-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

smEnce@nmECT@ TOPOLOGY

ELSEVIE Topology 44 (2005) 947958

www.elsevier.com/locate/top

Great circle links and virtually fibered knots
Genevieve S. Walsh

Department of Mathematics, University of Texas at Austin, 1 University Station C1200, Austin, TX 78712-0257, USA
Received 20 August 2004; accepted 14 March 2005

Abstract

We show that all two-bridge knot and link complements are virtually fibered. We also show that spherical
Montesinos knot and link complements are virtually fibered. This is accomplished by showing that such manifolds
are finitely covered by great circle link complements.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A three-manifoldM is fiberedif it admits a submersiop : M — S1. Equivalently,

Fx1
M == ]
(x,0) ~ (Y(x), 1)

whereF is a surface and is an orientation preserving isomorphism fr@rio itself. Fibered three-
manifolds are very well understood, since they are completely determined by the duréakthe
monodromyy. For example, if the monodromy of the fibration is pseudo-Anosov, then the fiber bundle
admits a hyperbolic structur20]. Although fibered manifolds are particularly nice, there are of course
many manifolds that are not fibered. A manifdltis virtually fiberedif there is a finite cover oM that
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is fibered. This includes the case tihits itself fibered. It is conjectured that many manifolds that are
not fibered are virtually fibered18]. The “virtually fibered” conjecture of W. P. Thurston is as follows:

Conjecture 1. Let M be a compact orientable irreducible three-manifold whose fundamental group is
infinite and contains no non-peripherél x Z subgroup. Suppose that any boundary components of M
are tori. Then M is virtually fibered.

For example, the conjecture would imply that any hyperbolic knot or link complement is either fibered
or virtually fibered. In contrast, Seifert fibered spaces are virtually fibered exactly when either the Euler
number of the fibration is zero or the orbifold Euler characteristic of the base orbifold is zelld] $me
a proof. Since a finite cover of a fibered manifold is also fibered, the property of being virtually fibered
is an invariant of the commensurability class. Although there is not a lot of evidence for Conjecture 1,
there are examples of hyperbolic three-manifolds that are known to be virtually fibered but not fibered.
The first non-trivial example was a link complement given by Gabd#]n Examples of non-Haken
virtually fibered manifolds are given ifi2]. The first examples of non-fibered virtually fibered knot
complements were given by Leininger,[8]. Here, we exhibit a large class of virtually fibered knot and
link complements, namely two-bridge knots and links and spherical Montesinos knots and links. This
provides evidence for Conjecture 1. Our main theorem is as follows.

Theorem 3. Every two-bridge knot complement and non-trivial two-bridge link complement is virtually
fibered.

This is proven in Section 3, by showing that every such knot or link complement is finitely covered by
a great circle link complement. Theorem 3 implies that the knot complemej&@sare virtually fibered,
but the approach is completely different. We have a similar theorem for spherical Montesinos links. A
spherical Montesinos linis a Montesinos link where the double branched coversSfbranched along
kis a spherical Seifert fibered space. Note that a two-fold cov&? bfanched along a knot or link as in
Theorem 3 is a lens space, which is also spherical.

Theorem 5. The complement of any spherical Montesinos knot or link is virtually fibered.

This is proven in Section 4. By using, for example, the Alexander polynomial and computations of
Hatcher and Oertel ij6], we can determine which knots through nine crossings are fibered and which knots
are spherical Montesinos or two-bridge. For example, the kappishyperbolic, spherical Montesinos,
and not fibered. We conclude that, with five possible exceptions, all knots though nine crossings are
either fibered or virtually fibered. The exceptional cases not covered by the results in this paper are
{938, 939, 941, 916, 940}. There are many 10 crossing knots not covered by the results of this paper.

In Section 5 we discuss some related questions, in particular, if these methods apply to other knot
complements.

2. Great circle links

We begin with a definition.
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Definition 1. A link in S is agreat circle linkif all of the components are geodesicssth

We will considerS® as the unit three-sphere & = C2. Then every great circle is the intersection
of a 2-plane through the origin iR* and the three-sphere. Note that great circles are invariant under
the transformationr — —x from S° to itself. Therefore, configurations of great circles are the same
as configurations of lines iRP2. These configurations have been studied extensively, in particular by
the Russian school, and are completely classified up to seven components, using combinatorial methods
in [1,21]. Great circle links were later directly classified up to five components, using the geometric
structures on their complementg#2]. The simplest examples of great circle links are Hopf links, links
where every component is a fiber of the same Hopf fibration. However, there are many examples of great
circle links whose complements admit hyperbolic structures, in particular many of the examples given
here. For the purposes of this paper, the most relevant feature of great circle links is the following:

Theorem 1. All great circle link complements are fibered

Proof. Letcbe any component of a great circle libkThenc s the intersection a$3 and a two-plane,

in R* through the origin. Then there is an isometryidfthat takesP, to the plane defined by the vectors
(1,0,0,0) and(0, 1, 0, 0) in R*. This isometry takek to an equivalent great circle link. Therefore, we

may assume that is the great circlg(x, y,0,0) : x2 + y2 =1} in $3 ¢ R* The complement of

in % is an open solid torus that is fibered by the half-plafigs= {(x, v, r cos0, r sind) € S3, r > 0},

0 € (0, 2n). These are hemispheres of great spheres and are totally geodesic. Therefore if a geodesic arc
intersectsHy in a point it must do so transversely.

We claim that any component &f— ¢ intersects eachly exactly once. Assume that some component
does not intersect one of the hemispheres. Then it does not.liBkt every two great circles is3
link with linking number=1. To see this, note that the union of the bases for the two corresponding
two-planes through the origin forms a basis f&t. Then there is a linear transformation Bf that
takes this basis to the standard one, and takes the two great cirdles 400, 0) : a? + b% = 1} and
{(0,0,d, e) : d2+e2:1}. These two circles link with linking numbetl, depending on their orientations.
Therefore, every component 6f — ¢ must intersect eacHy at least once.

If two pointsii = (x1, y1, r1 €0s0, r1 Sin0) andxz = (x2, y2, r» €0s0, r> sind) in S3 are in one of these
hemispheres, then they are not antipodal. Since they are linearly independent pahtthimgeodesic
containing the two points is the intersectionsdfand the plane i* spanned by; andx,. This geodesic
is contained in the spheié U H_y U ¢ and intersects in two antipodal points. Therefore a geodesic in
the complement of must intersect anyiy exactly once.

Thus the mags® — L) — S which sends a point i, to 0 is a fibration. The fibers are — 1)-
punctured disks, whengis the number of components in There arep different such fibrations for a
given link, one for each component]

3. Two-bridge knot and link complements

Definition 2. LetBandB’ be two balls, each with two standard interior vertical arcs marked: . gtbe
the homeomorphism of their boundaries that takes a vertical arc (stQm# 0B to an arc of slope /g
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Fig. 1. The homeomorphisim /3 takes arc of slopec to an arc of slope 1/3.

T

=
I\

Fig. 2. The knoky,3, the trefoil.
onoB’ (Fig. 1). The rational knok , , is the union of the marked arcs §if obtained by gluing together
BandB’' byh,,, : 0B — 0B’ (Fig. 2).

The fact that every two-bridge knot can be put in this form was proven by Schuljjwhich we
record as

Theorem 2. Every two-bridge knot or link can be written &g/, for somep/g with (p, g) = 1.

Note that the rational link witlp /g = 1/0 = oo is the trivial two component link. We want to exclude
this case.

Theorem 3. Every two-bridge knot complement and non-trivial two-bridge link complement is virtually
fibered.

Theorem 3 follows immediately from Theorem 1 and the following.

Lemma 4. Every two-bridge knot complement and non-trivial two-bridge link complement has a finite
cover which is a great circle link complement

Proof. Note that ifq is even,k,/, is a link, and ifq is odd,k,/, is a knot. We are assuming that
g # 0. To prove Lemma 4, we make use of an alternative picture of great circle links in which we
considers? as the unit three-sphere @f. Then we will refer to the great circld$z, 0),z € C} N §3
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z-axis

$35(0)

b2/5(9)

$2/5(9)

3 7
$315(0)

Fig. 3. The linkDy/s.

and{(0, w), w € C} N $2 as thez-axis and thev-axis, respectively, o§3. Consider the real great circle
g={(z,w):z € R we R, z2+ w? = 1}. We can move around by the isometry

bprq (2o w) — (€747, 1Py,

Since¢,, , is an isometry ofs3, the image of the real great cirajgis another geodesic. Letandq be
relatively prime. Then the components of the orbigainder the action o ,,, either do not intersect or
are identical.

Whenqis odd, we leD,, ,, be theg-component great circle link that is the orbitgfinder the isometry
¢,,4- Note that this action o3 yields the lens spade(g, p) as quotient. We will denote this lens space
asL,,,. This action leaves theandw axes ofS® invariant. Since the real great circle intersects both
of these axes in two points, and every component is a geodesic, the link is determined by the images of
these intersection points. Therefore, we can easily draw the link for small valpesdf). Fig. 3shows
the link Do/s.

