On the vertex-arboricity of planar graphs

André Raspaud, Weifan Wang

LaBRI UMR CNRS 5800, Université Bordeaux I, 33405 Talence Cedex, France

Available online 24 January 2008

Abstract

The vertex-arboricity $a(G)$ of a graph G is the minimum number of subsets into which the set of vertices of G can be partitioned so that each subset induces a forest. It is well-known that $a(G) \leq 3$ for any planar graph G. In this paper we prove that $a(G) \leq 2$ whenever G is planar and either G has no 4-cycles or any two triangles of G are at distance at least 3.

1. Introduction

All graphs considered in this paper are finite simple graphs. A plane graph is a particular drawing of a planar graph on the Euclidean plane. For a plane graph G, let $V(G)$, $E(G)$, $F(G)$, $|G|$, G^*, $\Delta(G)$, and $\delta(G)$ denote, respectively, its vertex set, edge set, face set, order, dual, maximum degree, and minimum degree. A linear forest is a forest in which every connected component is a path. The vertex-arboricity $a(G)$ (linear vertex-arboricity $la(G)$, respectively) of a graph G is the minimum number of subsets into which $V(G)$ can be partitioned so that each subset induces a forest (a linear forest, respectively).

The vertex-arboricity of a graph was first introduced by Chartrand, Kronk, and Wall [8], named by point-arboricity. Among other things, they proved that the vertex-arboricity of planar graphs is at most 3. Chartrand and Kronk [9] provided a planar graph of the vertex-arboricity 3. Poh [22] strengthened this result by showing that the linear vertex-arboricity of planar graphs is at most 3.

The following theorem, which will be cited later, characterizes completely maximal plane graphs with the vertex-arboricity 2.

E-mail addresses: raspaud@labri.fr (A. Raspaud), wwf@zjnu.cn (W. Wang).

On leave of absence from the Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China.
Theorem 1 ([24]). Let G be a maximal plane graph of order at least 4. Then $a(G) = 2$ if and only if G^* is Hamiltonian.

As an extension of Theorem 1, Hakimi and Schmeichel [16] proved that a plane graph G has $a(G) = 2$ if and only if G^* contains a connected Eulerian spanning subgraph. It was known [14] that determining the vertex-arboricity of a graph is NP-hard. Hakimi and Schmeichel [16] showed that determining whether $a(G) \leq 2$ is NP-complete for maximal planar graphs G. The reader is referred to [5–7,10,12,17,20,23,26] for other results about the vertex-arboricity of graphs.

The purpose of this paper is to give some sufficient conditions for a planar graph to have the vertex-arboricity at most 2. In short, we prove the following theorems:

Theorem 2. For each $k \in \{3, 4, 5, 6\}$, every planar graph G without k-cycles has $a(G) \leq 2$.

Theorem 3. Every planar graph G without triangles at distance less than 2 has $a(G) \leq 2$.

2. Preliminaries

Let G be a plane graph. For $f \in F(G)$, we use $b(f)$ to denote the boundary walk of f and write $f = [u_1u_2\cdots u_n]$ if u_1, u_2, \ldots, u_n are the vertices of $b(f)$ in the clockwise order. Sometimes, we write $V(f) = V(b(f))$. For $x \in V(G) \cup F(G)$, let $d_G(x)$, or simply $d(x)$, denote the degree of x in G. A vertex (or face) of degree k is called a k-vertex (or k-face). If $k \leq 4$, x is called a minor vertex (or face), and likewise a major vertex (or face). We say that f is an (m_1, m_2, \ldots, m_n)-face if $d(u_i) = m_i$ for $i = 1, 2, \ldots, n$. For $S \subseteq V(G) \cup E(G)$, let $G[S]$ denote the subgraph of G induced by S. A graph G is called k-degenerate if every subgraph H of G contains a vertex of degree at most k.

Now we introduce an equivalent definition to the vertex-arboricity in terms of the coloring version. An acyclic k-coloring of a graph G is a mapping ϕ from the vertex set $V(G)$ to the set of colors $\{1, 2, \ldots, k\}$ such that each color class induces an acyclic subgraph, i.e., a forest. The vertex-arboricity $a(G)$ of G is the smallest integer k such that G has an acyclic k-coloring.

Analogously to the Brooks’ Theorem on the vertex coloring, Kronk and Mitchem [21] proved the following result:

Theorem 4 ([21]). Let G be a simple connected graph. If G is neither a cycle nor a clique of odd order, then $a(G) \leq \lceil \Delta(G)/2 \rceil$.

Theorem 4 implies that planar graphs G of maximum degree 4 have $a(G) \leq 2$.

Lemma 5. If G is a k-degenerate graph, then $a(G) \leq \lceil (k + 1)/2 \rceil$.

Lemma 5 can be established by using induction on the order of graphs. It is well-known that every planar graph is 5-degenerate and that every planar graph without 3-cycles is 3-degenerate. It is shown in [27] that every planar graph without 5-cycles is 3-degenerate and in [13] that every planar graph without 6-cycles is 3-degenerate. Note that an icosidodecahedron, i.e., the line graph of a dodecahedron, is a 4-regular planar graph without 4-cycles. Hence the lack of 4-cycles does not imply the 3-degeneracy of a planar graph. Choudum [11] constructed, for each $k \geq 7$, 4-regular 3-connected planar graphs with no k-cycles.

