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Abstract

We show that all two-bridge knot and link complements are virtually fibered. We also show that spherical
Montesinos knot and link complements are virtually fibered. This is accomplished by showing that such manifolds
are finitely covered by great circle link complements.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A three-manifoldM is fiberedif it admits a submersionp : M → S1. Equivalently,

M = F × I
(x,0) ∼ (�(x),1) ,

whereF is a surface and� is an orientation preserving isomorphism fromS to itself. Fibered three-
manifolds are very well understood, since they are completely determined by the surfaceF and the
monodromy�. For example, if the monodromy of the fibration is pseudo-Anosov, then the fiber bundle
admits a hyperbolic structure,[20]. Although fibered manifolds are particularly nice, there are of course
many manifolds that are not fibered. A manifoldM is virtually fiberedif there is a finite cover ofM that
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is fibered. This includes the case thatM is itself fibered. It is conjectured that many manifolds that are
not fibered are virtually fibered,[18]. The “virtually fibered” conjecture of W. P. Thurston is as follows:

Conjecture 1. Let M be a compact orientable irreducible three-manifold whose fundamental group is
infinite and contains no non-peripheralZ × Z subgroup. Suppose that any boundary components of M
are tori. Then M is virtually fibered.

For example, the conjecture would imply that any hyperbolic knot or link complement is either fibered
or virtually fibered. In contrast, Seifert fibered spaces are virtually fibered exactly when either the Euler
number of the fibration is zero or the orbifold Euler characteristic of the base orbifold is zero. See[4] for
a proof. Since a finite cover of a fibered manifold is also fibered, the property of being virtually fibered
is an invariant of the commensurability class. Although there is not a lot of evidence for Conjecture 1,
there are examples of hyperbolic three-manifolds that are known to be virtually fibered but not fibered.
The first non-trivial example was a link complement given by Gabai in[4]. Examples of non-Haken
virtually fibered manifolds are given in[12]. The first examples of non-fibered virtually fibered knot
complements were given by Leininger, in[8]. Here, we exhibit a large class of virtually fibered knot and
link complements, namely two-bridge knots and links and spherical Montesinos knots and links. This
provides evidence for Conjecture 1. Our main theorem is as follows.

Theorem 3. Every two-bridge knot complement and non-trivial two-bridge link complement is virtually
fibered.

This is proven in Section 3, by showing that every such knot or link complement is finitely covered by
a great circle link complement. Theorem 3 implies that the knot complements in[8] are virtually fibered,
but the approach is completely different. We have a similar theorem for spherical Montesinos links. A
spherical Montesinos linkis a Montesinos linkk where the double branched cover ofS3 branched along
k is a spherical Seifert fibered space. Note that a two-fold cover ofS3 branched along a knot or link as in
Theorem 3 is a lens space, which is also spherical.

Theorem 5. The complement of any spherical Montesinos knot or link is virtually fibered.

This is proven in Section 4. By using, for example, the Alexander polynomial and computations of
Hatcher and Oertel in[6], we can determine which knots through nine crossings are fibered and which knots
are spherical Montesinos or two-bridge. For example, the knot 925 is hyperbolic, spherical Montesinos,
and not fibered. We conclude that, with five possible exceptions, all knots though nine crossings are
either fibered or virtually fibered. The exceptional cases not covered by the results in this paper are
{938,939,941,946,949}. There are many 10 crossing knots not covered by the results of this paper.

In Section 5 we discuss some related questions, in particular, if these methods apply to other knot
complements.

2. Great circle links

We begin with a definition.
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Definition 1. A link in S3 is agreat circle linkif all of the components are geodesics inS3.