Observe that ify is odd, the linkD,,, will intersect thez-axis in the pointget™/4, 0) and thew-axis
in the points(0, €7/4), for k, | €{1,2,...,2q}. We claim that thég + 1) /2th component in the orbit of
¢4 INtersects the-axis in(€"/4, 0) and its antipodal point. This is just becauge + 1)/2](2n/q) =
(n/q) modx. This link component will intersect the-axis in(0, e’™/4) and its antipodal point. Therefore,

rlq
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Fig. 4. The standard projection of the lifis.

the (¢ + 1)/2th power of the isometry , ,, has the effect of rotating theaxis byr/q and rotating the
w-axis by pn/g. We can draw the standard projection (wherezfais is coming out of the page) as in
Fig. 4. Start by drawing thev-axis (dotted) and the real great cirgJeThen the next component along
the z-axis will be rotated 2/5 from g along thew-axis. We continue in this way to obtalfig. 4.

Let g4, be the great circle that intersects thaxis in the pointgte”, 0) and thew-axis in the points
(0, £€’). Then the real great circigis go 0. In the case thai is even, we define the link,,, to be the
orbit of the real great circle under, ,, union the orbit ofg./,. p»/, Under the action o, .. These two
orbits will never intersect. Like the case wheiis odd the resulting great circle link will intersect the
z-axis in the points{e"”i/q, 0) and thew-axis in the pointg0, én/ayfork,l € {1,2,..., 2g}. However,
in this case, there will be two orbits under the actiogf, , one associated to the real great circle, where
k andl are always even, and one associated to the great gifgle,»/,, wherek and| are always odd.
Note that in this case, componenand component + ¢/2 under the orbit ofy, ,, will be the same
componentoD,,,. D,/, is again aj-component link. We will show that the link complemes#t—D , ,
covers a two-bridge knot or link complement.

First note that the two-fold branched coverS$3fbranched along a two-bridge knot or likl/, is a
lens space (sdeig. 5). The two solid tori are glued together so that a meridian curve is glued to a curve
of slopep/q. We will call this L, ,,. Schubert proved th&t, ,, andk /. are equivalent (as unoriented
links) if and only ifg = ¢’ and p*! = & p’(modg). This is exactly when their associated lens spaces are
homeomorphic.

Now letk 4 be the pre-image of the branching locudip,. Then the two-bridge link complement
S3 —k,,q is covered by , 1, — K, /-

We claim that the great circle link complemesit— D, coversL ,/, — k;//q. To prove this we will
show (53, D,,/4) covers(L /4. K,/q) as a map of pairs. Consider the actiongof,, : $° — $% where
b4 (2, w) = (€97, €MP/4y). A fundamental domain for this action is the union of the two wedges

((re™™ w), 0<x <2n/q, lw|<~2/2,r € R} and{(z, r€"?), 0< y<2n/q, |z2|<~/2/2,r € R}. Each is
a regular neighborhood of an arc on ther w-axis and we will refer to these wedges as#iwedge and
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Fig. 5. The two-fold cover o§3 branched along the knot or link /g iSLp/g-

Fig. 6. The linkD, /, in thez-wedge.

the w-wedge, respectively. Thewedge is pictured ifrig. 6. We will show that each of these wedges
will glue up to one of the solid tori pictured #Aig. 5 and that the arcs @, , in these wedges will map
to the arcs ok’,;q in the solid tori. There are three arcsdf, in each of these wedges. In thevedge
these occur at heights /¢ and 2t/¢, where at height, z = €™*. Thew-wedge also contains three arcs
of D,,/,. These occur at the levels®q and 2t/q, wherew = &* at levelx.

Suppose thag is odd. Conside¢s3, D,,/,). As mentioned above, if there is a componenDgf, that
intersects the-axis in (eix, 0), then the component that intersects thaxis at(ei(”"/Q), 0) is rotated
by pn/q in thew direction. Therefore, as iRig. 6 below, the arc at height/q is rotated bypr/q and
the arc at height2/q is rotated by 2n/q. This wedge will glue up to a solid torus under the action of
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¢,/4- The bottom level will be glued to the top with a twist 0p2/q, and the arc at the bottom will be
identified with the arc at the top.evenly spaced vertical lines on the boundary ofzlweedge will glue

up to ap/q curve on the resulting solid torus. The resulting solid torus is pictured at the top riglg.in

