
Linear Algebra and its Applications 434 (2011) 854–879

Contents lists available at ScienceDirect

Linear Algebra and its Applications

j ourna l homepage: www.e lsev ie r .com/ loca te / laa

Matrix computations and polynomial root-finding with

preprocessing�

Victor Y. Pan a,b ,∗, Guoliang Qian b, Ai-Long Zheng b, Zhao Chen c

a Department of Mathematics and Computer Science, Lehman College of the City University of New York, Bronx,

NY 10468, USA
b Ph.D. Programs in Mathematics and Computer Science, The Graduate Center of the City University of New York,

New York, NY 10036, USA
c Department of Mathematics, Polytechnique Institute of the City University of New York, USA

A R T I C L E I N F O A B S T R A C T

Article history:

Received 4 March 2010

Accepted 4 April 2010

Available online 3 December 2010

Submitted by A. Böttcher

AMS classification:

65F05

65F22

65F35

Keywords:

Linear systems of equations

Randomized preprocessing

Eigen-solving

Polynomial equation

Secular equation

Solution of homogeneous linear systems of equations is a basic op-

eration of matrix computations. The customary algorithms rely on

pivoting, orthogonalization and SVD, but we employ randomized

preprocessing instead. This enables us to accelerate the solution

dramatically, both in terms of the estimated arithmetic cost and

the observed CPU time. The approach is effective in the cases of

both general and structured input matrices and we extend it and

its computational advantages to the solution of nonhomogeneous

linear systems of equations, matrix eigen-solving, the solution of

polynomial and secular equations, and approximation of a matrix

by a nearby matrix that has a smaller rank or a fixed structure

(e.g., of the Toeplitz or Hankel type). Our analysis and extensive

experiments show the power of the presented algorithms.

© 2010 Elsevier Inc. All rights reserved.

�
Supported by PSC CUNY Awards 69330-0038 and 61406-0039.
∗ Corresponding author at: Department of Mathematics and Computer Science, Lehman College of the City University of New

York, Bronx, NY 10468, USA.

E-mail addresses: victor.pan@lehman.cuny.edu (V.Y. Pan), gqian@gc.cuny.edu (G. Qian), ailongz@yahoo.com (A.-L. Zheng),

c718212@yahoo.com (Z. Chen).

URL: http://comet.lehman.cuny.edu/vpan/ (V.Y. Pan).

0024-3795/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2010.04.011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81951072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/00243795
mailto:victor.pan@lehman.cuny.edu
mailto:gqian@gc.cuny.edu
mailto:ailongz@yahoo.com
mailto:c718212@yahoo.com
mailto:http://comet.lehman.cuny.edu/vpan/

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 855

1. Introduction

Solution of a homogeneous linear system of equations My = 0 is a basic operation of matrix

computations. We call the solution vectors y the null vectors of the input matrix M and call the space

N(M) of these vectors its null space. If the columns of amatrix B of full column rank span the null space

N(M), then we call the matrix B a null matrix basis or nmb for the matrix M and write B = nmb(M).
The customary methods for computing null vectors and nmbs rely on orthogonalization and piv-

oting (see Section 3), which makes them costly, particularly for structured (e.g., Toeplitz or Hankel)

matrices, but we employ randomized preprocessing instead, which enables dramatic acceleration of

the computations. For example, in the case of n× n Toeplitz and Hankel input matrices the esti-

mated running time decreases from quadratic to nearly linear, and in our extensive tests we observed

the decrease of the respective CPU time by the factor a(n) where a(512) > 18, a(1024) > 90, and

a(2048) > 300 (see Section 12.1).

The study of randomized preprocessing was scattered throughout the papers [25,28,29,30]. In

Sections 4–7 we summarize it, supply some perturbation analysis, and link to each other the three

main variations of this approach, that is randomized additive and multiplicative preprocessing and

randomized augmentation. In Sections 12.1–12.3 we present the results of supporting numerical

experiments.

Then we cover the extensions of the resulting algorithms for the null space computations to

(a) approximation of a matrix by nearby matrices having smaller ranks or smaller displacement

ranks in Sections 8 and 12.5,

(b) the solution of nonhomogeneous linear systems of equations in Sections 9 and 12.4,

(c) eigen-solving in Sections 10 and 12.6, and

(d) root-finding for polynomial and secular equations in Sections 11 and 12.6.

Our tests in Section 12 (the contribution of the last three authors) demonstrate that the approach

is powerful and practically promising.

Let us briefly comment on the two latter links. The extension to eigen-solving relies on the ob-

servation that the eigenspace associated with the eigenvalue λ of a matrix M is just the null space of

the shifted matrixM − λI. The Rayleigh quotient iteration [12,36] amounts essentially to the solution

of ill conditioned linear systems with the matrices M − λ(i)I for λ(i) ≈ λ and i = 0, 1, . . . With our

preprocessingwe solvewell conditioned linear systems instead,which enables us to employ Conjugate

Gradient algorithms and iterative refinement and to use factorization of a single matrixM − λ(h)I for

a number of successive iteration steps, i = h, h+ 1, . . . Furthermore our preprocessing can simplify

eigen-solving for structuredmatricesassociatedwithpolynomial andsecularequations.Our tests show

no substantial slowdown of the convergence, which could overweight the effect of our simplification

of every iteration loop.

With the listed directions in mind we mostly restrict our presentation to the case of square input

matrices, although the techniques for the null space computations,matrix inversion, and solving linear

systems of equations can be extended to the case of rectangular inputs by means of the techniques in

[23,25,28,29,30], and the first author is working on the extension of the presented approach to some

other problems of matrix and polynomial computations.

2. Definitions

Hereafterωk denotes the kth root of unityωk = exp
(
2π
k

√−1
)
and the abbreviation “nlns" stands

for “neither large nor small".

2.1. General and structured matrices

MT andMH denote the transpose and the Hermitian (complex conjugate) transpose of a matrixM,

respectively.

856 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

(M1, . . . , Mk) = ((MT
i)

k
i=1)T is a 1× k block matrix with the blocksM1, . . . , Mk .

diag(M1, . . . , Mk) = diag(Mi)
k
i=1 is a k× k block diagonal matrix with the diagonal blocks

M1, . . . , Mk .

Ik or just I denote the k× k identitymatrix. ej is its jth column, j = 1, . . . , k, so that I = (e1, . . . , ek).
Ok,l or just O denote the k× l null matrix, filled with zeros.

A matrixM is called unitary and orthonormal if MHM = I.

ν = n− ρ is the nullity of an m× nmatrix of a rank ρ .

M = Vfull�fullW
H
full is a full SVD or just SVD (that is Singular Value Decomposition) of an n× n

matrix M of a rank ρ provided Vfull and Wfull are two square unitary matrices (that is VfullV
H
full =

VH
fullVfull = Im,W

H
fullWfull = WfullW

H
full = In), �full = diag(�, O),� = diag(σi)

ρ
i=1, and σ1 � σ2 � . . .

� σρ > 0.

�
+
full = diag(�−1, O), M+ = Wfull�

+
fullV

H
full is the generalized Moore–Penrose inverse of a matrix

M of full rank,M+ = M−1 for a nonsingular matrix M.

‖M‖ = σ1 is the 2-norm of a matrix M, and cond(M) = σ1

σρ
is its condition number, so that

cond(M) = ‖M‖‖M+‖. A matrix M is ill conditioned if cond(M) is large. Otherwise the matrix is well

conditioned. A matrix has numerical nullity r if it has exactly r singular values that are small relatively

to its norm. Here thewords “small" and “large" aremeant in the context of the assumed computational

task and computer environment.

For a positive integer r � nwe call thematrixWr = Wfull

(
O

Ir

)
the r-tail of the SVD of thematrixM.

Q(M) denotes the m× n factor Q in the QR factorization of an m× n matrix M of full rank where

m� n and the factor R has positive diagonal entries (in this case the factorization is unique).

range(M) = {z : z = My} denotes the range of a matrix M. Its orthogonal complement N(M) =
{x : Mx = 0} is the null space of the matrix, made up of its null vectors x.

We call amatrix B a complete annihilator or just a ca of amatrixM and denote it ca(M) if range(B) =
N(M).

A matrix M of full column rank is a matrix basis for range(M). nmb(M) or a nmb of M is a null

matrix basis, that is a matrix basis for the null space N(M). A ca(M) is a nmb(M) if it has full column

rank.

S is an invariant subspace or eigenspace of a matrix M ifMS ⊆ S.

dist(S,T) = maxs∈S,‖s‖=1 mint∈T ‖s− t‖ is the distance between two linear spaces S and T.

{λ,X,Y} is an eigentriple and {λ,Y} is an eigenpair of a matrix M if λ is its eigenvalue, whereas

X and Y are the associated left and right eigenspaces. For two matrices X and Y we also call {λ, X, Y}
an eigentriple and {λ, Y} an eigenpair of the matrix M if range(X) = X and range(Y) = Y.

The basic concepts and results on computations with matrices having displacement structure

of Toeplitz, Hankel, Cauchy, and Vandermonde types can be found in [21] and the bibliography

therein.

2.2. Random sampling, random matrices, and Gaussian random variables

|	| is the cardinality of a set 	. Random sampling of elements from a set 	 is their selection from

this set at random, independently of each other, and under the uniform probability distribution on the

set. A matrix is random if its entries are randomly sampled from a fixed set 	, e.g., the set of all double

precision numbers with the exponents in a fixed range, for numerical computations. A k× l random

unitarymatrix is the k× l Q-factor Q(M) in the thin QR factorization of random k× lmatrixM of full

rankwhere the R-factor R(M) has positive diagonal entries. (QR factorization reveals whether amatrix

has full rank.)

Lemma2.1 ([9] (cf. also [34,38])). For a set	 of cardinality |	| in a ringR, let a polynomial inm variables

not vanish identically on the set 	m, let it have the total degree d, and let the values of its variables be

randomly sampled from the set 	. Then the polynomial vanishes with a probability of at most d
|	| .

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 857

3. Three standard algorithms for computations in the null spaces

Suppose we Seek B, a nmb for an n× n matrix M that has a rank ρ and the nullity ν = n− ρ .

Having a full SVD M = Vfull�fullW
H
full computed, we can choose B = Wfull

(
O

Iν

)
. Likewise, having QRP

(resp. PULP1) factorization of thematrixMH computed, we can choose B = Q

(
O

Iν

)
(resp. B = P

(
O

Iν

)
).

