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a b s t r a c t

In this note we show that the set mdeg(Aut(C3))\mdeg(Tame(C3)) is not empty, where
mdeg denotes multidegree. Moreover we show that this set has infinitely many elements.
Since for Nagata’s famous example N of a wild automorphism, mdegN = (5, 3, 1) ∈

mdeg(Tame(C3)), and since for other known examples of wild automorphisms the
multidegree is of the form (1, d2, d3) (after permutation if necessary), we give the very
first example of a wild automorphism F of C3 with mdeg F ∉ mdeg(Tame(C3)).

We also show that, if d1, d2 are odd numbers such that gcd (d1, d2) = 1, then
(d1, d2, d3) ∈ mdeg(Tame(C3)) if and only if d3 ∈ d1N + d2N. This a crucial fact that
we use in the proof of the main result.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let us recall that a tame automorphism is, by definition, a composition of linear automorphisms and triangular
automorphisms, where a triangular automorphism is a mapping of the form

T : Cn
∋


x1
x2
...
xn

 →


x1
x2 + f2(x1)
...
xn + fn(x1, . . . , xn−1)

 ∈ Cn.

Recall also that an automorphism is called wild if it is not tame.
The multidegree of any polynomial mapping F = (F1, . . . , Fn) : Cn

→ Cn, denoted as mdeg F , is the sequence
(deg F1, . . . , deg Fn). We will denote by Tame(Cn) the group of all tame automorphisms of Cn, and by mdeg
the mapping from the set of all polynomial endomorphisms of Cn into the set Nn. In [3] it was proved that
(3, 4, 5), (3, 5, 7), (4, 5, 7), (4, 5, 11) /∈ mdeg(Tame(C3)). Next in [5] it was proved that (3, d2, d3) ∈ mdeg(Tame(C3)),
for 3 ≤ d2 ≤ d3, if and only if 3|d2 or d3 ∈ 3N + d2N, and in [4] it was shown that for d3 ≥ d2 > d1 ≥ 3, where d1 and d2
are prime numbers, (d1, d2, d3) ∈ mdeg(Tame(C3)) if and only if d3 ∈ d1N + d2N. In this paper we give a generalization of
this result (Theorem 2.1 below), and using this fact we show the following theorem.

Theorem 1.1. The setmdeg(Aut(C3))\mdeg(Tame(C3)) is infinite.

Notice that the existence of wild automorphisms does not imply the above result. For example Nagata’s famous example
is wild, but its multidegree is (after permutation) (1, 3, 5) ∈ mdeg(Tame(C3)), because for instance the map C3

∋

(x, y, z) → (x, y + x3, z + x5) ∈ C3 is a tame automorphism.
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2. Tame automorphisms of C3 with multidegree (d1, d2, d3) with gcd(d1, d2) = 1 and odd d1, d2

In the proof of Theorem 1.1 we will use the following generalization of the result of [4].

Theorem 2.1. Let d3 ≥ d2 > d1 ≥ 3 be positive integers. If d1 and d2 are odd numbers such that gcd (d1, d2) = 1, then
(d1, d2, d3) ∈ mdeg(Tame(C3)) if and only if d3 ∈ d1N + d2N, i.e. if and only if d3 is a linear combination of d1 and d2 with
coefficients in N.

In the proof of this theorem (which is an appropriate adaptation of the proof of the result of [4])wewill need the following
results that we include here for the convenience of the reader.

Theorem 2.2 (see e.g. [1]). If d1, d2 are positive integers such that gcd(d1, d2) = 1, then for every integer k ≥ (d1 −1)(d2 −1)
there are k1, k2 ∈ N such that

k = k1d1 + k2d2.

Moreover (d1 − 1)(d2 − 1) − 1 /∈ d1N + d2N.

Proposition 2.3 ([3], Proposition 2.2). If for a sequence of integers 1 ≤ d1 ≤ · · · ≤ dn there is i ∈ {1, . . . , n} such that

di =

i−1−
j=1

kjdj with kj ∈ N,

then there exists a tame automorphism F of Cn with mdegF = (d1, . . . , dn).

Proposition 2.4 ([5], Proposition 2.4). Suppose that f , g ∈ C[X1, . . . , Xn] are algebraically independent and such that f /∈
C [g] , g /∈ C


f

(h means the highest homogeneous part of h). Assume that deg f < deg g, put

p =
deg f

gcd (deg f , deg g)
,

and suppose that G(x, y) ∈ C[x, y] with degy G(x, y) = pq + r, 0 ≤ r < p. Then

degG(f , g) ≥ q (p deg g − deg g − deg f + deg[f , g]) + r deg g.