We will considerS3 as the unit three-sphere inR4 = C2. Then every great circle is the intersection
of a 2-plane through the origin inR4 and the three-sphere. Note that great circles are invariant under
the transformationx 	→ −x from S3 to itself. Therefore, configurations of great circles are the same
as configurations of lines inRP3. These configurations have been studied extensively, in particular by
the Russian school, and are completely classified up to seven components, using combinatorial methods
in [1,21]. Great circle links were later directly classified up to five components, using the geometric
structures on their complements in[22]. The simplest examples of great circle links are Hopf links, links
where every component is a fiber of the same Hopf fibration. However, there are many examples of great
circle links whose complements admit hyperbolic structures, in particular many of the examples given
here. For the purposes of this paper, the most relevant feature of great circle links is the following:

Theorem 1. All great circle link complements are fibered.

Proof. Letcbe any component of a great circle linkL. Thenc is the intersection ofS3 and a two-planePc
in R4 through the origin. Then there is an isometry ofR4 that takesPc to the plane defined by the vectors
(1,0,0,0) and(0,1,0,0) in R4. This isometry takesL to an equivalent great circle link. Therefore, we
may assume thatc is the great circle{(x, y,0,0) : x2 + y2 = 1} in S3 ⊂ R4. The complement ofc
in S3 is an open solid torus that is fibered by the half-planesH� = {(x, y, r cos�, r sin�) ∈ S3, r >0},
� ∈ (0,2�). These are hemispheres of great spheres and are totally geodesic. Therefore if a geodesic arc
intersectsH� in a point it must do so transversely.

We claim that any component ofL− c intersects eachH� exactly once. Assume that some component
does not intersect one of the hemispheres. Then it does not linkc. But every two great circles inS3

link with linking number±1. To see this, note that the union of the bases for the two corresponding
two-planes through the origin forms a basis forR4. Then there is a linear transformation ofR4 that
takes this basis to the standard one, and takes the two great circles to{(a, b,0,0) : a2 + b2 = 1} and
{(0,0, d, e) : d2+e2=1}. These two circles link with linking number±1, depending on their orientations.
Therefore, every component ofL− c must intersect eachH� at least once.

If two pointsx̄1 = (x1, y1, r1 cos�, r1 sin�) andx̄2 = (x2, y2, r2 cos�, r2 sin�) in S3 are in one of these
hemispheres, then they are not antipodal. Since they are linearly independent points inR4, the geodesic
containing the two points is the intersection ofS3 and the plane inR4 spanned bȳx1 andx̄2. This geodesic
is contained in the sphereH� ∪H−� ∪ c and intersectsc in two antipodal points. Therefore a geodesic in
the complement ofc must intersect anyH� exactly once.

Thus the map(S3 − L) → S1 which sends a point inH� to � is a fibration. The fibers are(p − 1)-
punctured disks, wherep is the number of components inL. There arep different such fibrations for a
given link, one for each component.�

3. Two-bridge knot and link complements

Definition 2. LetBandB ′ be two balls, each with two standard interior vertical arcs marked. Lethp/q be
the homeomorphism of their boundaries that takes a vertical arc (slope∞) on�B to an arc of slopep/q
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Fig. 1. The homeomorphismh1/3 takes arc of slope∞ to an arc of slope 1/3.

Fig. 2. The knotk1/3, the trefoil.

on�B ′ (Fig. 1). The rational knotkp/q is the union of the marked arcs inS3 obtained by gluing together
B andB ′ by hp/q : �B → �B ′ (Fig. 2).

The fact that every two-bridge knot can be put in this form was proven by Schubert in[15], which we
record as

Theorem 2. Every two-bridge knot or link can be written askp/q for somep/q with (p, q)= 1.

Note that the rational link withp/q = 1/0= ∞ is the trivial two component link. We want to exclude
this case.

Theorem 3. Every two-bridge knot complement and non-trivial two-bridge link complement is virtually
fibered.

Theorem 3 follows immediately from Theorem 1 and the following.

Lemma 4. Every two-bridge knot complement and non-trivial two-bridge link complement has a finite
cover which is a great circle link complement.