In the above QRP and PLUP1 factorizations, L can be any matrix, Q denotes an n× n unitary matrix,

P and P1 denote some n× n permutation matrices, such that PTP = PT
1P1 = I, and R and U denote

n× nmatrices of the form (W, O)T for n× (n− ν) matrices W .

ApplicationoforthogonalizationandSVDabove ismorecostly (andmore reliable), but evenpivoting

“usually degrades the performance" [12, page 119], readily destroys matrix structure and sparseness,

and threatens or undermines application of block matrix algorithms. For example, in the case of n×
n input matrices M with structure of Toeplitz or Hankel type application of pivoting increases the

arithmetic computational cost from O(n log2 n) flops to the order of n2.

4. Multiplicative preprocessing for null space computations

Suppose an n× nmatrixM =
(
M00 M01

M10 M11

)
has nonsingularρ × ρ leading (that is northwestern)

block submatrixM00. Then a single block Gauss–Jordan step outputs the block factorization

M =
(

Iρ O

M10M
−1
00 Iν

)(
M00 O

O S

)(
Iρ M

−1
00 M01

O Iν

)
, (4.1)

where S = S(M00, M) = M11 −M01M
−1
00 M01 denotes the Schur complement of the block M00 in M.

We immediately verify the following lemma.

Lemma 4.1. Suppose the n× nmatrixM above has rankρ and so does itsρ × ρ leading blockM00.Write

ν = n− ρ. Then S = O and B = B(M) =
(
−M−100 M01

Iν

)
is a nmb(M).

For a nonsingular matrix M we can shift to the matrix MHM or MMH to relax the assumption that

the matrix M00 is nonsingular at the price of squaring the condition number. We pay no such a price

if we shift to the matrix W = ClMCr for two appropriately structured random matrices Cl and Cr ,

defined by random parameters sampled from a large set	. One can deduce from Lemma 2.1 that with

this structured multiplicative preprocessing, the i× i leading submatrices W(i) of the resulting matrix

W =
(
W00 W01

W10 W11

)
arenonsingular for all i � ρ with aprobability converging tooneas |	| → ∞ (see

specific probability estimates in [21, Section 5.6]). In particular, if the matrix M has the displacement

structure of Toeplitz, Hankel, Vandermonde or Cauchy type, thenwe can choose themultipliers Cl and

Cr thatensure thesamestructureof anyof these types for thematrixW . In this case thesuperfastdivide-

and-conquer MBA algorithm (cf. [21, Chapter 5]) only needs O(n log2 n) flops to compute shortest

displacement generators that represent the matrices W
−1
00 ,−W−100 W01, B(W) =

(
−W−100 W01

Iν

)
, and

B(M) = CrB(W), which is a nmb(M) as long as the matrices Cl and Cr are nonsingular.

According to the test results in [30], the above preprocessing tends to keep its power even under

weak randomization, where the matrices Cl and Cr are circulant and are filled with the values−1 and

1 chosen at random. Moreover in the tests this preprocessing tended to be preconditioning, that is

the leading submatricesW (i) for all i � ρ tended not only to be nonsingular but also to have condition

numbers of at most the same order as cond(M) = σ1(M)
σρ(M)

. Such properties have been proved in [30] for

general Gaussian random matrices Cl and Cr . The tests in [30] sometimes showed minor increase of

858 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

the value cond(W) versus cond(M) and the respectiveminor loss of accuracy in the computed inverse

W
−1
00 , but the full precision output was always recovered in one or two steps of iterative refinement.

5. Additive preprocessing for null space computations

We apply additive preprocessing based on the following results.

Theorem 5.1. Suppose

(a) M is an n× n matrix having a rank ρ and the nullity ν = n− ρ ,

(b) U and V are two matrices of size n× r, and

(c) the matrix

K = M + UVH (5.1)

is nonsingular. Then

r � rank(U) � ν , (5.2)

N(M) ⊆ range(K−1U). (5.3)

Furthermore if

rank(UVH) = ν , (5.4)

then

range(K−1U) = N(M), (5.5)

VHK−1U = Iν . (5.6)

Proof. See Theorem 3.1 in [28]. �

The following theorem is immediately verified.

Theorem 5.2. Under the assumptions (a)–(c) of Theorem 5.1 we have range(K−1UX) = N(M) if and

only if range(X) = N(MK−1U) and consequently K−1U is a ca(M) if and only if MK−1U = 0.

Theorem 5.3. Under the assumptions (a)–(c) of Theorem 5.1, N(MK−1U) = N(Iν − VHK−1U) if the

matrix U has full rank.

Proof. See Theorem 4.1 in [32] or Corollary 3.2 in [28]. �

Randomized computation of the nullity ν and a ca(M) can employ the following properties in

Theorems 5.1–5.3.

1. For n× r matrices U and V , the matrix K = M + UVH is singular if r < ν (in virtue of bounds

(5.2)) but is likely to be nonsingular if r � ν and if the matrices U and V are random or even just

random within a fixed class of structured matrices (see [25] for specific probability estimates,

based on Lemma 2.1).

2. Suppose the matrix K is nonsingular, and so range(K−1U) ⊇ N(M). Then

B = K−1U (5.7)

is a ca(M) if and only if MK−1U = 0.

3. Suppose the matrix K is nonsingular and MK−1U /= 0. Then we have rank(UVH) > ν and

range(K−1U) ⊃ N(M). Furthermore in this case K−1UX is a ca(M) if X is a ca(MK−1U) =
ca(Ir − VHK−1U).

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 859

The transitions M �⇒ Ir − VHK−1U can be viewed as aggregation and can be extended recur-

sively. (See [28, Section 6.2] on some examples of aggregation for matrix computations and ten-

sor decompositions and recall recursive hierarchial aggregation in [17], evolved into Algebraic

Multigrid.)

According to the formal analysis in [25] and [28, Theorem 3.12] we can expect that the ratio
cond(M)
cond(K)

is nlns (or equivalently that cond(K) has the order
σ1(M)

σn−r(M)
) if the matrix K is nonsingular, if the

ratio
‖M‖
‖UVH‖ is nlns, and if U and V are Gaussian random matrices. The same property of the ratio

was consistently observed in the extensive experiments in [25] with weakly randomized additive pre-

processors for U = V = c(±Ir , . . . ,±Ir ,±I′n,r)T , I′n,r = (Ir′ , 0)T , r′ = nmod r = n− hr, 0� r′ < r, and

c2h ≈ ‖M‖, where each± denoted the sign− or+ chosen at random.

If the matrix M is ill conditioned, whereas the matrix K is well conditioned, then the matrices

MK−1U and Iν − VHK−1U tend to have small norms, large condition numbers, or both, and thus one

must compute thesematriceswith higher accuracy, e.g., by applying the extended iterative refinement

from [23] to computing the matrix K−1U. The gain from preconditioning is the reduction of the

computations to the case of a well conditioned input matrix K , so that we can apply and extend

iterative refinement (cf. [23]).

The test results in Tables 6–9 confirm the efficiency of the respective algorithms.

We conclude this section by representing multiplicative preprocessing in Section 4 as additive

preprocessing of a 2× 2 block matrix. Assume that an n× n matrix M =
(
M00 M01

M10 M11

)
of rank ρ

has nonsingular ρ × ρ leading block M00. Then B =
(
−M−100 M01

Iν

)
is a nmb(M) and ν = n− ρ in

virtue of Lemma 4.1. Let us also deduce this fact from Theorem 5.1. Namely, write U =
(
O

Iν

)
, VH =

(−M10, Iν −M11), andν = n− ρ andobtain thenonsingularmatrixK = M + UVH =
(
M00 M01

O Iν

)
.

Then Theorem 5.1 implies that

B = K−1
(
O

Iν

)
=
(
−M−100 M01

Iν

)
(5.8)

is a nmb(M).

6. Preprocessing by means of randomized augmentation

Given an n× n singular matrixM and its rank ρ , define preprocessing by means of augmentation

M→ A =
(
M P01
O θ Iν

)
→ K = A+ UVH =

(
M P01
P10 θ Iν

)
. (6.1)

Here ν = n− ρ , U =
(

O

P10

)
, VH = (In, O), and we choose the scalar θ and scaled Gaussian random

matrices P01 and P10 such that the ratios θ/‖M‖, ‖P01‖/‖M‖, ‖P10‖/‖M‖, and ‖M‖/‖K‖ are nlns. (The
matrix K is Hermitian if so is thematrixM, if θ is real, and if P01 = PH

10.) For a singularmatrixMwe can

deduce from Lemma 2.1 that the above augmentation produces a nonsingular matrix K with a high

probability (specified in [30]). If thematrixK is indeednonsingular, then thematrix

(
B

B1

)
= K−1

(
O

P10

)
is a ca(A) and therefore the matrix B = (In, O)K−1

(
O

P10

)
is a ca(M).

Furthermore it is proved in [30] that the condition number cond(K) is expected to have the same

order as cond(M) = σ1(M)/σρ(M). If we are given a nonsingular matrix M̃ ≈ M and augment it as

above to obtain the matrix K̃ =
(
M̃ P01
P10 θ Iν

)
, then clearly cond(M̃)� cond(M), whereas cond(K̃) ≈

860 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

cond(K) ≈ cond(M), so that the transition M̃→ K̃ ispreconditioning, ingoodaccordancewith the test

results in Table 10. In fact the tests consistently showpreconditioningpower of evenweakly randomized

augmentation M̃→ K =
(
M̃ P01

P10 P11

)
where we allow only a small number of random parameters in

the matrices P01, P10 and P11 and choose these parameters to keep the structure of the input matrix

M intact in the above transition to the matrix K . Note that a ν × ν random matrix P11 is nonsingular

with a probability close to one, and if it is indeed nonsingular, then K = diag
(
In−ν ,

1
θ
P11

)
K̃ where

K̃ =
(
M̃ P01
P10 θ Iν

)
and N(K) = N(K̃), for θ /= 0, P01 = P01, and P10 = θP

−1
11 P10.