These facts together with Lemma 5 establish the following result:

Theorem 6. If G is a planar graph without 3-cycles, or without 5-cycles, or without 6-cycles, then $a(G) \leq 2$.
Lemma 7. Suppose that a graph G is the union of two graphs G_1 and G_2 with $|V(G_1) \cap V(G_2)| \leq 1$. Then $a(G) \leq \max\{a(G_1), a(G_2)\}$.

3. Planar graphs without 4-cycles

In this section, we focus on the vertex-arboricity of planar graphs without cycles of length 4, starting with the study of their structural properties.

Let G be a plane graph with $\delta(G) = 4$ and without 4-cycles. For a vertex $v \in V(G)$, we use $F_3(v)$ to denote the set of 3-faces incident with v. For a face $f \in F(G)$, let $m(f)$ denote the number of 3-faces adjacent to f. We say that two faces (or cycles) are adjacent or intersecting if they share a common edge or a common vertex respectively. Suppose that v is a 4-vertex and v_1, v_2, v_3, v_4 are the neighbors of v in the clockwise order. Let f_i denote the face incident with the vertex v with $v v_1, v v_{i+1}$ as boundary edges, where $i = 1, 2, 3, 4$ and the summation in the indices are taken modulo 4. We say that f_1 is a source of f_3, and f_3 is a sink of f_1, if $d(f_2) = d(f_4) = 3$, $d(f_3) = 5$, $d(f_1) \geq 5$, $d(v_3) = d(v_4) = 4$, and $d(v_i) \geq 5$ for $i = 1, 2$. A 5-face f is said to be weak if f is adjacent to exactly four 3-faces and is incident with five 4-vertices. Let $s(f)$ denote the number of weak 5-faces adjacent to a face f.

Lemma 8. Let G be a 2-connected plane graph with $\delta(G) = 4$ and without 4-cycles. Then G contains a 5-face $[x_1x_2 \cdots x_5]$ adjacent to four 3-faces $[x_1y_1x_2]$, $[x_2y_2x_3]$, $[x_3y_3x_4]$, and $[x_4y_4x_5]$ so that $d(y_2) = d(x_i) = 4$ for all $i = 1, 2, \ldots, 5$ (see Fig. 1).

Proof. Assume that the lemma is false. Let G be a counterexample. Then G is a 2-connected plane graph with $\delta(G) = 4$, without 4-cycles, and not having a 5-face that satisfies the requirement of the lemma. Since G is 2-connected, the boundary of each face of G forms a simple cycle. Since G contains no 4-cycles, G has neither 4-faces nor two adjacent 3-faces. These basic facts will be used frequently in the following proof without further notice.

Using Euler’s formula, $|G| - |E(G)| + |F(G)| = 2$ and $\sum\{d(v) \mid v \in V(G)\} = \sum\{d(f) \mid f \in F(G)\} = 2|E(G)|$, we can derive the following identity.

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8. \quad (1)$$

Let w denote a weight function defined by $w(x) = d(x) - 4$ for each $x \in V(G) \cup F(G)$. So the total sum of weights is equal to -8. We shall design some discharging rules and redistribute weights according to them. Once the discharging is finished, a new weight function w' is produced. However, the total sum of weights is kept fixed when the discharging is in progress. On the other hand, we will show that $w'(x) \geq 0$ for all $x \in V(G) \cup F(G)$. This leads to an obvious contradiction.
The following are the discharging rules. For \(x, y \in V(G) \cup F(G) \), we use \(\tau(x \to y) \) to denote the amount of weight transferred from \(x \) to \(y \).

(R1) Every face \(f \) of degree at least 6 sends \(\frac{1}{2} \) to each adjacent 3-face, \(\frac{1}{2} \) to each adjacent weak 5-face, and 2/15 to each sink.

(R2) Let \(v \) be a vertex of degree at least 6 and \(f \) be a major face incident with \(v \). If \(f \) is adjacent to two 3-faces in \(F_3(v) \), then we let \(\tau(v \to f) = \frac{2}{3} \). If \(f \) is adjacent to exactly one 3-face in \(F_3(v) \), then we let \(\tau(v \to f) = \frac{1}{3} \).

(R3) Let \(v \) be a 5-vertex. Suppose that \(f_1, f_2, \ldots, f_5 \) are the incident faces of \(v \) in the clockwise order.

If \(|F_3(v)| = 1 \), say \(d(f_1) = 3 \), we let \(\tau(v \to f_2) = \tau(v \to f_3) = \frac{1}{3} \).

If \(|F_3(v)| = 2 \), say \(d(f_1) = d(f_2) = 3 \), we first let \(\tau(v \to f_2) = \frac{2}{3} \). Afterwards, if there exists exactly one face \(f^* \in \{f_4, f_5\} \) such that \(d(f^*) = 5 \), \(m(f^*) = 4 \) and \(f^* \) is incident with one 5-vertex and four 4-vertices, then we let \(\tau(v \to f^*) = \frac{1}{3} \). Otherwise, we let \(\tau(v \to f_4) = \tau(v \to f_5) = \frac{1}{6} \).

(R4) Every 5-face \(f \) sends \(\frac{1}{2} \) to each adjacent 3-face and 2/15 to each sink.

Let \(\beta(f) \) denote the resulting weight of a 5-face \(f \) after the discharging procedure is performed according to (R1)–(R4).

(R5) Let \(f \) be a 5-face adjacent to at most two 3-faces. If \(\beta(f) > 0 \) and \(s(f) \geq 1 \), then \(f \) sends \(\beta(f)/s(f) \) to each weak 5-face adjacent to \(f \).

Let \(w' \) denote the final weight function after (R1) to (R5) are carried out in the graph \(G \).