In the above proposition [f , g] means the Poisson bracket of f and g defined as the following formal sum:−
1≤i<j≤n


∂ f
∂Xi

∂g
∂Xj

−
∂ f
∂Xj

∂g
∂Xi

 
Xi, Xj


and

deg [f , g] = max
1≤i<j≤n

deg


∂ f
∂Xi

∂g
∂Xj

−
∂ f
∂Xj

∂g
∂Xi

 
Xi, Xj


,

where by definition deg

Xi, Xj


= 2 for i ≠ j and deg 0 = −∞.

From the definition of the Poisson bracket we have

deg [f , g] ≤ deg f + deg g

and by Proposition 1.2.9 of [2],

deg[f , g] = 2 + max
1≤i<j≤n

deg


∂ f
∂xi

∂g
∂xj

−
∂ f
∂xj

∂g
∂xi


if f , g are algebraically independent, and [f , g] = 0 if f , g are algebraically dependent.

The last result that we will need is the following theorem.

Theorem 2.5 ([6], Theorem 3). Let F = (F1, F2, F3) be a tame automorphism of C3. If deg F1 + deg F2 + deg F3 > 3 (in other
words if F is not a linear automorphism), then F admits either an elementary reduction or a reduction of types I–IV (see [6],
Definitions 2–4).

Let us recall that an automorphism F = (F1, F2, F3) admits an elementary reduction if there exists a polynomial g ∈ C[x, y]
and a permutation σ of the set {1, 2, 3} such that deg(Fσ(1) − g(Fσ(2), Fσ(3))) < deg Fσ(1); in other words, if there exists
an elementary automorphism τ : C3

→ C3 such that mdeg (τ ◦ F) < mdegF , where (d1, . . . , dn) < (k1, . . . , kn)
means that dl ≤ kl for all l ∈ {1, . . . , n} and di < ki for at least one i ∈ {1, . . . , n} . Recall also that a mapping
τ = (τ1, . . . , τn) : Cn

→ Cn is called an elementary automorphism if there exists i ∈ {1, . . . , n} such that

τj (x1, . . . , xn) =


xj for j ≠ i,
xi + g (x1, . . . , xi−1, xi+1, . . . , xn) for j = i.
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Proof (of Theorem 2.1). Assume that F = (F1, F2, F3) is an automorphism of C3 such that mdeg F = (d1, d2, d3). Assume
also that d3 /∈ d1N + d2N. By Theorem 2.2 we have

d3 < (d1 − 1)(d2 − 1). (1)

First of all we show that this hypothetical automorphism F does not admit reductions of types I–IV.
By the definitions of those reductions (see [6], Definitions 2–4), if F = (F1, F2, F3) admits such a reduction, then 2| deg Fi

for some i ∈ {1, 2, 3}. Thus if d3 is odd, then F does not admit a reduction of types I–IV. Assume that d3 = 2n for some
positive integer n.

If F admits a reduction of type I or II, then by the definition (see [6], Definitions 2 and 3) we have d1 = sn or d2 = sn for
some odd s ≥ 3. Since d1, d2 ≤ d3 = 2n < sn, we obtain a contradiction.

If F admits a reduction of type III or IV, then by the definition (see [6], Definition 4) we have either

n < d1 ≤
3
2
n, d2 = 3n,

or

d1 =
3
2
n,

5
2
n < d2 ≤ 3n.

Since d1, d2 ≤ d3 = 2n < 5
2n, 3n, we obtain a contradiction. Thus we have proved that our hypothetical automorphism F

does not admit a reduction of types I–IV.
Now we will show that it also does not admit an elementary reduction.
Assume, to the contrary, that

(F1, F2, F3 − g(F1, F2)),

where g ∈ C[x, y], is an elementary reduction of (F1, F2, F3). Then deg g(F1, F2) = deg F3 = d3. But, by Proposition 2.4, we
have

deg g(F1, F2) ≥ q(d1d2 − d1 − d2 + deg[F1, F2]) + rd2,

where degy g(x, y) = qd1 + r with 0 ≤ r < d1. Since F1, F2 are algebraically independent, deg[F1, F2] ≥ 2 and so

d1d2 − d1 − d2 + deg[F1, F2] ≥ d1d2 − d1 − d2 + 2 > (d1 − 1)(d2 − 1).