Proof. Note that if q is even,kp/q is a link, and ifq is odd,kp/q is a knot. We are assuming that
q �= 0. To prove Lemma 4, we make use of an alternative picture of great circle links in which we
considerS3 as the unit three-sphere inC2. Then we will refer to the great circles{(z, 0), z ∈ C} ∩ S3
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Fig. 3. The linkD2/5.

and{(0, w),w ∈ C} ∩ S3 as thez-axis and thew-axis, respectively, ofS3. Consider the real great circle
g = {(z, w) : z ∈ R, w ∈ R, z2 + w2 = 1}. We can moveg around by the isometry

�p/q : (z, w)→ (e2�i/qz,e2�ip/qw).

Since�p/q is an isometry ofS3, the image of the real great circleg is another geodesic. Letp andq be
relatively prime. Then the components of the orbit ofg under the action of�p/q either do not intersect or
are identical.

Whenq is odd, we letDp/q be theq-component great circle link that is the orbit ofgunder the isometry
�p/q . Note that this action onS3 yields the lens spaceL(q, p) as quotient. We will denote this lens space
asLp/q . This action leaves thez andw axes ofS3 invariant. Since the real great circle intersects both
of these axes in two points, and every component is a geodesic, the link is determined by the images of
these intersection points. Therefore, we can easily draw the link for small values ofp andq. Fig. 3shows
the linkD2/5.

Observe that ifq is odd, the linkDp/q will intersect thez-axis in the points(ek�i/q,0) and thew-axis
in the points(0,el�i/q), for k, l ∈ {1,2, . . . ,2q}. We claim that the(q+ 1)/2th component in the orbit of
�p/q intersects thez-axis in(e�i/q,0) and its antipodal point. This is just because[(q + 1)/2](2�/q) ≡
(�/q)mod�. This link component will intersect thew-axis in(0,ep�i/q)and its antipodal point. Therefore,
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Fig. 4. The standard projection of the linkD2/5.

the(q + 1)/2th power of the isometry�p/q has the effect of rotating thez-axis by�/q and rotating the
w-axis byp�/q. We can draw the standard projection (where thez-axis is coming out of the page) as in
Fig. 4. Start by drawing thew-axis (dotted) and the real great circleg. Then the next component along
thez-axis will be rotated 2�/5 fromg along thew-axis. We continue in this way to obtainFig. 4.

Let ga,b be the great circle that intersects thez-axis in the points(±eai,0) and thew-axis in the points
(0,±ebi). Then the real great circleg is g0,0. In the case thatq is even, we define the linkDp/q to be the
orbit of the real great circle under�p/q union the orbit ofg�/q,p�/q under the action of�p/q . These two
orbits will never intersect. Like the case whenq is odd the resulting great circle link will intersect the
z-axis in the points(ek�i/q,0) and thew-axis in the points(0,el�i/q) for k, l ∈ {1,2, . . . ,2q}. However,
in this case, there will be two orbits under the action of�p/q , one associated to the real great circle, where
k andl are always even, and one associated to the great circleg�/q,p�/q , wherek andl are always odd.
Note that in this case, componentx and componentx + q/2 under the orbit of�p/q will be the same
component ofDp/q .Dp/q is again aq-component link. We will show that the link complementS3−Dp/q
covers a two-bridge knot or link complement.

First note that the two-fold branched cover ofS3 branched along a two-bridge knot or linkkp/q is a
lens space (seeFig. 5). The two solid tori are glued together so that a meridian curve is glued to a curve
of slopep/q. We will call thisLp/q . Schubert proved thatkp/q andkp′/q ′ are equivalent (as unoriented
links) if and only ifq = q ′ andp±1 = ±p′(modq). This is exactly when their associated lens spaces are
homeomorphic.

Now let k̃p/q be the pre-image of the branching locus inLp/q . Then the two-bridge link complement
S3 − kp/q is covered byLp/q − k̃p/q .