Suppose \(v \in V(G) \). Since \(\delta(G) = 4 \), we know that \(d(v) \geq 4 \). If \(d(v) = 4 \), then \(w'(v) = w(v) = 0 \). If \(d(v) = 5 \), then \(w(v) = 1 \). Since \(G \) contains no two adjacent 3-faces, \(|F_3(v)| \leq 2 \). It follows from the rule (R3) that \(w'(v) \geq 0 \). Assume that \(d(v) \geq 6 \). For \(k = 1, 2 \), we use \(t_k \) to denote the number of faces incident with \(v \) each of which is adjacent to exactly \(k \) 3-face(s) in \(F_3(v) \). It is easy to show that \(t_1 + 2t_2 \leq d(v) \), and hence \(w'(v) = w(v) - \frac{1}{3}t_1 - \frac{2}{3}t_2 = d(v) - 4 - \frac{1}{3}(t_1 + 2t_2) \geq d(v) - 4 - \frac{1}{3}d(v) = \frac{2}{3}d(v) - 6 \geq 0 \).

Suppose \(f \in F(G) \). Then \(d(f) \neq 4 \). We have to consider the different possible values of \(d(f) \).

1. If \(d(f) = 3 \), then each of the faces adjacent to \(f \) is of degree at least 5. By (R1) and (R4),
 \[w'(f) = -1 + 3 \cdot \frac{1}{3} = 0. \]
 Assume that \(d(f) \geq 5 \). It is easy to see that \(m(f) + s(f) \leq d(f) \) and \(f \) has at most \(\frac{m(f)/2}{12} \) sinks.

2. If \(d(f) \geq 7 \), then \(w'(f) = w(f) - \frac{1}{3}m(f) + \frac{1}{12}s(f) + \frac{2}{15} \cdot \frac{1}{2}d(f) \geq d(f) - 4 - \frac{1}{3}m(f) + s(f) - \frac{1}{12}d(f) \geq d(f) - 4 - \frac{1}{3}d(f) = \frac{2}{3}d(f) - 4 \geq 0 \) by (R1).

3. Suppose that \(d(f) = 6 \). Then \(w(f) = 2 \). Let \(f = [x_1x_2 \cdots x_6] \) and let \(f_i \) denote the adjacent face of \(f \) with \(x_ix_{i+1} \) as their common boundary edge for \(i = 1, 2, \ldots, 6 \), where the indices are taken modulo 6. Suppose that \(f \) is adjacent to a weak 5-face, say \(f_1 \). Then, by definition, \(d(x_1) = d(x_2) = 4 \) and \(f_1 \) is adjacent to four 3-faces, i.e., all the adjacent faces, different from \(f \), of \(f_1 \) are of degree 3. If \(d(f_2) = 3 \), then either \(d(x_2) \geq 5 \) or \(x_2 \) is incident with two adjacent 3-faces, always producing a contradiction. Thus, it follows that \(d(f_2) > 3 \), and similarly \(d(f_3) > 3 \). This shows that if \(f \) is adjacent to a weak 5-face, then \(f \) is adjacent to at most three 3-faces.

- If \(m(f) \leq 4 \), then \(f \) has at most two sinks. Thus, by (R1), \(w'(f) \geq 2 - \frac{1}{3}m(f) - \frac{1}{2}s(f) - \frac{2}{2} = -2 \cdot \frac{1}{12}d(f) - \frac{1}{3}m(f) - \frac{1}{5}(6 - m(f)) - \frac{4}{15} = \frac{8}{15} - \frac{2}{15}m(f) \geq 0 \).
- If \(m(f) = 5 \), then \(s(f) = 0 \) by the above argument and \(w'(f) \geq 2 - 5 \cdot \frac{1}{3} - 2 \cdot \frac{2}{15} = \frac{1}{15} \) by (R1).
Assume that $m(f) = 6$. Then $s(f) = 0$. If f is incident with a vertex v of degree at least 5, then $\tau(v \to f) = \frac{2}{3}$ by (R2) and (R3), and $w'(f) \geq 2 + \frac{2}{3} - 6 \cdot \frac{1}{3} - 3 \cdot \frac{2}{15} = \frac{4}{15}$ accordingly. If all the vertices incident with f are of degree 4, then it follows that f has no sinks and therefore $w'(f) = 2 - 6 \cdot \frac{1}{3} = 0$.

4. Suppose that $d(f) = 5$. Then $w(f) = 1$. Let x_1, x_2, \ldots, x_5 be the boundary vertices of f in the clockwise order. Let f_i denote the adjacent face of f with $x_i x_{i+1}$ as a boundary edge, $i = 1, 2, \ldots, 5$ (indices modulo 5).

- If $m(f) \leq 2$, f has at most one sink. By (R4), $\beta(f) \geq 1 - 2 \cdot \frac{1}{3} - \frac{2}{15} = \frac{1}{3}$, implying that $w'(f) \geq 0$ by (R5).

- Assume that $m(f) = 3$. Notice that f admits at most one sink. If f has no sink, then $w'(f) = 1 - 3 \cdot \frac{1}{3} = 0$ by (R4) and (R5). Suppose that f has one sink, say $d(f_1) = d(f_2) = 2$, and f intersects with its sink at a vertex x_2. By definition, both $d(x_1)$ and $d(x_3)$ are of degree at least 5. Without loss of generality, we argue the two cases as follows:

 (i) $d(f_3) = 3$. Since x_3 is incident with two 3-faces, namely f_2 and f_3, x_3 gives $\frac{2}{3}$ to f by (R2) or (R3). Thus $w'(f) \geq 1 + \frac{2}{3} - 3 \cdot \frac{1}{3} - \frac{2}{15} = \frac{8}{15}$.

