JOURNAL OF NUMBER THEORY 19, 1-6 (1984)

Arithmetic Properties of Heilbronn Sums

W. L. Fouché

Department of Mathematics, University of the Orange Free State, Bloemfontein, South Africa

Communicated by H. Zassenhaus

Received December 2, 1981; revised February 2, 1982

For each odd prime q an integer NH_q $(NH_3 = -1, NH_5 = -1, NH_7 = 97, NH_{11} = -243,...)$ is defined as the norm from L to Q of the Heilbronn sum $H_q = \operatorname{Tr}_L^{Q(\zeta)}(\zeta)$, where ζ is a primitive q^2 th root of unity and $L \subseteq \mathbb{Q}(\zeta)$ the subfield of degree q. Various properties are proved relating the congruence properties of H_q and NH_q modulo p ($p \neq q$ prime) to the Fermat quotient ($p^{q-1} - 1$)/q (mod q); in particular, it is shown that NH_q is even iff $2^{q-1} \equiv 1 \pmod{q^2}$.

1. INTRODUCTION

Let q be an odd prime and let ζ be a primitive q^2 th root of unity. We shall study the divisibility properties of the exponential sums defined by the formula

$$H_q = \sum_{1 \leqslant \alpha \leqslant q-1} \zeta^{\alpha^q}. \tag{1.1}$$

These sums are closely related to certain *n*-dimensional Kloosterman sums. (See, e.g., [3, p. 342]. Smith [3] mentions that Heilbronn, approximately 15 years ago, posed the problem of finding nontrivial upper bounds for the sums $H_a + 1$. For this reason we shall call the sum in (1.1) the *q*th Heilbronn sum.

The number H_q is just $\operatorname{Tr}_L^{\mathbb{Q}(l)}\zeta$, where $L (=\mathbb{Q}(H_q))$ is the subfield of $\mathbb{Q}(\zeta)$ of degree q over \mathbb{Q} . The rational integer $N_{\mathbb{Q}}^L(H_q)$, which we shall denote simply by NH_q , is the main object of study of this paper. A table of these numbers (and of their small prime factors) for q < 50 appears at the end of the paper.

For x an integer such that (x, q) = 1, we define the *Fermat quotient* by

$$Q(x) \equiv (x^{q-1} - 1)/q \pmod{q}.$$

For the history of these quotients, see [1, Chapter IV]. The importance of these quotients is derived (among other things) from their connection with

Fermat's equation. For example, Wieferich [4] has shown that if there exist integers x, y, z which are relatively prime and not multiples of q such that $x^q + y^q + z^q = 0$ then $Q(2) \equiv 0 \pmod{q}$. (For more information along these lines see [2, Lectures 8, 9]. In this paper we relate the divisors of the Heilbronn sums to the solutions p of the congruence $Q(p) \equiv 0 \pmod{q}$. We shall prove

THEOREM 1. Let q be an odd prime.

(a) If p is a prime divisor of NH_q , then $Q(p) \equiv 0 \mod q$. If p = 2, q arbitrary, or if p = 3, $q \equiv 1 \mod 3$, then the converse also holds.

(b) If p is a prime number, then

$$Q(p) \equiv 0 \mod q$$
 if and only if $H_a^p \equiv H_a \mod p O$ and $q \neq p$.

It is clear that the converse of (a) does not hold for all prime numbers p, since for fixed q there are infinitely many primes p satisfying $p^{q-1} \equiv 1 \mod q^2$. In the course of the proof of the theorem we shall also show that for all odd primes q we have

$$NH_a \equiv -1 \mod q^2. \tag{1.2}$$

The table in Section 3 strongly suggests that H_q is a unit only if q = 3 or q = 5. In view of (1.2) one might conjecture that $|NH_q| \ge q^2 - 1$ whenever $q \ge 7$. On the other hand, we shall see in Section 2 that $|NH_q| \le (q-1)^{q/2}$ for all odd primes q.

2. HEILBRONN SUMS

Since the multiplicative group $G_q = (\mathbb{Z}/q^2\mathbb{Z})^*$ has a unique subgroup A_q of order q-1, it follows that ker $\delta = A_q$ for any epimorphism $\delta: G_q \to \mathbb{Z}/q\mathbb{Z}$. Since $\delta(x^q) \equiv q\delta(x) \mod q$ for any x in G_q and the set of integers $\{x^q: 1 \leq x \leq q-1\}$ are distinct modulo q^2 , we conclude that

$$A_q = \{x^q \mod q^2 \colon 1 \leqslant x \leqslant q - 1\}.$$

$$(2.1)$$

It is easily seen that if α, β are integers prime to q, then

$$Q(\alpha\beta) \equiv Q(\alpha) + Q(\beta) \mod q.$$

Since $(1 + qk)^{q-1} = 1 + (q-1)qk + O(q^2)$, for any integer k, we have

$$Q(1+qk) \equiv -k \bmod q.$$

Therefore, the Fermat quotient induces an epimorphism $G_q \to \mathbb{Z}/q\mathbb{Z}$ and yields a coset decomposition

$$G_q = \bigcup_{k=0}^{q-1} (1+kq) A_q.$$
 (2.2)