We claim that the great circle link complementS3 − Dp/q coversLp/q − k̃p/q . To prove this we will
show(S3,Dp/q) covers(Lp/q, k̃p/q) as a map of pairs. Consider the action of�p/q : S3 → S3 where
�p/q(z, w) = (e2�i/qz,e2�ip/qw). A fundamental domain for this action is the union of the two wedges

{(re�ix, w),0�x�2�/q, |w|�√
2/2, r ∈ R} and{(z, re�iy),0�y�2�/q, |z|�√

2/2, r ∈ R}. Each is
a regular neighborhood of an arc on thezor w-axis and we will refer to these wedges as thez-wedge and
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Fig. 5. The two-fold cover ofS3 branched along the knot or linkKp/q isLp/q .

Fig. 6. The linkDp/q in thez-wedge.

thew-wedge, respectively. Thez-wedge is pictured inFig. 6. We will show that each of these wedges
will glue up to one of the solid tori pictured inFig. 5, and that the arcs ofDp/q in these wedges will map
to the arcs ofk̃p/q in the solid tori. There are three arcs ofDp/q in each of these wedges. In thez-wedge
these occur at heights 0,�/q and 2�/q, where at heightx, z= e�ix . Thew-wedge also contains three arcs
of Dp/q . These occur at the levels 0,�/q and 2�/q, wherew = e�ix at levelx.

Suppose thatq is odd. Consider(S3,Dp/q). As mentioned above, if there is a component ofDp/q that
intersects thez-axis in (eix,0), then the component that intersects thez-axis at(ei(x+�/q),0) is rotated
by p�/q in thew direction. Therefore, as inFig. 6 below, the arc at height�/q is rotated byp�/q and
the arc at height 2�/q is rotated by 2p�/q. This wedge will glue up to a solid torus under the action of
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�p/q . The bottom level will be glued to the top with a twist of 2p�/q, and the arc at the bottom will be
identified with the arc at the top.q evenly spaced vertical lines on the boundary of thez-wedge will glue
up to ap/q curve on the resulting solid torus. The resulting solid torus is pictured at the top right inFig.
5. Consider thew-wedge of the fundamental domain. Letx be such thatx (2�p/q) ≡ �/q|�. The arc at
level �/q is rotated by 2x�/q, and the arc at level 2�/q is rotated by 4x�/q. Under the action of�p/q ,
the bottom and top marked arcs of thew-wedge are identified, and the resulting solid torus is pictured in
the left inFig. 5. A meridian curve on this torus will glue to ap/q curve on the solid torus coming from
thez-wedge. Therefore we see that the fundamental domain of the action of�p/q on (S3,Dp/q) covers
(Lp/q, k̃p/q), and sinceDp/q is invariant under this action,(S3,Dp/q) covers(Lp/q, k̃p/q).

Now letq be even. Thez-wedge contains three arcs ofDp/q . The arc at level�/q is rotated byp�/q.
This isg�/q, p�/q . The arc at level 2�/q is part of the image of the real great circle under�p/q , and is rotated
by 2�p/q. Therefore, thez-wedge glued up with a 2�p/q twist is exactly the solid torus on the right in
Fig. 5. Thew-wedge also glues up to become a solid torus. Letnbe such thatn(�p/q) ≡ �/qmod�. Then
sinceq is even,p andn must be odd. The arc at level 2�/q is thenth in the orbit of the real great circle
under�p/q and is twisted by 2�n/q. The arc at level�/q is the((n − 1)/2)th in the orbit ofg�/q,p�/q .
This is because

p�

q
+ (n− 1)

2

2p�

q
= np�

q
= �

q
mod�.