 (ii) $d(f_4) = 3$. If either $d(x_1) \geq 6$ or $d(x_3) \geq 6$, then f receives $\frac{1}{3}$ from x_1 or x_3 by (R2) and thus $w'(f) \geq 1 + \frac{1}{3} - 3 \cdot \frac{1}{3} - \frac{2}{15} = \frac{1}{5}$. Suppose that $d(x_1) = d(x_3) = 5$. If x_1 is incident with only one 3-face, i.e., f_1, then $\tau(x_1 \to f) = \frac{1}{3}$ by (R3), so that $w'(f) \geq 1 + \frac{1}{3} - 3 \cdot \frac{1}{3} - \frac{2}{15} = \frac{1}{5}$. So suppose that $|F_3(x_1)| = 2$. If either $d(f_5) \geq 6$ or $d(f_5) = 5$ and $m(f_5) \leq 3$, then x_1 sends at least $\frac{1}{5}$ to f by (R3). If $d(f_5) = 5$ and $m(f_5) = 4$, then since $d(f_4) = 3$, we see that $d(x_5) \geq 5$. It follows that f_5 is incident with at least two vertices of degree at least 5. Thus (R3), we also have $\tau(x_1 \to f) \geq \frac{1}{5}$.

Now we always obtain $w'(f) \geq 1 + \frac{1}{6} - 3 \cdot \frac{1}{3} - \frac{2}{15} = \frac{4}{30}$.

- Assume that $m(f) = 4$, say $d(f_1) = d(f_2) = d(f_3) = d(f_4) = 3$. For $i \in \{1, 2, 3, 4\}$, let y_i denote the third vertex on the boundary of f_i distinct from x_i and x_{i+1}. Note that f has at most two sinks. If f has a sink, then f is incident with a vertex u such that $\tau(u \to f) = \frac{2}{3}$ by (R2) or (R3). Hence $w'(f) \geq 1 + \frac{2}{3} - 4 \cdot \frac{1}{3} - 2 \cdot \frac{2}{15} = \frac{1}{15}$. Assume that f has no sink. If one of x_2, x_3, x_4 is of degree at least 5, then $w'(f) \geq 1 + \frac{2}{3} - \frac{4}{3} = \frac{1}{3}$. If either $d(x_1) \geq 6$, or $d(x_3) \geq 6$, or $d(x_1) = d(x_3) = 5$, or $d(f_5) \geq 6$ and exactly one of $d(x_1)$ and $d(x_3)$ is equal to 5, then it is easy to check that $w'(f) \geq 1 + \frac{1}{3} - \frac{2}{3} = 0$. Now suppose that $d(f_5) = 5$, $d(x_1) = 5$ and $d(x_i) = 4$ for all $i \in \{2, 3, 4, 5\}$. We see that f_5 is adjacent to at most three 3-faces for otherwise it follows that $d(x_5) \geq 5$. By (R3), $\tau(x_1 \to f) = \frac{1}{5}$ and $w'(f) \geq 1 + \frac{1}{3} - \frac{4}{3} = 0$.

Finally, suppose that $d(x_1) = d(x_2) = \cdots = d(x_5) = 4$, that is f is a weak 5-face. Since we assume the lemma to be false, we observe that $d(y_2) \geq 5$ and $d(y_3) \geq 5$. Thus, the face f' having y_2x_3, x_3y_3 as two boundary edges is a source of f, so $\sigma(f' \to f) = \frac{7}{15}$ by (R1) or (R4). It suffices to show that f_5 gives f at least $\frac{1}{5}$, thus $w'(f) \geq 1 + \frac{1}{5} + \frac{4}{15} = 0$. This is obvious by (R1) when $d(f_5) \geq 6$. Thus assume that $d(f_5) = 5$ and $f_5 = [x_5z_1z_2z_3x_1]$. Suppose that g_1, g_2, g_3, g_4 are the adjacent faces of f_5 different from f, where f_5 shares the edge x_5z_1 with g_1, z_1z_2 with g_2, z_2z_3 with g_3, and z_3x_5 with g_4. Since $d(x_1) = d(x_5) = 4$ and G contains no adjacent 3-faces, we have $d(g_1) \geq 5$ and $d(g_4) \geq 5$. This implies that f_5 is adjacent to at most two 3-faces and so has at most one sink. If $m(f_5) = 0$, then f_5 has no sink and has at most five adjacent weak 5-faces. Thus f_5 gives f at least $\frac{1}{5}$ by (R5). Assume that $m(f_5) = 1$, say $d(g_2) = 3$ and $d(g_3) \geq 5$. Then either $d(z_1) \geq 5$, or
$d(g_1) > 5$ or g_1 is adjacent to at most three 3-faces. We in both (all) cases derive that g_1 is not a weak 5-face in these two cases. Consequently, $\tau(f_5 \to f) \geq (1 - \frac{1}{3})/3 = \frac{2}{9} > \frac{1}{3}$ by (R5). Assume that $m(f_5) = 2$, i.e., both g_2 and g_3 are 3-faces. With a similar argument, g_1 and g_4 are not weak 5-faces. If $d(z_2) \geq 5$, then $\tau(z_2 \to f_5) = \frac{2}{3}$ by (R2) or (R3) and henceforth $\tau(f_5 \to f) \geq 1 + \frac{2}{3} - \frac{2}{3} = 1$ by (R5). Thus suppose that $d(z_2) = 4$. Now we have $\tau(f_5 \to f) \geq 1 - \frac{2}{3} - \frac{2}{15} = \frac{1}{5}$.

