ldots, d_{n}\right)<\left(k_{1}, \ldots, k_{n}\right)$ means that $d_{l} \leq k_{l}$ for all $l \in\{1, \ldots, n\}$ and $d_{i}<k_{i}$ for at least one $i \in\{1, \ldots, n\}$. Recall also that a mapping $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is called an elementary automorphism if there exists $i \in\{1, \ldots, n\}$ such that

$$
\tau_{j}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}x_{j} & \text { for } j \neq i, \\ x_{i}+g\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) & \text { for } j=i .\end{cases}
$$

Proof (of Theorem 2.1). Assume that $F=\left(F_{1}, F_{2}, F_{3}\right)$ is an automorphism of \mathbb{C}^{3} such that $\operatorname{mdeg} F=\left(d_{1}, d_{2}, d_{3}\right)$. Assume also that $d_{3} \notin d_{1} \mathbb{N}+d_{2} \mathbb{N}$. By Theorem 2.2 we have

$$
\begin{equation*}
d_{3}<\left(d_{1}-1\right)\left(d_{2}-1\right) \tag{1}
\end{equation*}
$$

First of all we show that this hypothetical automorphism F does not admit reductions of types I-IV.
By the definitions of those reductions (see [6], Definitions 2-4), if $F=\left(F_{1}, F_{2}, F_{3}\right)$ admits such a reduction, then 2| $\operatorname{deg} F_{i}$ for some $i \in\{1,2,3\}$. Thus if d_{3} is odd, then F does not admit a reduction of types I-IV. Assume that $d_{3}=2 n$ for some positive integer n.

If F admits a reduction of type I or II, then by the definition (see [6], Definitions 2 and 3) we have $d_{1}=s n$ or $d_{2}=s n$ for some odd $s \geq 3$. Since $d_{1}, d_{2} \leq d_{3}=2 n<s n$, we obtain a contradiction.

If F admits a reduction of type III or IV, then by the definition (see [6], Definition 4) we have either

$$
n<d_{1} \leq \frac{3}{2} n, \quad d_{2}=3 n
$$

or

$$
d_{1}=\frac{3}{2} n, \quad \frac{5}{2} n<d_{2} \leq 3 n .
$$

Since $d_{1}, d_{2} \leq d_{3}=2 n<\frac{5}{2} n$, $3 n$, we obtain a contradiction. Thus we have proved that our hypothetical automorphism F does not admit a reduction of types I-IV.

Now we will show that it also does not admit an elementary reduction.
Assume, to the contrary, that

$$
\left(F_{1}, F_{2}, F_{3}-g\left(F_{1}, F_{2}\right)\right)
$$

where $g \in \mathbb{C}[x, y]$, is an elementary reduction of $\left(F_{1}, F_{2}, F_{3}\right)$. Then $\operatorname{deg} g\left(F_{1}, F_{2}\right)=\operatorname{deg} F_{3}=d_{3}$. But, by Proposition 2.4 , we have

$$
\operatorname{deg} g\left(F_{1}, F_{2}\right) \geq q\left(d_{1} d_{2}-d_{1}-d_{2}+\operatorname{deg}\left[F_{1}, F_{2}\right]\right)+r d_{2}
$$

where $\operatorname{deg}_{y} g(x, y)=q d_{1}+r$ with $0 \leq r<d_{1}$. Since F_{1}, F_{2} are algebraically independent, $\operatorname{deg}\left[F_{1}, F_{2}\right] \geq 2$ and so

$$
d_{1} d_{2}-d_{1}-d_{2}+\operatorname{deg}\left[F_{1}, F_{2}\right] \geq d_{1} d_{2}-d_{1}-d_{2}+2>\left(d_{1}-1\right)\left(d_{2}-1\right)
$$