This and (1) imply that q = 0, and that

g(x, y) =

d1−1−
i=0

gi(x)yi.

Since lcm(d1, d2) = d1d2, the sets

d1N, d2 + d1N, . . . , (d1 − 1)d2 + d1N

are pairwise disjoint. This yields

d3 = deg


d1−1−
i=0

gi(F1)F i
2


= max

i=0,...,d1−1
(deg F1 deg gi + i deg F2) .

Thus

d3 ∈

d1−1
r=0

(rd2 + d1N) ⊂ d1N + d2N,

contrary to assumption.
Now, assume that

(F1, F2 − g(F1, F3), F3),

where g ∈ C[x, y], is an elementary reduction of (F1, F2, F3). Since d3 /∈ d1N + d2N, we get d1 - d3. This implies that

p =
d1

gcd (d1, d3)
> 1.

Since d1 is odd, we also have p ≠ 2. Thus by Proposition 2.4,

deg g(F1, F3) ≥ q(pd3 − d3 − d1 + deg[F1, F3]) + rd3,

where degy g(x, y) = qp + r with 0 ≤ r < p. Since p ≥ 3, we find that pd3 − d3 − d1 + deg[F1, F3] ≥ 2d3 − d1 + 2 > d3.
Since we want to have deg g(F1, F3) = d2, it follows that q = r = 0, and so g(x, y) = g(x). This means that
d2 = deg g (F1, F3) = deg g (F1). But this contradicts d2 /∈ d1N (remember that gcd (d1, d2) = 1).

Finally, if we assume that (F1 − g(F2, F3), F2, F3) is an elementary reduction of (F1, F2, F3), then in the sameway as in the
previous case we obtain a contradiction. �
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3. Proof of the theorem

Let N : C3
∋ (x, y, z) → (x + 2y(y2 + zx) − z(y2 + zx)2, y − z(y2 + zx), z) ∈ C3 be Nagata’s example and suppose that

T : C3
∋ (x, y, z) → (z, y, x) ∈ C3. We start with the following lemma.

Lemma 3.1. For all n ∈ N we have mdeg(T ◦ N)n = (4n − 3, 4n − 1, 4n + 1).

Proof. We have T ◦ N(x, y, z) = (z, y − z(y2 + zx), x + 2y(y2 + zx) − z(y2 + zx)2), so the above equality is true for n = 1.
Suppose that (fn, gn, hn) = (T ◦ N)n for fn, gn, hn ∈ C[X, Y , Z]. One can see that g2

1 + h1f1 = Y 2
+ ZX, and by induction that

g2
n + hnfn = Y 2

+ ZX for any n ∈ N\{0}. Thus

(fn+1, gn+1, hn+1) = (T ◦ N) (fn, gn, hn)

=


hn, gn − hn


g2
n + hnfn


, fn + 2hn


g2
n + hnfn


− hn


g2
n + hnfn

2
=


hn, gn − hn


Y 2

+ ZX

, fn + 2hn


Y 2

+ ZX

− hn


Y 2

+ ZX
2

.

So if we assume that mdeg(fn, gn, hn) = (4n− 3, 4n− 1, 4n+ 1), we obtain mdeg(fn+1, gn+1, hn+1) = (4n+ 1, (4n + 1) +

2, (4n + 1) + 2 · 2) = (4(n + 1) − 3, 4(n + 1) − 1, 4(n + 1) + 1). �

By the above lemma and Theorem 2.1 we obtain the following theorem.

Theorem 3.2. For every n ∈ N the automorphism (T ◦ N)n is wild.

Proof. For n = 1 this is the result of Shestakov andUmirbaev [6,7]. Sowe can assume that n ≥ 2. The numbers 4n−3, 4n−1
are odd and gcd(4n − 3, 4n − 1) = gcd(4n − 3, 2) = 1. Since 4n − 3 > 2, we have 4n + 1 /∈ (4n − 3)N + (4n − 1)N.
Then by Theorem 2.1, (4n − 3, 4n − 1, 4n + 1) /∈ mdeg(Tame(C3)) for n > 1. This proves that (T ◦ N)n is not a tame
automorphism. �

Let us notice that in the proof of the above theorem we have also proved that

{(4n − 3, 4n − 1, 4n + 1) : n ∈ N, n ≥ 2} ⊂ mdeg(Aut(C3))\mdeg(Tame(C3)).

This proves Theorem 1.1.
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