Nowsuppose the valueρ = rankM is not known. Thenwe can search for it by extending the recipes

in the previous section based on Theorems 5.1–5.3. For ν < n− ρ the matrix K is definitely singular,

and then we should increment the integer ν and recompute this matrix. If ν � n− ρ and the matrices

P01 and P01 are random or random structured, then the matrix K is likely to be nonsingular. If indeed

it is nonsingular and if ν = n− ρ , then the matrix B is expected to be a ca(M). If rankM > n− ν and

if the matrix K is nonsingular, then the same algorithm would output a matrix B whose range would

contain the null space N(M). In this case B is a ca(M) if and only ifMB = O. IfMB /= Owe can reapply

the same algorithm to the aggregateMB of a smaller size to compute the matrices X (a caMB)) and BX

or Q(BX) (a ca(M)) (cf. Theorem 5.2).

7. Estimates for the impact of input perturbations

Let us estimate the impact of input perturbations in the cases of computations with multiplica-

tive and additive preprocessing. The latter estimates can be readily extended to preprocessing via

augmentation either directly or by using the link to additive preprocessing in [28, Section 4].

For a matrixM multiplicative preprocessing in Section 4 produces the matricesW = ClMCr , B(W)

=
(
−W−100 W01

Iν

)
= nmb(W), and B(M) = CrB(W) = nmb(M), provided that the matrices Cl and Cr

are nonsingular.

Now suppose that M̃ ≈ M and W̃ ≈ W , write F = −CrW−100 W01 and F̃ = −CrW̃−100 W̃01, and obtain

that δ(F) = F̃ − F = −Crδ(W−100 W01) = −Cr(δ(W−100)W01 + W̃
−1
00 δ(W01)). Therefore

‖δ(F)‖� ‖Cr‖(‖δ(W−100)‖‖W01‖ + ‖W̃−100 ‖‖δ(W01)‖), (7.1)

‖W01‖� ‖Cr‖(‖M̃‖ + ‖δM‖)‖Cl‖, ‖W̃−100 ‖� ‖C−1l |‖M̃−100 ‖‖C−1r ‖, (7.2)

‖δ(W0j)‖� ‖Cr‖‖δ(M0j)‖‖Cl‖� ‖δ(M)‖‖Cr‖‖Cl‖, j = 0, 1. (7.3)

Further assume that δ00 = ‖W̃−100 δ(W00)‖ < 1 and obtain that

‖δ(W−100)‖�
1

1− δ00
‖δ(W00)‖‖W̃−100 ‖2 (7.4)

(cf. [12, Theorem 2.3.4] for A = W̃00, E = −δ(W00)).
Estimates (7.1)–(7.4) together imply that ‖δ(F)‖ = O(‖δ(M)‖).

Remark 7.1. Suppose the Schur complement S in Eq. (4.1) is nonsingular. Thenwe can invert both sides

of this equation and obtain that

M−1 =
(
Iρ −M−100 M01

0 Iν

)(
M
−1
00 0

0 S−1
)(

Iρ 0

−M10M
−1
00 Iν

)
, (7.5)

and so ‖M−1‖�max{‖M−100 ‖, ‖(S−1‖}(1+ ‖M‖‖M−100 ‖)2, whereas we have ‖(ClMCr)
−1‖� ‖C−1l ‖

‖M−1‖‖C−1r ‖.
In the case of additive preprocessing in Section 5 we have the following simple estimate.

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 861

Theorem 7.1. For thematricesM, U, V, and K in Theorem 5.1 and an n× nmatrix	 = δ(M), assume that

y ∈ N(M), ‖y‖ = 1, and the matrix K +	 = M +	+ UVH is nonsingular. Then dist(y, range((K +
)−1U)) � ‖(K +)−1	‖� ‖(K +)−1‖‖	‖.
Proof. Wehave (K +)y = 	y + UVHy, and therefore y = (K +)−1	y + (K +)−1UVHy. The

theorem follows because (K +)−1UVHy ∈ range((K +)−1U). �

For a well conditioned nonsingular matrix K and a small-norm perturbation matrix 	 = δ(M) =
δ(K), the theorem implies that the range of thematrix (K +)−1U approximates the null spaceN(M)
within O(‖	‖).
8. Approximation by nearby structured or lower rank matrices

Similarly to the previous section assume a nonsingular ill conditioned n× n input matrix M̃ rep-

resented as M̃ = M + δ(M) where rank(M) = ρ < n, the norm ‖δ(M)‖ is small, the matrix M̃ has

numerical rank ρ and has numerical nullity nnul(M) = ν = n− ρ , that is has exactly ν singular values

that are small relatively to the norm ‖M‖. Application of error-free algorithms to this matrix models

numerical application of the same algorithms to the matrix M.

Hereafter for a matrix function F = f (M), we write F̃ = f (M̃) and δ(F) = F̃ − F .

The algorithms from Sections 3–6 applied to amatrix M̃ output amatrix B̃ expected to approximate

an n× ν matrix B = nmb(M), and if it does, then range(̃B) approximates the ν-tail of the SVD of the

matrix M̃. This immediately leads us to the approximation of a nearly rank deficientmatrix by a smaller

rankmatrix M̃(I − Q̃ Q̃H) such that Q̃ = Q̃(B) is a unitary approximate nmb(M) for B in (5.7), (5.8), or

(6.1) whereM is replaced by M̃. An alternative expression in [28, Section 7.2] relies on a dual variation

of the Sherman–Morrison–Woodbury classical formula for matrix inversion [12, page 50]. (Hereafter

we use the abbreviation SMW.)

As a special case we can apply such techniques to approximate the displacement M̃ = disp(̃A) of

a matrix Ã by the matrix M = disp(A) of a smaller rank (provided that there exists such a matrix M).

Thenwe can approximate the inputmatrix Ã by a structuredmatrix A recovered from its displacement

M = disp(A).
The respective computations can be reduced to the solution of linear systems of equations with

the matrix K̃ given by K̃Y = U for K̃ = M̃ + UVH, K̃ = K + δ(K), and K in Sections 5 or 6, and so the

perturbations of the outputs have the norms in O(‖δM‖) provided the auxiliary linear systems are

well conditioned (cf. [12,13,35,36]).

Table 13 displays the results of our experimental computations for this section.

9. Extension to the solution of a nonhomogeneous linear system

We can readily extend our null space algorithms to a nonhomogeneous linear system My = b,

for b /= 0: observe that the solution vector y is a subvector of the null vector z = (yT , 1/θ)T of the

matrix (M,−θb) for a scalar θ /= 0. We refer the reader to the second last paragraph of Section 5 and

to the paper [23] on handling the numerical problems that arise where the linear system My = b

is nonsingular and ill conditioned and to Section 12.4 on the implementation of this approach and

experiments that demonstrate its power.

10. Applications to eigen-solving

10.1. The inverse iteration for eigen-solving, RQs and SQs

The Rayleigh quotient iteration (also called the inverse iteration [12]) is a popular eigen-solver.

Given a square matrix M and an approximation λ0 to its simple eigenvalue λ, one computes the

matrix M0 = M − λ0I, fixes a vector y0, and recursively updates approximate eigenpairs {λi, yi} for
i = 0, 1, . . . as follows:

862 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

Mizi = yi, (10.1)

δi = zHi Mizi

zHi zi
, (10.2)

Mi+1 = Mi − δiI, yi+1 = zi/si, λi+1 = λi + δi

where si are positive scalars such that the ratios ‖zi‖/si are nlns for all i.

Hereafter we use the abbreviations RQs for the Rayleigh quotients
zHi Mizi

zHi zi
in (10.2) and SQs for the

simple quotients
eHj Mizi

eHj zi
in the following alternative to (10.2),

δi =
eTj Mizi

eTj zi
, eTj zi /= 0. (10.3)

We choose the integer j that maximizes the value |eTj zi| in a fixed or random set J of integers j (e.g.,

over three or five random integers or just over the set {1, �n/2�, n}). Algorithms 10.1(rq) and 10.1(sq)

below specify the RQ iteration (10.1), (10.2) and SQ iteration (10.1), (10.3), respectively. Both iterations

can employ the standard stopping criterion

‖Mizi‖� t‖zi‖, (10.4)

where t is either a fixed tolerance or t = t′|λi| for a fixed tolerance t′. To save some flops one can

skip checking this criterion where |δi−1| > θ t for a fixed positive scalar θ and similarly in all our

eigen-solvers.

Under (10.1) one should substitute yi = Mizi into Eqs. (10.2)–(10.4) to obtain δi = zHi yi

zHi zi
instead of

(10.2), δi = eTj yi

eTj zi
instead of (10.3), and ‖yi‖� t‖zi‖ instead of (10.4), thus saving the vector yi = Mizi

rather than recomputing it.

The iteration is equivalent to Newton’s eigen-solving iteration and has local quadratic convergence

[37,31], [36, Section 2.2.1].

The RQ in (10.2) can be considered an average over all subscripts j, j = 1, 2, . . . , n, for the SQs

in (10.3), and so for random choice of the integers j the SQs are expected to have the same or-

der as the RQs. Consequently quadratic rate of local convergence of RQ iteration (10.1), (10.2) is

expected to hold also for the SQ iteration (10.1), (10.3) under a random choice of the integers j. In

the tests for global convergence (initiated far from the solution), the SQ iteration converged slightly

slower than the RQ iteration, but this was always more than compensated by the simplicity of the

SQ iteration steps. Similar patterns characterize using RQs and SQs in our algorithms in the next

subsections.

Algorithm 10.1. The SQ iteration.

Input: an n× nmatrixM, an approximation λ0 to its simple eigenvalue, a positive integer N, and

a tolerance t.

Output: either FAILURE or an approximate eigenpair {λ, y} of the matrix M such that ‖My −
λy‖� t|‖y‖.
Initialization: Set i← 0 and k← 0, andM0← M − λ0I and fix a normalized vector y0, ‖y0‖ =
1 and a set J of integers in the range [1, n].
Computations:

1. If k �N, output FAILURE and stop. Otherwise compute the vector zi = M
−1
i yi. Compute the value

λi = eT1(Mi −M)e1, output the pair {λ, y} = {λi, yi} and stop if ‖yi‖� t‖zi|.
2. Otherwise compute an integer j maximizing the value eTj zi over the set J. If eTj zi = 0, output

FAILURE and stop.

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 863

3. Otherwise compute the ratio δi = eTj yi

eTj zi
, the matrixMi+1 = Mi − δiI, and the vector yi+1 = zi/si

for a nonzero scalar si such that the norm ‖yi+1‖ is nlns (e.g., si = ‖zi‖), set i← i+ 1 and

k← k+ 1, and reapply Stage 1.