- Assume that $m(f) = 5$. If f has a sink, then f is incident with at least two vertices of degree at least 5. (R2) and (R3) guarantee that $w'(f) \geq 1 + 2 \cdot \frac{2}{3} - 5 \cdot \frac{1}{3} - 2 \cdot \frac{2}{15} = \frac{2}{3}$. Suppose f has no sink. If f is incident with a vertex of degree at least 5, then $w'(f) \geq 1 + \frac{2}{3} - 5 \cdot \frac{1}{3} = 0$

This completes the proof of the Lemma. □

In Figs. 1 and 2, by the heavy vertices we mean that they are of the same degree as in the original graph G.

Theorem 9. If G is a plane graph without 4-cycles, then $a(G) \leq 2$.

Proof. We make use of induction on the order of G. If $|G| \leq 4$, then the theorem holds clearly. Suppose that G is a plane graph with $|G| \geq 5$ and without 4-cycles. If G contains a vertex v of degree at most 3, we let $H = G - v$. Then H is a plane graph without 4-cycles and $|H| = |G| - 1$. By the induction hypothesis, H is acyclically 2-colorable. It is easy to show that any acyclic 2-coloring of H can be extended into an acyclic 2-coloring of G.

Now suppose that $\delta(G) = 4$. By Lemma 7, we may assume that G is 2-connected. By Lemma 8, G contains a 5-face $[x_1x_2 \cdots x_5]$ adjacent to four 3-faces $[x_1y_1x_2]$, $[x_2y_2x_3]$, $[x_3y_3x_4]$, and $[x_4y_4x_5]$ such that $d(y_2) = d(x_i) = 4$ for all $i = 1, 2, \ldots, 5$. In G, we let y_5 denote the neighbor of x_5 different from y_4, x_1, and x_4. Let y_6 denote the neighbor of x_1 different from y_1, x_2, and x_5. Let y'_2, y''_2 denote the neighbors of y_2 different from x_2 and x_3. We set $H = G - y_2$. Then H is a plane graph without 4-cycles and $|H| < |G|$. By the induction hypothesis, H has an acyclic 2-coloring ϕ using the colors 1 and 2. If at least three of four neighbors of y_2 have the color 1 (or 2), then we assign 2 (or 1) to y_2. It is easy to see that such coloring does not produce a monochromatic cycle, thus ϕ is extended into an acyclic 2-coloring of G. So suppose that each color 1 or 2 occurs exactly twice in the neighborhood of y_2. We only need to consider the following two possibilities (up to symmetry):
Case 1. $\phi(y'_2) = \phi(y''_2) = 1$ and $\phi(x_2) = \phi(x_3) = 2$.

Since $x_1x_2y_1x_1$ is a 3-cycle in H, at most one of x_1 and y_1 is colored with 2. If some of them has the color 2, then we color y_2 with 2 and recolor x_2 with 1. So suppose that $\phi(x_1) = \phi(y_1) = 1$, and similarly $\phi(x_4) = \phi(y_3) = 1$. If $\phi(y_6) = 1$, we recolor x_1 with 2 and x_2 with 1, then color y_2 with 2. Suppose that $\phi(y_6) = 2$. If $\phi(x_5) = 1$, we again recolor x_1 with 2 and x_2 with 1, then color y_2 with 2. Then suppose that $\phi(x_5) = 2$. If $\phi(y_4) = 1$, we recolor x_4 with 2 and x_3 with 1, and color y_2 with 2. Suppose that $\phi(y_4) = 2$. If $\phi(y_5) = 2$, we color (or recolor) the vertices y_2, x_3, x_4, x_5 with the colors 2, 1, 2, 1, respectively. If $\phi(y_5) = 1$, we color (or recolor) the vertices y_2, x_3, x_4, x_5, x_1 with the colors 2, 1, 2, 1, 2, respectively.

It is easy to see that ϕ is extended to the graph G in every possible case.

Case 2. $\phi(y'_2) = \phi(x_2) = 1$ and $\phi(y''_2) = \phi(x_3) = 2$.

We first erase the colors of the vertices x_1, x_2, \ldots, x_5. For $i = 1, 2$, let $S(i)$ denote the subset of vertices in $\{y_1, y_3, y_4, y_5, y_6\}$ which get the color i in the coloring ϕ. Without loss of generality, we suppose that $|S(1)| \leq |S(2)|$. Thus $0 \leq |S(1)| \leq 2$. At first, we assign the color 1 to y_2.

If $|S(1)| = 0$, we color x_1, x_2, x_4, x_5 with 1 and x_3 with 2.

Assume that $|S(1)| = 1$.

If $S(1) = \{y_1\}$, we color x_3, x_4, x_5 with 1 and x_1, x_2 with 2.

If $S(1) = \{y_3\}$, we color x_1, x_2, x_5 with 1 and x_3, x_4 with 2.

If $S(1) = \{y_4\}$, or $S(1) = \{y_5\}$, we color x_1, x_2, x_4 with 1 and x_3, x_5 with 2.

If $S(1) = \{y_6\}$, we color x_2, x_4, x_5 with 1 and x_1, x_3 with 2.

Assume that $|S(1)| = 2$.

If $S(1) = \{y_1, y_3\}$, we color x_1, x_5 with 1 and x_2, x_3, x_4 with 2.