5. Consider thev-wedge of the fundamental domain. bebe such thak (2zp/q) ==n/q|n. The arc at
level z/q is rotated by 27/¢, and the arc at level2q is rotated by 4r/q. Under the action 0§, ,,

the bottom and top marked arcs of thevedge are identified, and the resulting solid torus is pictured in
the left inFig. 5. A meridian curve on this torus will glue to@/g curve on the solid torus coming from
thez-wedge. Therefore we see that the fundamental domain of the actipy) pbn (S D,/q) covers

(Lpjgs p/q) and sinceD ,, is invariant under this actioris3, D, /,) covers(L ,/q, p/q)

Now letq be even. The-wedge contains three arcs bf,,. The arc at levet/q is rotated bypz/q.
Thisisgryq. pn/q- The arc atlevel 2/q is part of the image of the real great circle undigy, , and is rotated
by 2rp/q. Therefore, the-wedge glued up with a2y /g twist is exactly the solid torus on the right in
Fig. 5. Thew-wedge also glues up to become a solid torusnltet such that (zp/q) = n/g modn. Then
sinceq is even,p andn must be odd. The arc at levet2; is thenth in the orbit of the real great circle
underg¢, ., and is twisted by 21/q. The arc at levet/q is the((n — 1)/2)th in the orbit ofg./y. pr/4-
This is because

pr (= D2pr _npr_m i,
q 2 q g9 q

The arc at levek/q in thew-wedge is twisted byt/q + (n — 1)rn/q = nn/q. Since the top and bottom
of thew-wedge are identified with a twist ofx2 / p, thew-wedge glues up to the solid torus in the left
in Fig. 5. A meridian curve of the solid torus coming from thhewedge will be identified with /g
curve on tt the boundary of the solid torus coming fromztreedge. Again, we have thés3, D,,4) covers
(Lpsgs p/q) Thus the great circle link complemesit — D, covers the complement of the knot in the
lens space iffrig. 5.

Therefore, sinc&® — k,,,, is covered byL ,/, — kp/q and this is in turn covered by the great circle
link complements® — D,,q, every two-bridge knot and non-trivial link complement is covered by a great
circle link complement. By Theorem 1, this finishes the proof of Theoreni3B.

By the work of Gabai iff5], a rational knot or linkk, ,, is fibered exactly whep/g has a continued
fraction decompositionA+2+1/(£2+1/(+2+1/(£2...)))). Also, the only non-hyperbolic rational
knots are the torus knofg]. Therefore, there are infinitely many non-fibered hyperbolic two-bridge knots.
In some sense most two-bridge knots are non-fibered. Thus Theorem 3 gives a large class of non-fibered,
virtually fibered hyperbolic knot complements.

4. Some Montesinos knot and link complements

A Montesinogknot or link is one that can be written as the union of rational tangles arranged in a circle,
as inFig. 7. The two-fold branched cover &f branched along a Montesinos knot or link is a Seifert
fibered space. A proof of this can be found[#). A three-manifold is callegphericalif it is a finite
quotient of$° by isometries. We call a Montesinos knot or lisgherical Montesino# the associated
Seifert fibered space is spherical. This happens exactly when the base orbifold is a spherical orbifold, and
the Euler number is not[16,3]. The spherical two-orbifolds with three singular fibers can be computed
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Fig. 7. A Montesinos knot.

using the orbifold Euler characteristig,17] and are{S(2, 2, n), S(2, 3, 3), S(2, 3,4), S(2, 3,5)}. For
example, the knot ifrig. 7is a spherical Montesinos knot, composed of the rational tari@}es, (1/3)
and(2/5).

Theorem 5. The complement of any spherical Montesinos knot or link is virtually fibered

Proof. As in the proof of Theorem 3, it suffices to show that any spherical Montesinos knot or link
complement is finitely covered by a great circle link complement. To this endt,,ldie a spherical
Montesinos knot or link and/; denote the double cover 8% branched along,,, with branched covering
map p1 : My — S3. Then the preimage of the branching locus is a knot or linkjnwhich we denote

by IZ;, SinceM; is a spherical manifold, it is finitely covered I5§ with covering mapps : $2 — M;.

Now the preimage of,,, is a link in S which we denote as,,. We claim tham,, is a great circle link.

The compositiorp; o p1 is a branched covering & by S3, where the branching locus ks, and the
pre-image of the branching locus in the covenjs Call the associated covering gro@ Then each
component of n,, has the property that the set of elementssithat fix c is cyclic of order two. The
following special case of W. P. Thurston’s orbifold theorem, outline@Jnnow applies.