We refer to this SQ iteration as Algorithm 10.1(sq). By expressing δi as the RQ
zTi yi

zTi zi
we arrive at

Algorithm 10.1(rq), the RQ iteration.

10.2. Inverse iteration with additive preprocessing

In aneigenpair (λ, y)of amatrixM theeigenvectory is anull vectorof the shiftedmatrixM − λI, and
this prompts us to apply our null space algorithms at the stage of the solution of linear systems (10.1)

for updating the eigenvectors. We specify application of scaled randomized additive preprocessing,

but one can apply augmentation instead.

Systems (10.1) are singular for λi = λ and become ill conditioned as λi converges to λ. Therefore
they resist application of such effective iterations as the Conjugate Gradient algorithms and iterative

refinement. With randomized preprocessing, however, we fix this deficiency.

Suppose that λ is a simple isolated eigenvalue and rewrite expressions (10.1) by applying the SMW

formula,

zi = K
−1
i (1+ g

−1
i uiv

H
i K
−1
i)yi, for Ki = Mi + uiv

H
i , gi = 1− vHi K

−1
i ui. (10.5)

Here ui and vi are random vectors (or ui = vi is a single random vector) such that the matrix Ki is

nonsingular and the ratio
‖uiv

H
i ‖‖Mi‖ is nlns.We refer to the resultingmodifications of RQ and SQ iterations

as the RQ/SMW and SQ/SMW iterations and also as Algorithms 10.1(sq/smw) and 10.1(rq/smw), respec-

tively. Mathematically expressions (10.1) and (10.5) define the same vector zi, so that the RQ/SMWand

SQ/SMW iterations have local quadratic convergence as well.

According to the study in [25] the matrix Ki is expected to be well conditioned for λi near a simple

and isolated eigenvalue λ.
In an alternative iteration we keep the expression Ki = Mi + uiv

H
i and the recipes for choosing the

vectors ui and vi but replace Eq. (10.5) as follows (cf. Theorem 5.1),

Kizi = ui. (10.6)

We call the respective extensions of the RQ and SQ iterations the PRQ and PSQ iterations with the

abbreviation “P" for “preprocessed".

Eq. (10.6) implies that Mizi = Kizi − uiv
H
i zi = ui − uiv

H
i zi = giui for gi = 1− vHi zi =

1− vHi K
−1
i ui from Eq. (10.5). We can substitute the expression Mizi = giui into Eqs. (10.2)–(10.4)

and obtain the equivalent expressions δi = gi
zHi ui

zHi zi
(cf. (10.2)), δi = gi

eHj ui

eHj zi
for eHj zi /= 0 (cf. (10.3)), and

|gi|‖ui‖� t‖zi‖ (cf. (10.4)). Substitute yi = zi/si and ḡi = gi/si = 1
si
− vHi yi for a nonzero scalar si and

obtain

δi = ḡi
yHi ui

yHi yi
, δi = ḡi

eTj ui

eTj yi
, |ḡi|‖ui‖� t‖yi‖, (10.7)

respectively. The following algorithm employs these equations.

Algorithm 10.2. PSQ iteration.

Input and Output as in Algorithm 10.2.

Initialization: Set i← 0, k← 0, andM0← M − λ0I and fix amoderately large positive value γ .

Computations:

864 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

1. If k �N, output FAILURE and stop. Otherwise generate a pair of n× ν random vectors ui and

vi scaled so that 1
γ

<
‖uiv

H
i ‖‖Mi‖ < γ . Compute the matrix Ki = Mi + uiv

H
i . If it is singular, set

k← k+ 1 and reapply Stage 1.

2. Otherwise fix a positive scalar si and compute the vectors zi = K
−1
i ui and yi = zi/si and the

scalar ḡi = 1
si
− vHi yi for a fixed scalar si. Compute the value λi = eT1(Mi −M)e1, output the

pair (λ, y) = (λi, yi) and stop if ‖ḡiui‖� t‖yi‖.
3. Proceed as in Stage 2 in Algorithm 10.2.

4. Otherwise compute the value δi = ḡi
eTj ui

eTj yi
and the matrix Mi+1 = Mi − δiI. Set i← i+ 1 and

k← k+ 1 and reapply Stage 1.

We refer to this PSQ iteration as Algorithm 10.2(sq). By expressing δi as ḡi
yHi ui

yHi yi
we obtain Algorithm

10.2(rq), the PRQ iteration.

By replacing the stopping criterion and the expression for δi in these two algorithmswith ‖Miyi‖�

t‖yi‖ (cf. (10.4)) and choosing either δi = eTj Miyi

eTj yi
for an integer j such that eTj yi /= 0 (cf. (10.3)) or

δi = yHi Miyi

yHi yi
(cf. (10.2)) we obtain Algorithms 10.2(sq0) and 10.2(rq0), respectively.

A proof of local quadratic convergence of these algorithms is given in [33] in the case where ui =
yi−1 for all i.

The algorithms can be readily extended to the case where the values λi approximate an eigen-

value λ having geometric and algebraic multiplicity ν > 1 (see [12, Section 7.1.4] on the definition

of multiplicity) . In this case one should use rank-ν modifications Ki = Mi + UVH where U and V

are n× ν matrices and should modify the RQ/SMW and SQ/SMW iterations based on the following

equations,

Zi = K
−1
i (Iν + UiG

−1
i VH

i K
−1
i)Yi, Ki = Mi + UiV

H
i , Gi = Iν − VH

i K
−1
i Ui,

δi = eHαZ
H
i Yieα

eαZ
H
i Zieα

or δi =
eTgYieh

eTg Zieh
, eTg Zieh /= 0,

‖Yi‖� t‖Zi‖,
Yi+1 = Zi/si, Mi+1 = Mi − δiI, λi = eT1(Mi −M)e1.

Likewise one should modify the PRQ and PSQ iterations, by employing in particular the following

equations,

KiZi = Ui, Gi = Iν − VH
i Zi,

δi = eHαZ
H
i UiGieα

eαZ
H
i Zieα

or δi =
eTgUiGieh

eTg Zieh
, eTg Zieh /= 0,

‖UiGi‖� t‖Zi‖.
Remark 10.1. We can extend all eigen-solvers in this section to the approximation of the eigenspaces

associated with a fixed set of eigenvalues � = {λ(1), . . . , λ(k)}. We should just redefine the matrices

Mi as
∏k

j=1(M − λ
(j)
i I) where λ

(j)
i denote the current approximations to the eigenvalue λ(j) for j =

1, . . . , k and i = 0, 1, . . ., and we should update these approximations and matrices by applying the

Rayleigh–Ritz process [36,2]. For k = 1 we come back to the algorithms of this section.

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 865

10.3. Newton’s linearization with additive preprocessing

Theorem 10.1. Suppose λ+ δλ is an eigenvalue having geometric multiplicity ν for an n× n matrix

M, whereas U and V are n× ν matrices. Write δ = |δλ|, M(μ) = M − μI, K(μ) = M(μ)+ UVH for

μ = λ and μ = λ+ δλ,

XH = VHK−1(λ), (X + δX)H = VHK−1(λ+ δλ),

Y = K−1(λ)U, Y + δY = K−1(λ+ δλ)U,

F = XHY = VHK−2(λ)U,

G = Iν − XHU = Iν − VHY = Iν − VHK−1(λ)U.

Suppose δ→ 0 and the matrices K(λ) and K(λ+ δλ) are nonsingular. Then

(a) {λ+ δλ, X + δX, Y + δY} is an eigentriple made up of an eigenvalue λ+ δλ of the matrix M and

the matrix bases X + δX and Y + δY for its associated left and right eigenspaces,

(b) δY = (δλ)K−1(λ)(I − (δλ)K−1(λ))−1Y = (δλ)K−1(λ)Y + O(δ2),
(c) δX = (δλ)K−H(λ)(I − (δλ)K−H(λ))−1X = (δλ)K−H(λ)X + O(δ2),
(d) (δλ)UF = M(λ)Y + O(δ2),
(e) (δλ)VFH = M(λ)HX + O(δ2), and
(f) if at least one of the matrices U and V has full column rank, then (δλ)F = G + O(δ2).

Proof. Part (a) follows from Theorem 5.1.

To prove part (b), combine the matrix equations K(λ+ δλ)(Y + δY) = U (implied by Theorem

5.1), K(λ)Y = U, and K(λ+ δλ) = K(λ)− (δλ)I (implied by the definitions of the matrices Y and

K(μ)). Obtain that Y + δY = K−1(λ)U + (δλ)K−1(λ)(Y + δY). Recall that Y = K−1(λ)U and obtain

that δY = (δλ)K−1(λ)(Y + δY) and consequently δY = (δλ)K−1(λ)(I − (δλ)K−1(λ))−1Y .
Part (c) is proved similarly.

Next recall that M(λ+ δλ)(Y + δY) = (M(λ)− (δλ)I)(Y + δY) = 0. Therefore M(λ)(Y + δY)
= (δλ)(Y + δY) = (δλ)Y + O(δ2), and so (δλ)Y = M(λ)Y +M(λ)δY + O(δ2). Substitute the ex-

pression for δY from part (b) and obtain that (δλ)Y = M(λ)Y + (δλ)M(λ)K−1(λ)Y + O(δ2).
Recall that M(λ) = K(λ)− UVH and obtain that M(λ)K−1(λ) = In − UVHK−1(λ). Substitute

this expression and deduce that (δλ)UVHK−1(λ)Y = M(λ)Y + O(δ2). This implies part (d) because

VHK−1(λ)Y = XHY = F .

Part (e) is proved similarly.

Recall that M(λ)Y = K(λ)Y − UVHY = U − UVHY = U(Iν − VHY) = UG. Substitute the matrix

equation M(λ)Y = UG into the equation of part (d) and obtain that (δλ)UF = UG + O(δ2), which

implies part (f)where thematrixU has full columnrank. Similarly deduce frompart (e) that (δλ)VFH =
VGH + O(δ2). This implies part (f) where the matrix V has full column rank. �

Remark 10.2. We can expect that the matrix K(λ) is well conditioned, and then part (f) of Theorem

10.1 implies that thematrix G has a small normwhere λ̃ ≈ λ. If so, the computation of this matrix can

lead to numerical stability problems because ‖Iν‖ = 1. We can still perform the computations with

the standard IEEE double precision if we apply the advanced fast and accurate algorithms for sums

and products (cf. [8,14,18]) and the extended iterative refinement in [23].