If $S(1) = \{y_1, y_4\}$, or $S(1) = \{y_1, y_5\}$, or $S(1) = \{y_3, y_5\}$, we color x_1, x_4 with 1 and x_2, x_3, x_5 with 2.

If $S(1) = \{y_1, y_6\}$, we color x_4, x_5 with 1 and x_1, x_2, x_3 with 2.

If $S(1) = \{y_3, y_4\}$, we color x_1, x_2 with 1 and x_3, x_4, x_5 with 2.

If $S(1) = \{y_3, y_6\}$, we color x_2, x_5 with 1 and x_1, x_3, x_4 with 2.

If $S(1) = \{y_4, y_5\}$, we color x_1, x_2, x_4 with 1 and x_3, x_5 with 2.

If $S(1) = \{y_5, y_6\}$, we color x_2, x_4, x_5 with 1 and x_1, x_3 with 2.

If $S(1) = \{y_4, y_6\}$, we need to recolor y_2 with 2, afterwards color x_2, x_3, x_5 with 1 and x_1, x_4 with 2.

We have exhausted all the possible cases to extend ϕ to the whole graph G. The proof of Theorem 9 is complete. \qed

Now Theorem 2 follows immediately from Theorems 6 and 9.

4. Planar graphs with sparse triangles

Theorem 6 affirms that the vertex-arboricity of planar graphs without 3-cycles is at most 2. Actually, this result can be improved by relaxing the requirement for 3-cycles. In what follows, it is assumed that a triangle is synonymous with a 3-cycle. The distance $\text{dist}(T, T')$ between two triangles T and T' is defined as the value $\min\{\text{dist}(x, y) | x \in V(T) \text{ and } y \in V(T')\}$.

Lemma 10. Let G be a 2-connected plane graph with $\delta(G) \geq 4$ and without triangles at distance less than 2. Then G contains a 5-cycle $C = v_1v_2 \cdots v_5v_1$ with a chord v_2v_5 such that $d(v_i) = 4$ for all $i = 1, 2, \ldots, 5$ (see Fig. 2).
Proof. Assume the lemma is false. Let G be a counterexample. Then G is a 2-connected plane graph satisfying the following properties:

(a) $\delta(G) \geq 4$.
(b) For any two triangles T_1 and T_2, $\text{dist}(T_1, T_2) \geq 2$. In particular, every vertex v is incident with at most a 3-face.
(c) There does not exist a $(4, 4, 4)$-face adjacent to a $(4, 4, 4, 4)$-face.

As in the proof of Lemma 8, we define the initial weight function $w(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$. From the formula (1), it follows that $\sum_{x \in V(G) \cup F(G)} w(x) = -8$. We design the new discharging rules (R1)–(R3) below and then carry out them on the graph G. Let $w'(x)$ denote the resultant weight function once the discharging procedure is complete. It suffices to show that $w'(x) \geq 0$ for all $x \in V(G) \cup F(G)$ to derive a contradiction.

A 3-face f is called bad if it is incident with three 4-vertices and adjacent to three 4-faces. The face f is said to be a pendant 3-face of a vertex v if $\min\{\text{dist}(v, x) | x \in V(f)\} = 1$, i.e., the distance between v and f is exactly one.

This time, our discharging rules are as follows:

(R1) Every major face f sends 1 to each adjacent 3-face.
(R2) Every major vertex v which is incident with a 3-face f sends 1 to this f.
(R3) Every major vertex v which is not incident with any 3-face sends $\frac{1}{3}$ to each pendant bad 3-face.

Let $f \in F(G)$. If $d(f) = 4$, then $w'(f) = w(f) = 0$. If $d(f) \geq 5$, then it is easy to derive from (b) that f is adjacent to at most $\lfloor d(f)/3 \rfloor$ 3-faces. Thus $w'(f) \geq d(f) - 4 - \lfloor d(f)/3 \rfloor = [2d(f)/3] - 4 \geq 0$ by (R1). Assume that $d(f) = 3$. Then $w(f) = -1$. If f is either adjacent to a major face or incident with a major vertex, then $w'(f) \geq -1 + 1 = 0$ by (R1) or (R2). Otherwise, f is a bad 3-face. Suppose that $f = [xyz]$, with $d(x) = d(y) = d(z) = 4$, is adjacent to three 4-faces $[xu_1u_2y]$, $[yv_1v_2z]$, and $[zt_1t_2x]$. On the one hand, we note that every element in $\{u_1, u_2, v_1, v_2, t_1, t_2\}$ takes f as a pendant bad 3-face, and is not incident with any 3-face by (b). On the other hand, by (c), either u_1 or u_2 is a major vertex and hence gives $1/3$ to f by (R3). The same argument applies to v_i's or t_j's. It turns out that $w'(f) \geq -1 + 3 \times \frac{1}{3} = 0$.

Let $v \in V(G)$. Then $d(v) \geq 4$ by (a). If $d(v) = 4$, then $w'(v) = w(v) = 0$. Assume that $d(v) \geq 5$. Then $w(v) \geq 1$. When v is incident with a 3-face, v has no pendant bad 3-faces by (b), so that $w'(v) \geq 1 - 1 = 0$. So suppose that v is not incident with any 3-face. If $d(v) \geq 6$, then since v has at most $d(v)$ pendant bad 3-faces, $w'(v) \geq d(v) - 4 - \frac{1}{3}d(v) = \frac{2}{3}d(v) - 4 \geq 0$ by (R3). Now assume that $d(v) = 5$, and so $w(v) = 1$. We claim that v has at most three pendant bad 3-faces, and henceforth $w'(v) \geq 1 - 3 \times \frac{1}{3} = 0$.