This and (1) imply that $q=0$, and that

$$
g(x, y)=\sum_{i=0}^{d_{1}-1} g_{i}(x) y^{i}
$$

Since $\operatorname{lcm}\left(d_{1}, d_{2}\right)=d_{1} d_{2}$, the sets

$$
d_{1} \mathbb{N}, d_{2}+d_{1} \mathbb{N}, \ldots,\left(d_{1}-1\right) d_{2}+d_{1} \mathbb{N}
$$

are pairwise disjoint. This yields

$$
d_{3}=\operatorname{deg}\left(\sum_{i=0}^{d_{1}-1} g_{i}\left(F_{1}\right) F_{2}^{i}\right)=\max _{i=0, \ldots, d_{1}-1}\left(\operatorname{deg} F_{1} \operatorname{deg} g_{i}+i \operatorname{deg} F_{2}\right)
$$

Thus

$$
d_{3} \in \bigcup_{r=0}^{d_{1}-1}\left(r d_{2}+d_{1} \mathbb{N}\right) \subset d_{1} \mathbb{N}+d_{2} \mathbb{N}
$$

contrary to assumption.
Now, assume that

$$
\left(F_{1}, F_{2}-g\left(F_{1}, F_{3}\right), F_{3}\right),
$$

where $g \in \mathbb{C}[x, y]$, is an elementary reduction of $\left(F_{1}, F_{2}, F_{3}\right)$. Since $d_{3} \notin d_{1} \mathbb{N}+d_{2} \mathbb{N}$, we get $d_{1} \nmid d_{3}$. This implies that

$$
p=\frac{d_{1}}{\operatorname{gcd}\left(d_{1}, d_{3}\right)}>1
$$

Since d_{1} is odd, we also have $p \neq 2$. Thus by Proposition 2.4,

$$
\operatorname{deg} g\left(F_{1}, F_{3}\right) \geq q\left(p d_{3}-d_{3}-d_{1}+\operatorname{deg}\left[F_{1}, F_{3}\right]\right)+r d_{3}
$$

where $\operatorname{deg}_{y} g(x, y)=q p+r$ with $0 \leq r<p$. Since $p \geq 3$, we find that $p d_{3}-d_{3}-d_{1}+\operatorname{deg}\left[F_{1}, F_{3}\right] \geq 2 d_{3}-d_{1}+2>d_{3}$. Since we want to have $\operatorname{deg} g\left(F_{1}, F_{3}\right)=d_{2}$, it follows that $q=r=0$, and so $g(x, y)=g(x)$. This means that $d_{2}=\operatorname{deg} g\left(F_{1}, F_{3}\right)=\operatorname{deg} g\left(F_{1}\right)$. But this contradicts $d_{2} \notin d_{1} \mathbb{N}$ (remember that gcd $\left.\left(d_{1}, d_{2}\right)=1\right)$.

Finally, if we assume that $\left(F_{1}-g\left(F_{2}, F_{3}\right), F_{2}, F_{3}\right)$ is an elementary reduction of $\left(F_{1}, F_{2}, F_{3}\right)$, then in the same way as in the previous case we obtain a contradiction.

3. Proof of the theorem

Let $N: \mathbb{C}^{3} \ni(x, y, z) \mapsto\left(x+2 y\left(y^{2}+z x\right)-z\left(y^{2}+z x\right)^{2}, y-z\left(y^{2}+z x\right), z\right) \in \mathbb{C}^{3}$ be Nagata's example and suppose that $T: \mathbb{C}^{3} \ni(x, y, z) \mapsto(z, y, x) \in \mathbb{C}^{3}$. We start with the following lemma.
Lemma 3.1. For all $n \in \mathbb{N}$ we have $\operatorname{mdeg}(T \circ N)^{n}=(4 n-3,4 n-1,4 n+1)$.
Proof. We have $T \circ N(x, y, z)=\left(z, y-z\left(y^{2}+z x\right), x+2 y\left(y^{2}+z x\right)-z\left(y^{2}+z x\right)^{2}\right)$, so the above equality is true for $n=1$. Suppose that $\left(f_{n}, g_{n}, h_{n}\right)=(T \circ N)^{n}$ for $f_{n}, g_{n}, h_{n} \in \mathbb{C}[X, Y, Z]$. One can see that $g_{1}^{2}+h_{1} f_{1}=Y^{2}+Z X$, and by induction that $g_{n}^{2}+h_{n} f_{n}=Y^{2}+Z X$ for any $n \in \mathbb{N} \backslash\{0\}$. Thus