Here is our algorithm that relies on Theorem 10.1.

Algorithm 10.3. Newton’s eigen-solving with additive preprocessing.

Input: an n× n matrix M, an approximation λ0 to its eigenvalue having algebraic and geometric

multiplicity ν , a positive integer N, and a tolerance t.

Output: either FAILURE or an approximation {λ, X, Y} to an eigentriple of the matrix M such that

‖XHM − λXH‖� t‖X‖, ‖MY − λY‖� t‖Y‖ (cf. Remark 10.3).

866 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

Initialization: Set i← 0, k← 0, andM0← M − λ0I. Fix a moderately large positive scalar γ .

Computations:

1. If k �N, output FAILURE and stop. Otherwise generate a pair of n× ν random matrices Ui and

Vi scaled so that 1
γ

<
‖UiV

H
i ‖‖Mi‖ < γ . Compute the matrix Ki = Mi + UiV

H
i . If it is singular or ill

conditioned, set k← k+ 1 and reapply Stage 1.

2. Otherwise compute the matrices XH
i = VH

i K
−1
i , Yi = K

−1
i Ui, Fi = XH

i Yi, and Gi = Iν − XH
i Ui.

Compute the value λi = eT1(Mi −M)e1, output the triple {λ, X, Y} = {λi, Xi, Yi} and stop if

‖XH
i Mi‖� t‖Xi‖, ‖MiYi‖� t‖Yi‖. (10.8)

3. Otherwise select a pair of integers α and β such that 1� α � ν , 1� β � ν , eTαFieβ /= 0 (if there

exists no such a pair of integers, output FAILURE and stop). Compute the ratio δi = eTαGieβ

eTαFieβ
.

Compute the matrix Mi+1 = Mi − δiI, set i← i+ 1, and reapply Stage 2.

Theorem 10.1 implies correctness and local quadratic convergence of Algorithm 10.3.

Remark 10.3. We can apply the stopping criteria ‖GiV
H
i ‖� t‖Xi‖, ‖UiGi‖� t‖Yi‖ instead of (10.8).

Let us show equivalence. We have XH
i Mi = VH

i K
−1
i Mi = VH

i (In − K
−1
i UiV

H
i) = VH

i − VH
i K
−1
i UiV

H
i =

GiV
H
i and likewise MiYi = MiK

−1
i Ui = (In − UiV

H
i K
−1
i)Ui = Ui − UiV

H
i K
−1
i Ui = UiGi. We can save

some flops by checking only one of the two inequalities in (10.8) or above and by skipping the

test where |δi| > θ t for a tolerance θ . For ν = 1 the matrix Gi turns into a scalar gi, the matrices

Ui, Vi, Xi, and Yi turn into vectors ui, vi, xi, and yi, respectively, and stopping criteria (10.8) into the

bound |gi|� tμi,μi = min
{ ‖xi‖‖vi‖ , ‖yi‖‖ui‖

}
.

Remark 10.4. Unless the norm ‖δiK−1i ‖ is small enough, convergence and numerical stability of Al-

gorithm 10.3 can be endangered where the matrices Fi have small norms. Assume for simplicity that

λ is a simple eigenvalue, so that ν = 1 and let a triple {λi, xi, yi} approximate the eigentriple {λ, x, y}.
Then xHy = 1 and thematrices Fi turn into scalars fi = xH

i yi. Suppose the coordinates u
(j)
i of the vector

ui = (u
(j)
i)nj=1 are random variables independent of each other and uniformly distributed in the range

[−1, 1) or in the circle {‖u(j)
i ‖� 1}. Then one can estimate that the random scalar function zHi ui is

expected to converge to zero as n→∞. The matrix Ki and therefore the vector vHi K
−2
i depend on

the vector ui, but rather weakly, and in our tests the scalars fi tended to nearly vanish already for

moderately large dimensions n such as 128 and 256, thus making Stage 3 of Algorithm 10.3 prone

to numerical stabilty problems. Moreover this stage relies on the estimates in part (d) of Theorem

10.1, but they are meaningful only where δi = o(fi). If, however, M = MH is a Hermitian matrix, we

choose vi = ui, so that fi = viK
−2
i ui = ‖K−1i ui‖2 = ‖yi‖2. In a heuristic extension of this recipe to

the nonHermitian matrices M, we first choose vi = ui and compute the vector K
−2
i ui and the scalar

|uH
i zi|. Then if this scalar is too small, we redefine the vector vi by setting it equal to K

−2
i ui. We could

have extended this process recursively, but in our tests never needed to do this.

The recipe in the following remark can be extended to all eigen-solvers in this section.

Remark 10.5. Given an approximation λ̃ to an eigenvalue λ, we can fix λi = λ̃ for all i and update

the matrices Ui and Vi as follows, Ui = Yi−1 and Vi = Xi−1 for all i. Theorem 10.1 implies that the

linear spaces range(Xi) and range(Yi) converge to the left and right eigenspaces associated with the

eigenvalueλ. The convergence is linear, and for λ̃ ≈ λ the overhead constants are small. Havingλi = λ̃
for all i and a small integer ν , we can readily obtain the matrices Ki from Ki−1 via the SMW formula

and extend this iteration to the approximation of the eigenspace associated with a fixed cluster of

eigenvalues.

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 867

10.4. Modifications of the inverse iterations with additive preprocessing

Here are some natural modifications of the algorithms in the two previous subsections.

1. The cost of performing Algorithms 10.2 and 10.3 is dominated at the stage of solving linear

systemswith thematrices Ki. This stage, however, can be simplifiedwhere the norm ‖δi−1Ki‖ =
|δi−1|‖Ki‖ is small because Ki = Ki−1 − δi−1I = (I − δi−1K−1i−1)Ki−1 and so K

−1
i =

∑∞
j=0 δ

j
i−1

K
−1−j
i−1 . Instead of a linear system with the matrix Ki we can solve two systems, either one with

the matrix Ki−1 and another with the strongly diagonally dominant matrix I − δi−1K−1i−1 or both

systems with the matrix Ki−1 provided K
−1
i ≈ K

−1
i−1 + δi−1K−2i−1.

2. SupposeU = Ui andV = Vi for all i andmodifyAlgorithm10.3as follows.Recall thatKi = Ki−1 −
δi−1I = Ki−1(I − δi−1K−1i−1) and obtain (ignoring the terms in O(|δi−1|3)) that K−1i = K

−1
i−1(I −

δi−1K−1i−1)−1 = K
−1
i−1(I + δi−1K−1i−1 + δ2i−1K

−2
i−1), K

−2
i = K

−2
i−1(I + 2δi−1K−1i−1 + 3δ2i−1K

−2
i−1). Now

write Gi,j = VHK
−j
i U, so that Fi = Gi,2 and Gi = Iν − Gi,1. Keep ignoring the terms in O(|δi−1|3)

and deduce that Fi = Gi−1,2 + 2δi−1Gi−1,3 + 3δ2i−1Gi−1,4, Gi = Gi−1 − δi−1Fi−1 − δ2i−1Gi−1,3.
Suppose eTαGi,heβ /= 0 for h = 2 and h = 3, δi−1 = eTαGi−1eβ

eTαFi−1eβ
, and δi = eTαGieβ

eTαFieβ
. Then eTαGieβ =

−δ2i−1eTαGi−1,3eβ , whereas Fi = Fi−1 + O(|δi−1|). Therefore

δi = −δ2i−1
eTαGi−1,3eβ

eTαFi−1eβ

. (10.9)

Now assume the value eTαFi−1eβ = eTαFieβ + O(|δi−1|) and the vector ui−1,β = K
−2
i−1Ueβ avail-

able. Then we can readily compute the vector ūi−1,β = Gi−1,3eβ = K
−1
i−1ui−1,β and the values

eTαGi−1,3eβ = eTαūi−1,β and δi in (10.9). We use these expressions for computing the values δi at
Stage 3 of Algorithm 10.3where i is even, that is i = 1, 3, 5, . . ., and keep the original expressions

for δi in Algorithm 10.3 where i is odd, that is, i = 0, 2, 4, Then at stages where i is even,

we compute the vectors K
−1
i−1ūi−1,β but avoid computing the vectors eTαV

HK
−1
i and K

−1
i Ueβ . We

refer to the latter modification of Algorithm 10.3 as Algorithm 10.3a.

3. In Algorithms 10.2, 10.3, and 10.3a we modify the matrix M by adding matrices UiV
H
i of a fixed

smaller rank. We can choose matrices Ui and Vi for which the solution of the linear systems

KiYi = Ui is simplified. Unless this slows down convergence, we yield overall simplification.

10.5. How can we initialize the inverse iteration and its extensions?

Generally, for the initialization of the iteration, one can employ the customary initialization policies

for polynomial root-finding because eigen-solving for an n× n matrix M amounts to root-finding for

its characteristic polynomial of degree n.

If we seek all n eigenvalues, we can begin with the initial approximate eigenvalues λ
(0)
j = c + aω

j

ñ

for j = 0, 1, . . . , ñ− 1, the ñth root of unity ωñ = exp
(
2π
ñ

√−1
)
, c = 0 or c = γ + 1

n
trace(M), a

sufficiently large positive scalar a, a scalar γ reasonably close to the origin, and an integer ñ� n, say,

a ≈ 2‖M‖ and ñ ≈ 2n log2 n. One can either choose ñ distinct (possibly random) initial eigenvectors

or reuse some of them.

Seeking a single eigenvalue (with possible extension to the other eigenvalues via deflation), one

can initialize the iteration at one of these points, at c0 = 1
n
trace(M) (that is at the average of the

eigenvalues), or at c0 + γ .

Remark 10.6. In some cases an initial approximation is readily available. For example, seeking a basis

for the ν-tail of a matrix M that has a positive numerical nullity ν , we can apply the iterations of this

section to the matrixMHM or MMH initializing them at λ0 = 0.

868 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

11. Root-finding for polynomial and secular equations

With a polynomial p(x) = ∑n
i=0 pixi = pn

∏n
j=1(x − λj), pn /= 0, one can associate the Frobenius

companion matrix Fp = Z − peTn = Z1 − (p+ e1)e
T
n where we write p =

(
pi
pn

)n−1
i=0 ,

Fp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − p0
pn

1
. . . − p1

pn

. . .
. . .