Let x, y, z, t, s denote the neighbors of v arranged around v in clockwise direction. Suppose to the contrary that v has four pendant bad 3-faces, e.g., $f_1 = [xx_1x_2]$, $f_2 = [yy_1y_2]$, $f_3 = [zz_1z_2]$, and $f_4 = [tt_1t_2]$, where all the vertices in $V(f_1) \cup V(f_2) \cup V(f_3) \cup V(f_4)$ are of degree 4. Let f_{xy}, f_{yz}, and f_{zt} denote the incident faces of v with $vx, vy \in b(f_{xy})$, $vy, vz \in b(f_{yz})$, and $vz, vt \in b(f_{zt})$, respectively. For each $r \in \{x, y, z, t\}$, suppose that r_3 is the neighbor of r different from v, r_1, r_2.

If neither yy_3 nor zz_3 lie on the boundary of f_{yz}, then it follows that f_{yz} is adjacent to f_2 and f_3. Thus $d(f_{yz}) = 4$ by virtue of the definition of f_2 and f_3. However, it is immediate to derive that $\text{dist}(f_2, f_3) \leq 2$, contradicting (b). So suppose that at least one of the edges yy_3 and zz_3 belongs to the boundary of f_{yz}. If $yy_3 \in b(f_{yz})$, then, again, f_2 is adjacent to f_{xy}. It follows that f_{xy} is a 4-face of the form $[yvxy_1]$ for some $1 \leq i \leq 2$, which implies that $\text{dist}(f_1, f_2) \leq 1$, also a contradiction. If $zz_3 \in b(f_{yz})$, we consider the face f_{zt} to obtain a similar contradiction. This completes the proof of the lemma. \qed
Proof of Theorem 3. The proof is proceeded by induction on $|G|$. If $|G| \leq 4$, then the theorem holds trivially. Suppose that G is a plane graph with $|G| \geq 5$ and without triangles at distance less than 2. If $\delta(G) \leq 3$, the proof is similar to that of Theorem 9. Thus, by Lemma 7, we may assume that G is 2-connected and $\delta(G) \geq 4$. By Lemma 10, G contains a 5-cycle $C = v_1 v_2 \cdots v_5 v_1$ with a chord $v_2 v_5$ such that $d(v_i) = 4$ for all $i = 1, 2, \ldots, 5$. For $1 \leq i \leq 5$, let x_i (and y_i when $i = 1, 3, 4$) denote the neighbors of v_i which are not in the cycle C. We put $H = G - v_1$. Then H is a plane graph without triangles at distance less than 2 and $|H| < |G|$. By the induction hypothesis, H has an acyclic 2-coloring ϕ using the colors 1 and 2. If at least three of four neighbors of v have the color 1 (or 2), then we color v_1 with 2 (or 1). Otherwise, each color 1 or 2 occurs exactly twice in the neighborhood of v. The argument is divided into the two cases below (up to symmetry):

Case 1. $\phi(x_1) = \phi(y_1) = 1$ and $\phi(v_2) = \phi(v_5) = 2$.

If at least one of x_2 and v_3 is colored with 2, then we color v_1 with 2 and recolor v_2 with 1. Suppose that $\phi(x_2) = \phi(v_3) = 1$. Similarly, $\phi(x_5) = \phi(v_4) = 1$. If at most one of x_3 and y_3 is colored with 2, we recolor v_3 with 2 and v_2 with 1, and then color v_1 with 2. Thus assume that $\phi(x_3) = \phi(y_3) = 2$. With a similar discussion, we may assume that $\phi(x_4) = \phi(y_4) = 2$. In this case, we again color v_1 with 2 and recolor v_2 with 1. It is easy to check that ϕ is extended to the whole graph G in each possible case.

Case 2. $\phi(x_1) = \phi(v_2) = 1$ and $\phi(y_1) = \phi(v_5) = 2$.

First assume that $\phi(x_2) = \phi(x_5) = 1$. If $\phi(v_4) = 1$, we color v_1 with 2. Suppose that $\phi(v_4) = 2$. If $\phi(v_3) = 1$, we color v_1 with 1 and recolor v_2 with 2. Suppose that $\phi(v_3) = 2$. If at least one of x_3 and y_3 is colored with 2, we recolor v_3 with 1 and v_2 with 2, then color v_1 with 1. Suppose that $\phi(x_3) = \phi(y_3) = 1$. If at least one of x_4 and y_4 is colored with 2, we recolor v_4 with 1 and color v_2 with 2. If $\phi(x_4) = \phi(y_4) = 1$, we need only to color v_1 with 2.

If $\phi(x_2) = \phi(x_5) = 2$, we have a similar argument.

Next assume that $\phi(x_2) = 2$ and $\phi(x_5) = 1$. If $\phi(v_3) = 2$, we color v_1 with 1. If $\phi(v_4) = 1$, we color v_1 with 2. So suppose that $\phi(v_3) = 1$ and $\phi(v_4) = 2$. If $\phi(x_3) = \phi(y_3) = 2$, we color v_1 with 1. If $\phi(x_4) = \phi(y_4) = 1$, we color v_1 with 2. Hence assume that $1 \in \{\phi(x_3), \phi(y_3)\}$ and $2 \in \{\phi(x_4), \phi(y_4)\}$. We switch the colors of v_3 and v_4 and then color v_1 with 1.