$$
\begin{aligned}
\left(f_{n+1}, g_{n+1}, h_{n+1}\right) & =(T \circ N)\left(f_{n}, g_{n}, h_{n}\right) \\
& =\left(h_{n}, g_{n}-h_{n}\left(g_{n}^{2}+h_{n} f_{n}\right), f_{n}+2 h_{n}\left(g_{n}^{2}+h_{n} f_{n}\right)-h_{n}\left(g_{n}^{2}+h_{n} f_{n}\right)^{2}\right) \\
& =\left(h_{n}, g_{n}-h_{n}\left(Y^{2}+Z X\right), f_{n}+2 h_{n}\left(Y^{2}+Z X\right)-h_{n}\left(Y^{2}+Z X\right)^{2}\right) .
\end{aligned}
$$

So if we assume that $\operatorname{mdeg}\left(f_{n}, g_{n}, h_{n}\right)=(4 n-3,4 n-1,4 n+1)$, we obtain $\operatorname{mdeg}\left(f_{n+1}, g_{n+1}, h_{n+1}\right)=(4 n+1,(4 n+1)+$ $2,(4 n+1)+2 \cdot 2)=(4(n+1)-3,4(n+1)-1,4(n+1)+1)$.

By the above lemma and Theorem 2.1 we obtain the following theorem.
Theorem 3.2. For every $n \in \mathbb{N}$ the automorphism $(T \circ N)^{n}$ is wild.
Proof. For $n=1$ this is the result of Shestakov and Umirbaev [6,7]. So we can assume that $n \geq 2$. The numbers $4 n-3,4 n-1$ are odd and $\operatorname{gcd}(4 n-3,4 n-1)=\operatorname{gcd}(4 n-3,2)=1$. Since $4 n-3>2$, we have $4 n+1 \notin(4 n-3) \mathbb{N}+(4 n-1) \mathbb{N}$. Then by Theorem 2.1, $(4 n-3,4 n-1,4 n+1) \notin \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right)$ for $n>1$. This proves that $(T \circ N)^{n}$ is not a tame automorphism.

Let us notice that in the proof of the above theorem we have also proved that

$$
\{(4 n-3,4 n-1,4 n+1): n \in \mathbb{N}, n \geq 2\} \subset \operatorname{mdeg}\left(\operatorname{Aut}\left(\mathbb{C}^{3}\right)\right) \backslash \operatorname{mdeg}\left(\operatorname{Tame}\left(\mathbb{C}^{3}\right)\right) .
$$

This proves Theorem 1.1.

References

[1] A. Brauer, On a problem on partitions, Amer. J. Math. 64 (1942) 299-312.
[2] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Birkhauser Verlag, Basel, Boston, Berlin, 2000.
[3] M. Karaś, There is no tame automorphism of \mathbb{C}^{3} with multidegree (3, 4, 5), Proc. Amer. Math. Soc. 139 (3) (2011) 769-775.
[4] M. Karaś, Tame automorphisms of \mathbb{C}^{3} with multidegree of the form $\left(p_{1}, p_{2}, d_{3}\right)$, Bull. Pol. Acad. Sci. Math. (in press).
[5] M. Karaś, Tame automorphisms of \mathbb{C}^{3} with multidegree of the form (3, $\left.d_{2}, d_{3}\right)$, J. Pure Appl. Algebra (2010)(12)(2010) $2144-2147$.
[6] I.P. Shestakov, U.U. Umirbaev, The Nagata automorphism is wild, Proc. Natl. Acad. Sci. USA 100 (2003) 12561-12563.
[7] I.P. Shestakov, U.U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004) 197-227.
[8] J. Zygadło, On multidegrees of polynomial automorphisms of \mathbb{C}^{3}, Comm. Algebra (in press).

[^0]: * Corresponding author.

 E-mail addresses: Marek.Karas@im.uj.edu.pl (M. Karaś), Jakub.Zygadlo@ii.uj.edu.p (J. Zygadło).