Let ζ be a primitive q^2 th root of unity and identify the Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q} with G_q . Let L denote the fixed field with respect to the subgroup A_q . Then, by (2.1),

$$H_a = \mathrm{Tr}_L^{\mathbb{Q}(\zeta)}(\zeta).$$

Since L/\mathbb{Q} is a field extension of prime degree and $H_q \notin \mathbb{Q}$, we conclude that $L = \mathbb{Q}(H_q)$. By (2.2), the conjugates of H_q can be written as

$$H_q^{(k)} = \sum_{1 \leq \alpha \leq q-1} \zeta^{\alpha k q} \zeta^{\alpha^q}$$

for k = 0, 1, ..., q - 1. Write $\eta = \zeta^q$ and define $f(\alpha) = \zeta^{\alpha^q}$ for $\alpha \neq 0 \mod q$ and $f(\alpha) = 0$ for $\alpha \equiv 0 \mod q$. Then $H_q^{(k)} = \sum_{\alpha \mod q} f(\alpha) \eta^{k\alpha}$ by definition, so that $H_q^{(k)}$ is the "Fourier transform" of the function f on the group $(\mathbb{Z}/q\mathbb{Z})$. The Fourier inversion formula now gives

$$q\zeta^{\alpha q} = \sum_{k} \eta^{-k\alpha} H_q^{(k)} \tag{2.3}$$

whenever $1 \leq \alpha \leq q - 1$. In addition, since $H^{(k)}$ is real for every k we have

Tr
$$H_q^2 = q \sum_{\alpha} |f(\alpha)|^2 = q(q-1)$$
 (Plancherel). (2.4)

Note that the arithmetic-geometric mean inequality when applied to $(H_q^{(k)})^2$, $0 \le k \le q-1$ now gives, in view of (2.4), the inequality

$$|NH_a| \leq (q-1)^{q/2}.$$

3. PROOF OF THE THEOREM

In the sequel we denote by O the ring of integers in $L = \mathbb{Q}(H_q)$.

LEMMA 3.1. Let q be an odd prime. Then

(a) $NH_q \equiv -1 \mod q$.

(b) Let \mathfrak{p} be a prime ideal in O such that $\mathfrak{p} \cap \mathbb{Z} \neq (q)$. Then, for some $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ we have $\sigma H_a \not\equiv H_a \mod \mathfrak{p}$.

Proof. (a) Let $\pi = \zeta - 1$. Then the principal ideal (π) is the only prime ideal in $\mathbb{Q}(\zeta)$ that lies above q. Furthermore, $\zeta^x \equiv 1 \mod \pi$ for every x in \mathbb{Z} that is prime to q. Since every Heilbronn sum σH_q is the sum of q - 1 terms of the form ζ^x with (x, q) = 1, we have $\sigma H_q \equiv q - 1 \equiv -1 \mod \pi$ for every $\sigma \in \text{Gal}(L/\mathbb{Q})$. Consequently, $NH_q \equiv (-1)^q \mod \pi$.

(b) Suppose that $\sigma H_q \equiv H_q \mod \mathfrak{p}$ for every $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$. Then, if \mathfrak{P} is a prime in $\mathbb{Z}[\zeta]$ lying above \mathfrak{p} it follows from (2.3) that

$$\zeta q \equiv H_q \sum_k \eta^{-k} \equiv 0 \bmod \mathfrak{P},$$

which is impossible if $\mathfrak{P} \neq (\pi)$.

Theorem 1(b) is a direct consequence of

LEMMA 3.2. If p is a prime number, then $p^{q-1} \equiv 1 \mod q^2$ if and only if p splits completely in O, which in turn is equivalent to the congruence $H_q^p \equiv H_q \mod p \text{ O}, q \neq p.$

Proof. Let \mathfrak{P} be a prime in $\mathbb{Z}[\zeta]$ that lies above p and write $\mathfrak{p} = \mathfrak{P} \cap O$. It is clear that $p^{q-1} \equiv 1 \mod q^2$ if and only if the order of $p \mod q^2$ is a divisor of q-1. This statement is equivalent to q-1 being divisible by the residue class degree $f(\mathfrak{P}/p)$ of \mathfrak{P} with respect to p and $p \neq q$. Since $f(\mathfrak{P}|p) = f(\mathfrak{P}/\mathfrak{p})f(\mathfrak{p}/p)$ and $f(\mathfrak{p}/p)$ is a divisor of q, the first part of the lemma follows.