...
. . . 0 − pn−2

pn

1 − pn−1
pn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Zf =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 f

1
. . . 0

. . .
. . .

...
. . . 0 0

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11.1)

Z = Z0 is the downshift matrix, Z1 is the matrix of cyclic shift, Zv = (vi−1)n−1i=0 and Z1v =
(vi−1mod n)

n−1
i=0 for v = (vi)

n−1
i=0 and v−1 = 0.

The roots of the polynomial p(x) are precisely the eigenvalues of the matrix Fp, but they are also

precisely the eigenvalues of the generalized companion diagonal + rank-onematrix (hereafterwe refer

to it as a DPR1matrix),

C = Cs,d = Ds − uvH (11.2)

for d = (di)
n
i=1, s = (si)

n
i=1, u = (ui)

n
i=1, v = (vi)

n
i=1, n distinct values s1, . . . , sn,

Ds = diag(si)
n
i=1, (11.3)

di = uivi = p(si)

qi(si)
/= 0, qi(x) =

∏
j /=i

(x − si), qi(si) = q′(si), i = 1, . . . , n, (11.4)

qi(si) = q′(si), i = 1, . . . , n, q(x) =
n∏

j=1
(x − si). (11.5)

To define such a DPR1 matrix, one can choose any n-tuple of distinct scalars s1, . . . , sn (possibly

crude approximations to the roots) and any pair of vectors u = (ui)
n
i=1 and v = (vi)

n
i=1 such that

uivi = −p(si)/q′(si). Note that C − μI is also a DPR1matrix and that, unlike the Frobenius companion

matrices, DPR1matrices are defined by the values of the associated polynomial on a fixed set of points

rather than by the coefficients. We recall the following result.

Theorem 11.1 (cf., e.g., [4, Theorem 4.4]). The eigenvalues of the matrix C in (11.2) coincide with the roots

of the associated secular equation (see [10,16] on its earlier study)

n∑
i=1

uivi

si − λ
= 1. (11.6)

Theorem 11.2. Suppose we are given 3n scalars ui, vi, and si, i = 1, . . . , n, that define a DPR1 generalized

companion matrix C in Eq. (11.2) and suppose we seek similar representation of the three following DPR1

generalized companion matrices,

(a) C − μI for a fixed scalar μ,

(b) C−1 and

(c) Crev associated with the polynomial prev(x).

Write s = 1−∑n
i=1 uivi

si
and suppose s /= 0. (For s = 0 Eq. (11.6) has the root λ = 0.) Then we can

compute the respective 3n-tuples of parameters u
(new)
i , v

(new)
i , and s

(new)
i , i = 1, . . . , n, by using (a) n

flops, (b) 6n flops, and (c) 4n+ 1 flops, respectively.

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 869

Proof

(a) Define a DPR1 matrix C − μI by reusing all the parameters ui = u
(new)
i and vi = v

(new)
i and

recomputing only the values s
(new)
i = si − μ.

(b) Compute the matrix C−1 by applying the SMW formula C−1 = (D− uvH)−1 = D−1 +
g−1D−1uvHD−1 = D− + u−vH−. The computation of thematrixD− = D−1 and the vectorsw =
D−1u, g = 1− vHw, u− = gw, and vH− = vHD−1 involves n, n, 2n, n, and n flops, respectively.

(c) To define a DPR1matrix Crev, we seek 3n parameters u
(new)
i , v

(new)
i , and s

(new)
i , i = 1, . . . , n, such

that

n∑
i=1

d
(new)
i

s
(new)
i − (1/λ)

= 1 (11.7)

for d
(new)
i = u

(new)
i v

(new)
i and for all values λ satisfying Eq. (11.6). First rewrite Eq. (11.7) as∑n

i=1
d
(new)
i λ

s
(new)
i λ−1 = 1. Then substitute the expressions

d
(new)
i λ

s
(new)
i λ−1 =

d
(new)
i

s
(new)
i

(
1+ 1

s
(new)
i λ−1

)
for i =

1, . . . , n and obtain that Eq. (11.7) is equivalent to the equation
∑n

i=1
d
(new)
i

s
(new)
i

1

s
(new)
i λ−1 = s(new)

for s(new) = 1−∑n
i=1

d
(new)
i

s
(new)
i

. Now write s
(new)
i = 1/si, d

(new)
i = −s(new)di/s

2
i for i = 1, . . . , n

and observe that under this assignment we have s(new) = 1/s and Eqs. (11.6) and (11.7) are

equivalent to one another. It remains to compute s
(new)
i = 1/si (in n flops), wi = di/si (in n

flops), u
(new)
i = wi/si (in n flops) for i = 1, . . . , n,−s = ∑n

i=1 wi − 1 (in n flops), v
(new)
i = −1/s

for i = 1, . . . , n. �

The transition Fp �⇒ C (resp. Fp ⇐� C) for fixed knots s1, . . . , sn essentially amounts to mul-

tipoint evaluation of (resp. interpolation to) the polynomial p(x). Generally these operations require

O(n log2 n)highprecisionarithmeticoperations, but thebounddecreases toO(n log n) in thecaseof the

knots si = aωi
n + b, i = 1, . . . , n, where ωn = exp

(
2π
n

√−1
)
and a /= 0 and b are two constants (cf.,

e.g., [21, Problem2.4.3]). Thesamecostboundscover thecomputationof thecoefficientsof theauxiliary

polynomials q(x) and q′(x) and the values q′(s1), . . . , q′(sn). The latter operations can be viewed as

preprocessing for they depend only on the knots s1, . . . , sn, and not on the polynomial p(x). More-

over they can be skipped in the transition Fp �⇒ C where si = ωi
n, i = 1, . . . , n, q(x) = xn − 1 and

q′(x) = nxn−1. In this case D = �Z1�
−1 is a diagonal matrix [7], and since Z1 = Fp + (p+ e1)e

T
n , it

follows that�−1Fp� = D− uvH where� = (ω
ij
n)

n−1
i,j=0 is then× nmatrixof thediscreteFourier trans-

form, u = �−1(p+ e1), and vH = eTn�. These FFT-based computations are known to be norm-wise

numerically stable (cf., e.g., [6, Section 3.4]).

The reduction to eigen-solving leads to some of the most effective polynomial root-finders. In

particular such a root-finder in [4] turned out to be competitive with the Aberth’s (Börsch–Supan’s)

algorithm,which is the basis of the current best packageMPSOLVE in [3] for approximating all roots of a

polynomial. Furthermore, the root-finder in [4] has the additional power of rapidly approximating just

a single root or the roots in a fixed region, and is highly effective also for solving the secular equation

in Theorem 11.1. Even a relatively minor acceleration of this algorithm can give it upper hand versus

the Aberth’s and make it the root-finder of choice.

Next we employ A-preprocessing to use fewer flops per an iteration loop in our algorithms, derive

the respective estimates, and display them in Tables 1 and 2. (In our tests the algorithms in Section

10.2with such simplified loops compute crude approximations to the eigenvalues as fast as the RQ and

SQ loops do by with no preprocessing, but unlike the latter loops cannot refine these approximations.

In contrast, Algorithms 10.3 and 10.3a with such simplified loops are more vulnerable to the problems

in Remark 10.4 at the initial stages, but remain powerful for the refinement task.)

870 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

Table 1

Number of flops per an iteration loop in the algorithms applied to an n× n companion matrix (cf. Remark 11.1).

Algorithm GE Algorithm 10.2(sq) Algorithm 10.2(sq0) Algorithm 10.3

Flops 7n− 3 2n+ 3 2n+ 3 4n+ 1

Table 2

Number of flops per an iteration loop in the algorithms applied to an n× n DPR1 matrix.

Algorithm [4] Algorithm 10.2(sq) Algorithm 10.2(sq0) Algorithm 10.3

Flops 9n 3n+ 2 4n 5n

First recall that the algorithms in [4] rely on application of the RQ and SQ iterations (10.1)–(10.4) to

the Frobenius companion matrix Fp in (11.1) or the generalized companion matrix C in (11.2).

In our estimates for the cost of our computations with the matrix Fp we employ the following

simple lemma.

Lemma 11.1. (a)Anonsingular bidiagonal linear systemofn equationsBx = f canbe solved in2n− 1flops

by means of the substitution algorithm. (b) The algorithm is numerically stable if the system is diagonally

dominant, that is if 2|bii|�min
{∑

i |bij|,∑j |bij|
}
for B = (bij)i,j , e.g., if B = aI + bZ and |a| > |b|.

At every iteration loop of the SQ and RQ iterations, the overall computational cost is dominated at

the stage of the solution of a linear system of equations with a shifted matrix M − μiI for M = Fp or

M = C and a scalar μi. This takes 7n− 6 flops for M = Fp (based on Gaussian elimination) and 9n

flops in [4] forM = C.

Preprocessing with uvH = peTn enables acceleration. In particular we decrease the overall cost to

2n+ 3 flops per the entire iteration loop in Algorithm 10.2(sq) in the casewhereM = Fp. Indeed Fp +
peTn = Z , so that Fp − μiI + peTn = Z − μiI is a bidiagonal (Toeplitz) matrix, and we apply Lemma

11.1. Furthermore in this case we have v = en, so that gi = 1− eHn zi = 1− z
(n)
i . The respective PSQ

δi = gi
u
(j)
i

z
(j)
i

is computed in three flops, and we update the shift value μi and the matrix Fp − μiI +
peTn = Z − μiI in single flop.

Algorithm 10.2(sq0) performs as fast, in 2n+ 3 flops, because it also updates δi in three flops.

4n+ 1 flops are sufficient in Algorithm 10.3 applied to the matrixM = Fp and slightly rearranged.

Namelywe use 4n− 2 flops for computing the vectors yi = (Z − μiI)
−1p and ỹi = (Z − μiI)

−1yi (cf.
Lemma 11.1). Then we obtain the values f̃i = eTnyi and fi = eTn ỹi (cost-free), gi = 1− f̃i, and δi = gi

fi
,

and update the value λi in three flops overall.