The arc at level�/q in thew-wedge is twisted by�/q + (n− 1)�/q = �n/q. Since the top and bottom
of thew-wedge are identified with a twist of 2�n/p, thew-wedge glues up to the solid torus in the left
in Fig. 5. A meridian curve of the solid torus coming from thew-wedge will be identified with ap/q
curve on the boundary of the solid torus coming from thez-wedge. Again, we have that(S3,Dp/q) covers
(Lp/q, k̃p/q). Thus the great circle link complementS3 −Dp/q covers the complement of the knot in the
lens space inFig. 5.

Therefore, sinceS3 − kp/q is covered byLp/q − k̃p/q and this is in turn covered by the great circle
link complementS3−Dp/q , every two-bridge knot and non-trivial link complement is covered by a great
circle link complement. By Theorem 1, this finishes the proof of Theorem 3.�

By the work of Gabai in[5], a rational knot or linkkp/q is fibered exactly whenp/q has a continued
fraction decomposition 1/(±2+1/(±2+1/(±2+1/(±2 . . .)))). Also, the only non-hyperbolic rational
knots are the torus knots[7]. Therefore, there are infinitely many non-fibered hyperbolic two-bridge knots.
In some sense most two-bridge knots are non-fibered. Thus Theorem 3 gives a large class of non-fibered,
virtually fibered hyperbolic knot complements.

4. Some Montesinos knot and link complements

A Montesinosknot or link is one that can be written as the union of rational tangles arranged in a circle,
as inFig. 7. The two-fold branched cover ofS3 branched along a Montesinos knot or link is a Seifert
fibered space. A proof of this can be found in[2]. A three-manifold is calledsphericalif it is a finite
quotient ofS3 by isometries. We call a Montesinos knot or linkspherical Montesinosif the associated
Seifert fibered space is spherical. This happens exactly when the base orbifold is a spherical orbifold, and
the Euler number is not 0[16,3]. The spherical two-orbifolds with three singular fibers can be computed
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Fig. 7. A Montesinos knot.

using the orbifold Euler characteristic[3,17] and are{S(2,2, n), S(2,3,3), S(2,3,4), S(2,3,5)}. For
example, the knot inFig. 7is a spherical Montesinos knot, composed of the rational tangles(1/2), (1/3)
and(2/5).

Theorem 5. The complement of any spherical Montesinos knot or link is virtually fibered.

Proof. As in the proof of Theorem 3, it suffices to show that any spherical Montesinos knot or link
complement is finitely covered by a great circle link complement. To this end, letkm be a spherical
Montesinos knot or link andMk denote the double cover ofS3 branched alongkm, with branched covering
mapp1 : Mk → S3. Then the preimage of the branching locus is a knot or link inMk which we denote

by k̃m. SinceMk is a spherical manifold, it is finitely covered byS3 with covering mapp2 : S3 → Mk.

Now the preimage of̃km is a link inS3 which we denote asnm. We claim thatnm is a great circle link.
The compositionp2 ◦ p1 is a branched covering ofS3 by S3, where the branching locus iskm and the
pre-image of the branching locus in the cover isnm. Call the associated covering groupG. Then each
componentc of nm has the property that the set of elements inG that fix c is cyclic of order two. The
following special case of W. P. Thurston’s orbifold theorem, outlined in[3], now applies.

Theorem 6 (Cooper et al.[3] ). Assume that M is a orientable irreducible closed three-manifold that
contains no incompressible tori. Suppose that M admits an action by a finite group G of orientation
preserving diffeomorphisms such that some non-trivial element has a fixed point set of dimension1.Then
M has a geometric structure such that this action of the group G is by isometries. In particular, the fixed
point set of each group element is totally geodesic.