If $f(\mathfrak{p}/p) = 1$, then $O/\mathfrak{p} \cong \mathbb{Z}/p\mathbb{Z}$ and $\alpha^q \equiv \alpha \mod \mathfrak{p}$ for every α in O. Conversely, suppose that $H_q^p \equiv H_q \mod \mathfrak{p}, p \neq q$, where \mathfrak{p} is a prime ideal in O above p. We must show that $f(\mathfrak{p}/p) = 1$. If not, there exists exactly one prime \mathfrak{p} above p such that O/\mathfrak{p} is a field extension of $\mathbb{Z}/p\mathbb{Z}$ of degree q. The corresponding Galois group is generated by the Frobenius automorphism $x \to x^p$. If H_q satisfies the above congruence, then $H_q \mod \mathfrak{p}$ is invariant with respect to the Galois group. Therefore, for some x in $\mathbb{Z}/p\mathbb{Z}$, we have $H_q \equiv x \mod \mathfrak{p}$. Since $\sigma \mathfrak{p} = \mathfrak{p}$ for every σ in $\operatorname{Gal}(L/\mathbb{Q})$, we have $\sigma H_q \equiv x \mod \mathfrak{p}$ for every σ —a contridiction in view of Lemma 3.1(b).

Proof of Theorem 1(a). Let p be a prime such that $p | NH_q$. Then by Lemma 3.1(a) we have $p \neq q$. Suppose that p does not split completely in O. Then, there exists a unique p above p such that $\sigma H_q \equiv 0 \mod p$ for every $\sigma \in \text{Gal}(L/\mathbb{Q})$ —contradiction. By Lemma 3.1(b) we, therefore, have that if $p | NH_q$, then $p^{q-1} \equiv 1 \mod q^2$. Suppose now $2^{q-1} \equiv 1 \mod q^2$ but $2 \nmid NH_q$. Since 2 splits completely in O, we have that $O/\mathfrak{p} \cong \mathbb{Z}/2\mathbb{Z}$ for every $\mathfrak{p} \mid 2$. Since $2 \nmid NH_q$, we conclude that $\sigma H_q \equiv 1 \mod \mathfrak{p}$ for every $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ —a contradiction.

Suppose that $3^{q-1} \equiv 1 \mod q^2$ but $3 \nmid NH_q$. Then, as above, $O/\mathfrak{p} \cong \mathbb{Z}/3\mathbb{Z}$ if $\mathfrak{p} \mid 3$, and, therefore, $\sigma H_q^2 \equiv 1 \mod \mathfrak{p}$ for every σ . Consequently, by (2.4) we have

$$q(q-1) \equiv q \mod \mathfrak{p},$$

and it follows that $q \equiv 2 \mod 3$.

Proof of (1.2). Put $NH_q = -1 + kq$ (Lemma 3.1(a)). Then

$$(NH_q)^{q-1} \equiv 1 - kq(q-1) \equiv 1 + kq \mod q^2.$$

But $(NH_q)^{q-1} \equiv 1 \mod q^2$ since every prime divisor r of NH_q satisfies $r^{q-1} \equiv 1 \mod q^2$ (Theorem 1(a)). We conclude that $k \equiv 0 \mod q$ and the result follows.

The table below depicts the numbers NH_q for all odd primes $q \leq 50$ as well as their prime factors $p \leq 2767$.

q	NH_q	$p^r \parallel NH_q (p \leq 2767)$
3	1	_
5	-1	-
7	97	97
11	-243	35
13	12167	23 ³
17	577	577
19	221874931	-
23	157112485811	_
29	2480435158303	137
31	310695313260929	_
37	-51140551819476687829	-
41	2727257042363914863401	
43	-2572343484535669027372727	19 ⁴
47	1052824394331287344099620777449	53 ²

ACKNOWLEDGMENT

The referee has kindly supplied the table. He has conjectured the congruence (1.2) and has suggested important improvements in the proofs of (2.3) and (2.4)

W. L. FOUCHÉ

References

- 1. L. E. DICKSON, "History of the Theory of Numbers: Vol. 1," Stechert, New York, 1934.
- 2. P. RIBENBOIM, "13 Lectures on Fermat's Last Theorem," Springer-Verlag, New York/Berlin, 1980.
- 3. R. A. SMITH, On n-dimensional Kloosterman sums, J. Number Theory 11 (1979), 324-343.
- 4. A. WIEFERICH, Zum letzten Fermat'schen Theorem, J. Reine Angew. Math. 136 (1909), 293-302.