We apply preprocessing Fp − μiI→ Fp − μiI + peTn = Z − μiI where μi � 1 because in this

case the matrix Z − μI is well conditioned. Approximating the eigenvalues λ < 1, we should ei-

ther work with the reverse polynomial xnp(1/x) = ∑n
i=0 pn−ixi = p0

∏n
j=1(x − 1/λj) (where w.l.o.g.

we can assume that p0 /= 0) or apply preprocessing Fp − μiI→ Fp − μiI + (p+ μien + e1)e
T
n =

ZT1 (I − μiZ).

Remark 11.1. In all our algorithms above we can save n flops where we approximate the right eigen-

vector (λi−1
h)ni=1 associated with a simple eigenvalue λh of the matrix FTp , h = 1, . . . , n, although in

this case convergence can deteriorate.

We use 3n+ 2 flops in Algorithm 10.2(sq) applied to DPR1 matrix M = C. Indeed under prepro-

cessing C → Ds = C + uvH we deal with the diagonal matrices Ds and Ki = Ds − λiI and update

the matrix Ki in n flops. We compute the vector yi = K
−1
i u in Algorithm 10.2(sq) also in n flops. We

choose v = e, e = (±1)n−1i=0 , that is the vector filled with the values −1 and 1, and obtain the value

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 871

gi = 1− vHyi in n flops; then in two flops we obtain the SPQ δi = gi
u
(j)
i

z
(j)
i

. Overall this sums to 3n+ 2

flops per an iteration loop, as we claimed.

We use 4n flops per a loop of Algorithm 10.2(sq0) applied to the DPR1 matrix M = C. In this case

Ki is a diagonal matrix,Mi = Ki + ueT , and so we only need n flops to update thematricesMi and Ki, n

flops to compute the vector K
−1
i u, and 2n flops to compute the ratio δi.

Algorithm 10.3 applied to a DPR1 matrix uses n flops to update the diagonal matrix Ki, 2n flops for

computing the vectors yi = K
−1
i p and ỹi = K

−1
i yi, followed by 2n− 2 flops for obtaining the inner

products f̃i = eTyi and fi = eT ỹi and two flops for computing the values gi = 1− f̃i and δi = gi/fi. All
this is summed to 5n flops per iteration loop.

In the case of both companion andDPR1 inputmatrices, Algorithm10.3a requires a littlemore flops,

converges a little slower and diverges a little more readily (cf. Table 18).

Remark 11.2. The algorithms in [19,20,22] support nearly optimal Boolean complexity bounds for the

classical problem of root-finding for polynomial equation

p(x) = 0 for p(x) =
n∑

i=0
pix

i, pn /= 0, (11.8)

but the users prefer other algorithms that show excellent practical performance, although support no

competitive estimates for the computational cost.

Remark 11.3. One can try to extend the powerful eigen-solving algorithms for DPR1matrix to the case

of general input matrices. For example, one can evaluate the characteristic polynomial det(M − xI) at
the n points xi = trace(M)+ aωi

n, i = 0, 1, . . . , n− 1 for a sufficiently large scalar a, e.g., a = 2‖M −
trace(M)‖, and ωn = exp

(
2π
n

√−1
)
. Then a DPR1 matrix sharing the eigenvalues with the matrix

M can be readily defined by Eqs. (11.2)–(11.5). Such an approach can be prone to numerical stability

problems, but strong diagonal dominance of the matrices M − (xi − λ)I for all eigenvalues λ of the

matrixM is encouraging.

12. Numerical experiments

We performed a series of numerical experiments in the Graduate Center of the City University of

New York to test our algorithms of this paper. Tables 3–18 display the results of these tests.

Tables 3–12 represent the results of experimental computation of cas, nmbs and null vectors of

general and Toeplitz matrices. These results demonstrate the power of the algorithms in Section 6

and are reproduced from [28,29]. The respective tests were conducted by the second author on a Dell

server with a dual core 1.86 GHz Xeon processor and 2G memory running Windows Server 2003 R2.

The test Fortran code was compiled with the GNU gfortran compiler within the Cygwin environment.

The other tests (supporting the results in Tables 13–18) were performed by the fourth and mostly

the third authors on a Dell PC with a dual core 1.86 GHz and 2Gmemory. The test sofware was Matlab

7.5.0.

Table 3

CPU time (in cycles) for computing null vectors of Toeplitz matrices (cf. [29]).

Size Rand. aug. QR SVD QR/Rand. aug. SVD/Rand. aug.

256 3.8 18.4 317.8 4.8 83.6

512 8.0 148.0 5242.1 18.5 655.3

1024 16.1 1534.2 87371.2 97.0 5522.6

2048 33.6 11750.3 − 357.7 −
4096 79.5 − − − −
8192 169.5 − − − −

872 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

Table 4

CPU time (in cycles) for computing null vectors of circulant matrices (cf. [28]).

Size Rand. aug. QR SVD QR/Rand. aug. SVD/Rand. aug.

256 3.0 18.8 261.5 6.3 87.2

512 7.3 147.9 4220.9 20.3 578.2

1024 16.1 1538.3 70452.5 97.1 4445.8

2048 35.5 11748.3 − 342.1 −
4096 78.7 − − − −
8192 170.4 − − − −

Table 5

CPU time (in cycles) for computing null vectors of symmetric Toeplitz matrices (cf. [28]).

Size Rand. aug. QR SVD QR/Rand. aug. SVD/Rand. aug.

256 4.7 18.0 291.5 3.8 62.0

512 6.9 148.9 4728.4 21.6 685.3

1024 15.7 1536.9 78653.3 98.6 5046.2

2048 35.3 11747.8 − 343.2 −
4096 79.4 − − − −
8192 170.4 − − − −

Table 6

Residual norms for 64× 64 unstructured matrices (cf. [28]).

Class Type Min Max Mean Std

1 n 9.6× 10−16 3.0× 10−11 6.6× 10−14 9.8× 10−13
1 s 8.7× 10−16 2.8× 10−12 2.1× 10−14 1.1× 10−13
2 n 3.8× 10−15 7.8× 10−12 1.0× 10−13 4.1× 10−13
2 s 3.8× 10−15 5.7× 10−12 9.7× 10−14 3.9× 10−13
3 n 1.1× 10−13 1.6× 10−10 8.5× 10−12 1.4× 10−11
3 s 1.2× 10−14 2.9× 10−10 1.6× 10−12 1.3× 10−11
4 n 9.7× 10−14 1.8× 10−10 8.9× 10−12 1.5× 10−11
4 s 1.4× 10−14 3.8× 10−10 2.0× 10−12 1.5× 10−11

Table 7

Residual norms for 128× 128 unstructured matrices (cf. [28]).

Class Type Min Max Mean Std

1 n 5.9× 10−15 1.2× 10−11 1.1× 10−13 5.7× 10−13
1 s 1.9× 10−15 8.1× 10−12 5.6× 10−14 3.6× 10−13
2 n 5.9× 10−15 7.5× 10−11 2.1× 10−13 2.4× 10−12
2 s 4.6× 10−15 8.0× 10−12 1.1× 10−13 4.5× 10−13
3 n 1.0× 10−12 2.4× 10−10 1.6× 10−11 1.7× 10−11
3 s 6.1× 10−14 3.0× 10−10 2.9× 10−12 1.3× 10−11
4 n 1.2× 10−12 2.4× 10−10 1.7× 10−11 1.8× 10−11
4 s 8.1× 10−14 2.9× 10−10 4.2× 10−12 1.5× 10−11

We generated random real numbers with the random_number intrinsic Fortran function assuming

the uniform probability distribution over the range [−1, 1) = {x : −1� x < 1}. To shift to the range

{y : b� y� a+ b} for fixed real a and b, we applied the linear transform x→ y = ax + b.

Tables 3–5display theCPU time averagedover 100 runs for each input size andmeasured in termsof

the CPU cycles. They can be converted into seconds by dividing them by a constant CLOCKS_PER_SEC,

which is 1000 on our platform. In the respective tests we computed QR factorizations and SVDs by

applying the LAPACK procedures DGEQRF and DGESVD, respectively.

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 873

Table 8

Residual norms for 64× 64 unstructured matrices (in computations with iterative refinement and extended precision) (cf.

[28]).

Class Type Min Max Mean Std

1 n 4.0× 10−53 5.2× 10−49 6.0× 10−50 1.6× 10−49
1 s 1.9× 10−59 6.3× 10−47 6.3× 10−48 2.0× 10−47
2 n 1.0× 10−14 1.5× 10−13 5.2× 10−14 4.6× 10−14
2 s 4.1× 10−14 3.5× 10−12 4.9× 10−13 1.0× 10−12
3 n 2.4× 10−50 8.9× 10−43 9.9× 10−44 3.0× 10−43
3 s 2.8× 10−55 3.0× 10−43 3.0× 10−44 9.4× 10−44
4 n 2.9× 10−13 1.6× 10−12 6.4× 10−13 4.0× 10−13
4 s 9.7× 10−13 9.4× 10−11 1.7× 10−11 2.9× 10−11

Table 9

Residual norms for 128× 128 unstructured matrices (in computations with iterative refinement and extended precision) (cf.

[28]).

Class Type Min Max Mean Std

1 n 1.8× 10−56 2.3× 10−45 2.3× 10−46 7.3× 10−46
1 s 6.9× 10−57 3.9× 10−44 4.9× 10−45 1.4× 10−44
2 n 2.0× 10−14 4.2× 10−12 5.9× 10−13 1.3× 10−12
2 s 4.9× 10−14 1.8× 10−11 3.3× 10−12 6.4× 10−12
3 n 2.4× 10−55 7.9× 10−49 1.1× 10−49 2.5× 10−49
3 s 1.6× 10−52 3.9× 10−47 5.7× 10−48 1.4× 10−47
4 n 1.7× 10−13 2.0× 10−11 4.0× 10−12 6.3× 10−12
4 s 3.2× 10−13 1.3× 10−11 3.3× 10−12 4.6× 10−12

Table 10

Ratios
cond(M)
cond(K)

(cf. [29]).

Matrix size Min Max Mean Std

64× 64 3.29× 109 1.65× 1013 2.49× 1012 2.60× 1012

128× 128 8.27× 108 2.56× 1012 5.51× 1011 6.44× 1011

Table 11

Relative residual norms in the solution tests with 64× 64 inputs (cf. [29]).

Refinement Mmin Max Mean Std

2 iterations 7.89× 10−48 8.26× 10−44 1.40× 10−45 8.47× 10−45
No iteration 1.43× 10−31 7.30× 10−28 1.69× 10−29 9.12× 10−29

Table 12

Relative residual norms in the solution tests with 128× 128 inputs (cf. [29]).