Therefore, the linknm can be realized as a great circle link in the standard metric onS3. Note that
S3 − nm finitely coversMk − k̃m which two fold coversS3 − km. Therefore,S3 − nm is a finite cover of
S3 − km which implies by Theorem 1 thatS3 − km is either fibered or virtually fibered.�

Remark. Since the two-fold cover ofS3, branched along a two-bridge knot or non-trivial link is also a
spherical manifold, we could have also proved Theorem 3 using the symmetry theorem. However, this
is not a direct proof. Also, it should be possible to prove Theorem 5 using the methods of the proof of
Theorem 3. The great circle links whose complements cover spherical Montesinos knot complements are
determined in terms of the Grassmannian of two-planes through the origin in[14]. This paper was only
recently discovered by the author.
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5. Further questions

We define a knotk to begreat if S3 − k is commensurable with a great circle link complement. Since
virtual fibration is preserved by commensurability, knots that are great are virtually fibered. In light of
Conjecture 1 and Theorem 1 the most natural question is

Question 1.Which knots are great?

The results of this paper show that all two-bridge knots and all spherical Montesinos knots are great.
The existence of non-great knots is unknown. However, as a partial answer in this direction we have

Theorem 7. There is a knot complement inS3 that is not commensurable with the complement of any
strongly invertible great circle link.

Proof. Let � be a discrete subgroup of PSL2C with finite co-volume. The commensurator of� is

Comm(�)= {g ∈ I som(H3) : [� : � ∩ g−1�g]<∞}

andComm+(�) is its orientation preserving subgroup. By Margulis,� has a unique maximal element
in its commensurability class,Comm+(�), if and only if � is non-arithmetic. Now let� be a discrete
faithful representation of�1(S

3 − 932). By Reid,[11] this group is non-arithmetic. We will show it is the
maximal element in its commensurability class.

In [13], Riley shows that the knot 932 is asymmetric, meaning that every auto-homeomorphism of the
complementS3−932 is isotopic to the identity. This is done by computing a discrete faithful representation
� of the fundamental group of the knot complement, and showing that there is a fundamental domain that
does not admit any hyperbolic symmetries. Therefore,� is equal to its normalizer in PSL2C.

Therefore, if� is not the maximal element in its commensurability class, the commensurator must be
larger than its normalizer. Geometrically this means that the knot complement has a hidden symmetry, a
symmetry of some finite cover that is not a lift of a symmetry ofS3 − 932. Riley shows that the invariant
trace field has degree 29, i.e.[Q(tr�) : Q]=29. Since we have a knot complement inS3, the trace field is
the same as the invariant trace field, and is an invariant of the commensurability class of�, by Neumann
and Reid in[10]. They also show[10, Theorem 9.1]that a knot complement other than the figure-eight
knot complement has hidden symmetries only if the cusp parameter is inQ(

√−1) or Q(
√−3). Since

the cusp field is a subfield of the invariant trace field,[10, Proposition 2.7], and degree is multiplicative,
S3 − 932 does not have hidden symmetries.

If S3 − 932 was commensurable with a strongly invertible link complement, there would be a finite
cover ofS3 − 932 that covered an orbifold. This orbifold cannot coverS3 − 932. Therefore this orbifold
either results from a symmetry ofS3−932, or a hidden symmetry ofS3−932. We have shown that neither
of these can happen.�

Remark. It is possible thatS3−932 is commensurable with a great circle link that is not strongly invertible.
All great circle links mentioned in this paper are strongly invertible. However, there are great circle links
which are not strongly invertible. This is shown in the course of the classification of configurations of
lines inRP3 in [9].
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The fiber exhibited in Theorem 1 depended on the choice of a component of a great circle links.
There is one such fiber for each component of the link. Each of these fibers correspond to an element of
H2(S

3 −L), whereL is the great circle link. A natural question is whether other directions inH2(S
3 −L)

are fibered. In[19], W. P. Thurston shows that there is a norm on the second homology of a hyperbolic
three-manifold. Furthermore, he shows that the fibered homology classes are represented by the union
of rational lattice points in the cone on some collection of open faces of the unit ball in this norm. These
faces are commonly referred to as thefibered faces.

Question 2.Which faces of the unit ball in the norm on homology of a great circle link complement are
fibered faces?
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