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For each odd prime ¢ an integer NH, (NH,=—1. NH,=—1, NH, =97,
NH, = -243,..) is defined as the norm from L to & of the Heilbronn sum
H, = Tr9(Q), where { is a primitive g”th root of unity and L < G(() the subfield
of degree ¢. Various properties are proved relating the congruence properties of H,
and NH, modulo p (p + ¢ prime) to the Fermat quotient (p*~' — 1)/g (mod g); in
particular, it is shown that NH, is even iff 27" = 1 (mod ¢?).

1. INTRODUCTION

Let g be an odd prime and let { be a primitive g th root of unity. We shall
study the divisibility properties of the exponential sums defined by the
formula

Hy= N (1.1)
I<a<g-1
These sums are closely related to certain n-dimensional Kloosterman sums.
(See, e.g., [3, p. 342]. Smith |3] mentions that Heilbronn, approximately 15
years ago, posed the problem of finding nontrivial upper bounds for the sums
H, + 1. For this reason we shall call the sum in (1.1) the gth Heilbronn sum.
The number H, is just Tr?®(, where L (=Q(H,)) is the subfield of Q(()
of degree g over Q. The rational integer N§(H,), which we shall denote
simply by NH,, is the main object of study of this paper. A table of these
numbers (and of their small prime factors) for ¢ < 50 appears at the end of
the paper.
For x an integer such that (x, ¢) = 1, we define the Fermar quotient by

0x)=(x"""—1)/g  (modg).

For the history of these quotients, see |1, Chapter IV|. The importance of
these quotients is derived (among other things) from their connection with
[
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Fermat’s equation. For example, Wieferich [4] has shown that if there exist
integers x, y, z which are relatively prime and not multiples of g such that
x?4+y?+42z9=0 then Q(2)=0 (mod g). (For more information along these
lines see [2, Lectures 8,9]. In this paper we relate the divisors of the
Heilbronn sums to the solutions p of the congruence Q(p) =0 (mod g). We
shall prove

THEOREM 1. Let g be an odd prime.

(a) If p is a prime divisor of NH, then Q(p)=0 modgq. If p=2, q
arbitrary, or if p=3, g=1 mod 3, then the converse also holds.

(b) If p is a prime number, then
Q(p)=0mod g ifand only if H=H,modp O and gq#p.

It is clear that the converse of (a) does not hold for all prime numbers p,
since for fixed g there are infinitely many primes p satisfying p? '=
1 mod g% In the course of the proof of the theorem we shall also show that
for all odd primes g we have

NH,=—1mod ¢°. (1.2)

The table in Section 3 strongly suggests that H, is a unit only if g=3 or
g=>5. In view of (1.2) one might conjecture that |[NH,| > ¢* — 1 whenever
g>7. On the other hand, we shall see in Section 2 that |NH,| < (¢ — 1)¥*
for all odd primes q.

2. HEILBRONN SuMms

Since the multiplicative group G, = (Z/g*Z)* has a unique subgroup 4, of
order g — 1, it follows that ker § =4, for any epimorphism J: G, - Z/qZ.
Since d(x?)=gd(x)modgq for any x in G, and the set of integers
{x%: 1 < x < g — 1} are distinct modulo ¢*, we conclude that

A,={x"modg’:1<x<q— 1} .1
It is easily seen that if @, § are integers prime to g, then
Q(af) = Q(a) + Q(B) mod q.
Since (1 + k)7 '=1+ (g — 1) gk + O(¢*), for any integer k, we have

Q(1 + gk)=—k mod q.
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Therefore, the Fermat quotient induces an epimorphism G,~ Z/qZ and
yields a coset decomposition

G,= U (1+ka)d,. 2.2)

k=0

Let ¢ be a primitive g”th root of unity and identify the Galois group of Q({)
over Q with G,. Let L denote the fixed field with respect to the subgroup 4.
Then, by (2.1),

H,=Tr29().

Since L/Q is a field extension of prime degree and H, & Q, we conclude that
L = Q(H,). By (2.2), the conjugates of H, can be written as

H:,k) — \’ Cachall

—

ICagqg—-1

for k=0, 1,...,q — 1. Write # = {? and define f(a) = {** for a # 0 mod ¢ and
f(a)=0 for a=0mod g. Then H{" = Y, .4,/ (@) n** by definition, so that
H® is the “Fourier transform” of the function f on the group (Z/qZ). The
Fourier inversion formula now gives

gt =Xty (23)

whenever 1 < a < g— 1. In addition, since H* is real for every k we have

TrH;=q) [f(@) =q(@—1)  (Plancherel). (2.4)
Note that the arithmetic~geometric mean inequality when applied to (H{")?,
0< k< g— 1 now gives, in view of (2.4), the inequality

|NH,| < (g — D).