Finally assume that $\phi(x_2) = 1$ and $\phi(x_5) = 2$. Switching the colors of v_2 and v_5, we reduce the problem to the previous case. This completes the proof of the theorem. □

We conclude this section by the following conjecture and question:

Conjecture 1. If G is a planar graph without intersecting (or adjacent) triangles, then $a(G) \leq 2$.

Question 1. Is there a constant c such that every planar graph G without triangles at distance less than c has $\delta(G) \leq 3$?

5. Smallest planar graphs with the vertex-arboricity 3

In this section, we give an easy observation about the fact that the vertex-arboricity of a planar graph is at most 2 when its order is sufficiently small. We need to cite the following result by Holton and Mckay [18]:

Theorem 11 ([18]). Every 3-connected cubic planar graph of order at most 36 is Hamiltonian.
Theorem 11 is best possible in the sense that there exist 3-connected cubic planar graphs of order 38 which are not Hamiltonian. Some such examples were constructed in [1,18]. Thus the smallest non-Hamiltonian 3-connected cubic planar graphs have 38 vertices.

Theorem 12. (1) If G is a plane graph with $|G| \leq 20$, then $a(G) \leq 2$.
(2) There exists a plane graph G with $|G| = 21$ such that $a(G) = 3$.

Proof. (1) Suppose that G is a plane graph with $|G| \leq 20$. By adding some diagonals, we subdivide every face of degree at least 4 of G into the union of 3-faces. Let H denote the resultant graph. Then H is a maximal plane graph with G as a spanning graph. Note that H is 3-connected, thus H^* is a 3-connected cubic plane graph. By Euler’s formula $|H| + |F(H)| - |E(H)| = 2$ and the relation $|E(H)| = 3|H| - 6$, we get $|F(H)| = 2|H| - 4$. Thus, $|H^*| = |F(H)| = 2|H| - 4 = 2|G| - 4 \leq 36$. By Theorem 11, H^* is Hamiltonian. Therefore, by Theorem 1, we derive that $a(G) \leq a(H) = 2$.

(2) A non-Hamiltonian 3-connected cubic planar graph G on 38 vertices appears in Fig. 3 (see [4,19]). Its dual G^*, a maximal plane graph of order 21, is depicted in Fig. 4. Theorem 1 yields that $a(G^*) = 3$. This completes the proof of the theorem. □

Since $a(K_5) = 3$, the assumption that G is plane in (1) of Theorem 12 is essential. Moreover, it is easy to note that G^* in Fig. 4 is a 4-degenerate graph. It means that there exist 4-degenerate planar graphs of the vertex-arboricity 3.

Let μ denote the largest integer such that every planar graph G without k-cycles, for $3 \leq k \leq \mu$, has $a(G) \leq 2$. Theorems 2 and 12 assert that $6 \leq \mu \leq 21$.

Question 2. What is the exact value of μ?

Fig. 3. A non-Hamiltonian 3-connected cubic plane graph G of order 38.

Fig. 4. A plane graph G^* with $|G^*| = 21$ and $a(G^*) = 3$.
6. Further research

Recall that every planar graph G has $\alpha(G) \leq 3$, that is, $V(G)$ can be partitioned into (V_1, V_2, V_3) such that each V_i induces a forest. This result can be improved in the sense that one of V_i's is an independent set of G. To show this, we need to use the following result due to Thomassen [25]:

Theorem 13. Every planar graph G has a vertex partition (V_1, V_2) such that V_1 induces a forest and V_2 induces a 2-degenerate graph.

Lemma 14. Every 2-degenerate graph G has a vertex partition (V_1, V_2) such that V_1 is an independent set and V_2 induces a forest.

Proof. The proof proceeds by induction on the order of G. If $|G| \leq 3$, the result is trivial. Let G be a 2-degenerate graph with $|G| \geq 4$. Then G contains a vertex v of degree at most 2 by definition. Let $H = G - v$. Then H is a 2-degenerate graph with $|H| < |G|$. By the induction hypothesis, $V(H)$ has a partition (V'_1, V'_2) such that V'_1 induces an independent set and V'_2 induces a forest. In G, if some of the neighbors of v belongs to V'_1, we let $V_1 = V'_1$ and $V_2 = V'_2 \cup \{v\}$; otherwise, we let $V_1 = V'_1 \cup \{v\}$ and $V_2 = V'_2$. It is easy to see that (V_1, V_2) is a partition of $V(G)$ such that V_1 is an independent set and V_2 induces a forest. This completes the proof of the lemma. □

By Lemma 14 and Theorem 13, we have the following:

Theorem 15. Every planar graph G has a vertex partition (V_1, V_2, V_3) such that V_1 is an independent set and each of V_2, V_3 induces a forest.

Theorem 15 implies that every planar graph is 5-colorable.

Conjecture 2. Every planar graph G has a vertex partition (V_1, V_2, V_3) such that V_1, V_2 are independent sets and V_3 induces a forest.

It should be remarked that Conjecture 2, if true, implies the well-known Four-Color Theorem [2]. Finally, we like to conclude this paper by the following problem:

Conjecture 3. Every planar graph G without 3-cycles has a vertex partition (V_1, V_2) such that V_1 is an independent set and V_2 induces a forest.

Borodin and Glebov [3] showed that every planar graph G of girth at least 5 has a vertex partition (V_1, V_2) such that V_1 is an independent set and V_2 induces a forest. If Conjecture 3 were true, then it would imply the Grötzsch’s 3-Color Theorem on triangle-free planar graphs [15].

Acknowledgment

We deeply thank an anonymous referee whose many constructive comments greatly improved the presentation of the paper.

References