Theorem 6 (Cooper et al[3]). Assume that M is a orientable irreducible closed three-manifold that
contains no incompressible tori. Suppose that M admits an action by a finite group G of orientation
preserving diffeomorphisms such that some non-trivial element has a fixed point set of diriefilsem

M has a geometric structure such that this action of the group G is by isometries. In partitiddixed

point set of each group element is totally geodesic

Therefore, the linkn,, can be realized as a great circle link in the standard metris§%oMNote that
§3 — n,, finitely coversM; — k,, which two fold coverss® — k,,,. Therefore $2 — n,, is a finite cover of
$3 — k,, which implies by Theorem 1 that — k,, is either fibered or virtually fibered.

Remark. Since the two-fold cover a$3, branched along a two-bridge knot or non-trivial link is also a
spherical manifold, we could have also proved Theorem 3 using the symmetry theorem. However, this
is not a direct proof. Also, it should be possible to prove Theorem 5 using the methods of the proof of
Theorem 3. The great circle links whose complements cover spherical Montesinos knot complements are
determined in terms of the Grassmannian of two-planes through the oriffia]inThis paper was only
recently discovered by the author.
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5. Further questions

We define a knok to begreatif $° — k is commensurable with a great circle link complement. Since
virtual fibration is preserved by commensurability, knots that are great are virtually fibered. In light of
Conjecture 1 and Theorem 1 the most natural question is

Question 1. Which knots are great?

The results of this paper show that all two-bridge knots and all spherical Montesinos knots are great.
The existence of non-great knots is unknown. However, as a partial answer in this direction we have

Theorem 7. There is a knot complement §¥ that is not commensurable with the complement of any
strongly invertible great circle link

Proof. LetI be a discrete subgroup of PSLwith finite co-volume. The commensurator ofs
Comm(I') ={g € |s0m(|]-ﬂ3) S Fﬂg_lfg] < o0}

andComm™ (I') is its orientation preserving subgroup. By Margulishas a unique maximal element
in its commensurability clas€;omm ™ (I'), if and only if I' is non-arithmetic. Now lel" be a discrete
faithful representation of1(S3 — 93,). By Reid,[11] this group is non-arithmetic. We will show it is the
maximal element in its commensurability class.

In [13], Riley shows that the knot9 is asymmetric, meaning that every auto-homeomorphism of the
complemens®—9s, s isotopic to the identity. This is done by computing a discrete faithful representation
I of the fundamental group of the knot complement, and showing that there is a fundamental domain that
does not admit any hyperbolic symmetries. Thereforis, equal to its normalizer in PSLC.

Therefore, ifl" is not the maximal element in its commensurability class, the commensurator must be
larger than its normalizer. Geometrically this means that the knot complement has a hidden symmetry, a
symmetry of some finite cover that is not a lift of a symmetrydf- 9s,. Riley shows that the invariant
trace field has degree 29, i[€(trI") : @] =29. Since we have a knot complemensﬁ) the trace field is
the same as the invariant trace field, and is an invariant of the commensurability da$s/deumann
and Reid in[10]. They also showWl10, Theorem 9.1that a knot complement other than the figure-eight
knot complement has hidden symmetries only if the cusp parameterigJi-1) or Q(+/—3). Since
the cusp field is a subfield of the invariant trace fi¢ld), Proposition 2.7]Jand degree is multiplicative,
$3 — 93, does not have hidden symmetries.

If $8 — 93, was commensurable with a strongly invertible link complement, there would be a finite
cover of$3 — 93, that covered an orbifold. This orbifold cannot co&r— 9s,. Therefore this orbifold
either results from a symmetry 6f — 935, or a hidden symmetry & — 935. We have shown that neither
of these can happen.Od

Remark. Itis possible thas3—93,is commensurable with a great circle link thatis not strongly invertible.
All great circle links mentioned in this paper are strongly invertible. However, there are great circle links
which are not strongly invertible. This is shown in the course of the classification of configurations of
lines inRP3 in [9].
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The fiber exhibited in Theorem 1 depended on the choice of a component of a great circle links.
There is one such fiber for each component of the link. Each of these fibers correspond to an element of
Ho(S% — L), wherel is the great circle link. A natural question is whether other directiodits3 — L)
are fibered. I{19], W. P. Thurston shows that there is a norm on the second homology of a hyperbolic
three-manifold. Furthermore, he shows that the fibered homology classes are represented by the unior
of rational lattice points in the cone on some collection of open faces of the unit ball in this norm. These
faces are commonly referred to as flimered faces

Question 2. Which faces of the unit ball in the norm on homology of a great circle link complement are
fibered faces?
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