3. PROOF OF THE THEOREM
In the sequel we denote by O the ring of integers in L = Q(H,).

LeEmMMA 3.1. Let q be an odd prime. Then
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(a) NH,=-1modg.
(b) Let p be a prime ideal in O such that p N Z # (q). Then, for some
o € Gal(L/Q) we have cH,# H, mod p.

Proof. (a) Let m={— 1. Then the principal ideal (r) is the only prime
ideal in Q({) that lies above g. Furthermore, {* = 1 mod 7 for every x in Z
that is prime to g. Since every Heilbronn sum oH,, is the sum of ¢ — 1 terms
of the form {* with (x,q)=1, we have cH,=qg— 1 =—1mod x for every
o € Gal(L/Q). Consequently, NH, = (—1)? mod .

(b) Suppose that oH,= H, mod p for every o € Gal(L/Q). Then, if P
is a prime in Z[{] lying above p it follows from (2.3) that

tg=H,> n*=0mod B,
x

which is impossible if P 3 (7).

Theorem 1(b) is a direct consequence of

LEMMA 3.2. If p is a prime number, then p°~' = 1 mod q° if and only if
p splits completely in O, which in turn is equivalent to the congruence
Hiy=H,modp O, q#p.

Proof. Let P be a prime in Z[{] that lies above p and write p =P N O.
It is clear that p?~' = 1mod ¢* if and only if the order of p mod gt is a
divisor of g — 1. This statement is equivalent to g — 1 being divisible by the
residue class degree f(P/p) of B with respect to p and p # q. Since f(B|p) =
f(B/p)f(p/p) and f(p/p) is a divisor of g, the first part of the lemma
follows.

If f(p/p)=1, then O/p=Z/pZ and a*=amodp for every a in O.
Conversely, suppose that H? = H_mod p, p # g, where p is a prime ideal in
O above p. We must show that f(p/p) = 1. If not, there exists exactly one
prime p above p such that O/p is a field extension of Z/pZ of degree q. The
corresponding Galois group is generated by the Frobenius automorphism
x - xP. If H, satisfies the above congruence, then H, mod p is invariant with
respect to the Galois group. Therefore, for some x in Z/pZ, we have
H,=xmodp. Since op=p for every ¢ in Gal(L/Q), we have
oH,=xmod p for every 0—a contridiction in view of Lemma 3.1(b).

Proof of Theorem 1(a). Let p be a prime such that p| NH,. Then by
Lemma 3.1(a) we have p # q. Suppose that p does not split completely in O.
Then, there exists a unique p above p such that cH,=0mod p for every
o € Gal(L/Q)—contradiction. By Lemma 3.1(b) we, therefore, have that if
p|NH,, then p?~' = 1 mod g°.
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Suppose now 297! = 1 mod ¢ but 2y NH,. Since 2 splits completely in O,
we have that O/p = 7/27 for every p|2. Since 2} NH,, we conclude that
oH,= 1 mod p for every ¢ € Gal(L/Q)—a contradiction.

Suppose that 397" = 1 mod ¢* but 3fNH,. Then, as above, O/p = Z/37 if
p| 3, and, therefore, UH:E 1 mod p for every 0. Consequently, by (2.4) we
have

q(g — 1)= g mod p,

and it follows that g = 2 mod 3.

Proof of (1.2). Put NH,=—1 + kg (Lemma 3.1(a)). Then
(NH)""'=1—-kg(g—1)=1+ kgmod ¢°.

But (NHq)"‘lslmod g® since every prime divisor r of NH, satisfies
r*'=1mod g* (Theorem 1(a)). We conclude that k=0modg and the
result follows.

The table below depicts the numbers NH, for all odd primes g < 50 as
well as their prime factors p < 2767.

q NH, PINH, (p<2767)
3 -1 -
5 -1 -
7 97 97

11 —243 3¢

13 12167 23¢

17 577 577

19 221874931 -

23 157112485811 -

29 —2480435158303 137

31 310695313260929 -

37 —51140551819476687829 -

41 2727257042363914863401 -

43 —2572343484535669027372727 19*

47 1052824394331287344099620777449 532
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