Refinement Min Max Mean Std

2 iterations 1.31× 10−46 1.37× 10−43 4.11× 10−45 1.67× 10−44
No iteration 8.57× 10−31 1.92× 10−27 5.12× 10−29 2.55× 10−28

Tables 6–18 display various other average data in the columns marked mean and also display

minimums, maximums and standard deviations of the 1000 runs in the columns marked min, max,

and std, respectively.

12.1. Solution of singular Toeplitz linear systems

Wegeneratedn× nunsymmetric Toeplitz, circulant and symmetric Toeplitzmatrices of rankn− 1

and computed their null vectors based on our randomized augmentation, QR factorization, and SVD

of the input matrices.

874 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

Table 13

ν-tails of the SVDs and approximation by a nearby matrix of a lower rank to an n× n matrix M having a positive numerical

nullity nnul(M).

nnul(M) cond(M) or ri n Min Max Mean Std

2 cond(M) 64 3.17× 10+02 9.13× 10+04 7.28× 10+03 1.43× 10+04
2 cond(M) 128 1.37× 10+03 3.18× 10+06 7.42× 10+04 3.54× 10+05
2 cond(M) 256 3.20× 10+03 8.38× 10+06 2.65× 10+05 1.04× 10+06
2 r1 64 5.61× 10−10 2.01× 10−08 3.43× 10−09 4.23× 10−09
2 r1 128 4.84× 10−10 5.81× 10−07 1.15× 10−08 5.81× 10−08
2 r1 256 8.09× 10−10 4.22× 10−07 1.05× 10−08 4.22× 10−08
2 r2 64 1.83× 10−08 9.17× 10−07 1.41× 10−07 1.94× 10−07
2 r2 128 5.53× 10−08 3.89× 10−05 7.84× 10−07 3.89× 10−06
2 r2 256 1.05× 10−07 6.87× 10−05 1.72× 10−06 6.91× 10−06
2 r3 64 7.24× 10−10 3.86× 10−08 5.18× 10−09 6.92× 10−09
2 r3 128 1.06× 10−09 6.32× 10−07 1.40× 10−08 6.32× 10−08
2 r3 256 1.21× 10−09 6.05× 10−07 1.55× 10−08 6.08× 10−08
4 cond(M) 64 9.82× 10+02 4.33× 10+05 2.54× 10+04 6.59× 10+04
4 cond(M) 128 1.69× 10+03 3.93× 10+06 1.54× 10+05 5.14× 10+05
4 cond(M) 256 7.87× 10+03 5.49× 10+06 2.33× 10+05 6.40× 10+05
4 r1 64 3.65× 10−10 2.59× 10−07 7.66× 10−09 2.82× 10−08
4 r1 128 5.58× 10−10 6.31× 10−07 1.79× 10−08 7.49× 10−08
4 r1 256 1.03× 10−09 3.30× 10−07 1.09× 10−08 3.41× 10−08
4 r2 64 2.50× 10−08 1.14× 10−05 3.34× 10−07 1.19× 10−07
4 r2 128 6.72× 10−08 3.61× 10−05 1.40× 10−06 4.78× 10−06
4 r2 256 1.86× 10−07 3.11× 10−05 1.90× 10−06 3.79× 10−06
4 r3 64 9.30× 10−10 3.84× 10−07 1.29× 10−08 4.14× 10−08
4 r3 128 1.12× 10−09 7.90× 10−07 2.75× 10−08 9.92× 10−08
4 r3 256 1.77× 10−09 3.42× 10−07 1.94× 10−08 4.17× 10−08
16 cond(M) 64 1.96× 10+03 1.61× 10+06 9.41× 10+04 2.32× 10+05
16 cond(M) 128 7.60× 10+03 9.90× 10+06 4.72× 10+05 1.59× 10+06
16 cond(M) 256 1.97× 10+04 1.80× 10+07 9.20× 10+05 2.65× 10+06
16 r1 64 3.15× 10−10 1.23× 10−07 6.45× 10−09 1.64× 10−08
16 r1 128 5.50× 10−10 5.23× 10−07 1.52× 10−08 6.44× 10−08
16 r1 256 6.75× 10−10 1.91× 10−07 1.03× 10−08 2.50× 10−08
16 r2 64 3.72× 10−08 9.37× 10−06 4.81× 10−07 1.24× 10−06
16 r2 128 1.42× 10−07 4.25× 10−05 1.97× 10−06 6.21× 10−06
16 r2 256 3.74× 10−07 8.02× 10−05 4.40× 10−06 9.81× 10−06
16 r3 64 1.60× 10−09 6.19× 10−07 2.86× 10−08 8.38× 10−08
16 r3 128 2.98× 10−09 1.87× 10−06 5.26× 10−08 2.10× 10−07
16 r3 256 3.32× 10−09 5.78× 10−07 4.26× 10−08 8.54× 10−08

We use abbreviation “Rand. aug.", “QR", and “SVD" as pointers to the respective algorithms. Tables

3–5 cover our computation of null vectors for general Toeplitz, circulant, and symmetric Toeplitz input

matrices, respectively. The tables show the CPU time of this computation for each of the threemethods

aswell as the ratios of these data for theQR-based and SVD-based solutions versus the algorithmbased

on randomized augmentation. The ratios are displayed in the last two columns of the table.

In all our tests the computed approximate null vectors y had relative residual norms
‖My‖
‖M‖‖y‖ of the

order of 10−17.
The input size (dimension) 2k ranged from 256 to 8192. The table entries are marked by a hyphen

"-" where the tests required too long runtime and were not completed.

12.2. Generation of unstructured input matrices and additive preprocessors

For n = 64 and n = 128, we computed the n× n unstructured input matrices M numerically,

with double precision, as the products S�TT (cf. [13, Section 28.3]). Here we generated random real

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 875

Table 14

Numbers of RQ and SQ iteration loops in Algorithms 10.1(rq) and (sq) until convergence.

Iteration Matrix n Min Max Mean Std

RQ Frobenius 64 4.00 12.00 6.10 1.65

RQ Frobenius 128 4.00 11.00 6.21 1.48

RQ Frobenius 256 4.00 13.00 6.18 1.50

SQ Frobenius 64 4.00 16.00 7.75 2.27

SQ Frobenius 128 5.00 17.00 8.37 2.49

SQ Frobenius 256 4.00 19.00 7.65 2.86

RQ DPR1 64 5.00 12.00 7.67 1.61

RQ DPR1 128 5.00 14.00 7.97 1.95

RQ DPR1 256 5.00 14.00 7.88 1.69

SQ DPR1 64 5.00 21.00 9.34 2.72

SQ DPR1 128 5.00 21.00 9.80 2.94

SQ DPR1 256 5.00 17.00 9.12 2.54

RQ Random 64 3.00 3.00 3.00 0.00

RQ Random 128 3.00 3.00 3.00 0.00

RQ Random 256 3.00 3.00 3.00 0.00

SQ Random 64 3.00 4.00 3.92 0.27

SQ Random 128 3.00 4.00 3.78 0.42

SQ Random 256 3.00 4.00 3.57 0.50

orthonormal matrices S and T , being the Q-factors in the QR factorization of matrices with random

integer entries from the range [−104, 104) and with positive diagonal entries of the R-factors. We

defined diagonal matrices � = diag(σi)
n
i=1 with the diagonal entries σ1, . . . , σ1 from one of the four

following classes.

Class 1. σi = 1
i
for i = 1, . . . , n− k, σi = 0 for i > n− k,

Class 2. σi = 1
i
for i = 1, . . . , n− k, σi = 10−14

i−n+k for i > n− k,

Class 3. σi = 1
i
for i = 1, . . . , n− k− l, σi = 10−9

i−n+k+l for i = n− k− l + 1, . . . , n− k, σi = 0 for

i > n− k,

Class 4. σi = 1
i

for i = 1, . . . , n− k− l, σi = 10−9
i−n+k+l for i = n− k− l + 1, . . . , n− k, σi =

10−14
i−n+k for i > n− k.

For each of these classes, besides generating random orthonormal matrices T independently of the

matrices S, we defined T by setting T = S. Respectively we defined Classes 1n, 1s, 2n, 2s, 3n, 3s, 4n,

and 4s where “n" stood for “nonsymmetric" and “s" for “symmetric".

In our tests we selected k = 24 and l = 20 for n = 64 and selected k = 48 and l = 40 for n = 128.

For every instance of the inputmatrixMwe computed theA-modificationmatrixK = M + UVT for

random orthonormal n× r generators U and for V = U where r = k for Classes 1 and 2 and r = k+ l

for Classes 3 and 4.

12.3. Computation and approximation of complete annihilators with additive preprocessing

For each pair {n, r}, n = 64 and n = 128, we tested 1000 instances of the input matrices M, U and

V defined in the previous subsection.

In these tests we computed approximate complete annihilators K−1U for Classes 1 and 2 and

approximate complete annihilators K−1UX for X = ca(G) and G = Ir − VTK−1U for Classes 3 and 4.

In the latter case we successively computed the matrices K−1U, G = Ir − VTK−1U for r = k+ l, an

approximate complete annihilatorX for thematrixG, andfinally the approximate complete annihilator

K−1UX = ca(M).

In all cases we estimated the ratios
‖MK−1U‖
‖M‖‖K−1U‖ and

‖MK−1UX‖
‖M‖‖K−1UX‖ , which are the relative residual

norms for the matrices M in Classes 1 and 2 and in Classes 3 and 4, respectively. We output their

876 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

Table 15

Numbers of PRQ and PSQ iteration loops in Algorithm 10.2(rq0) and (sq0) until convergence.

Iteration Matrix n Min Max Mean Std

RPQ Frobenius 64 5.00 13.00 8.52 1.48

RPQ Frobenius 128 5.00 14.00 9.38 1.56

RPQ Frobenius 256 7.00 14.00 10.24 1.36

SPQ Frobenius 64 5.00 21.00 10.39 2.89

SPQ Frobenius 128 4.00 18.00 11.40 3.00

SPQ Frobenius 256 5.00 19.00 12.24 3.65

RPQ DPR1 64 4.00 15.00 7.74 2.03

RPQ DPR1 128 5.00 13.00 7.72 2.13

RPQ DPR1 256 5.00 15.00 7.70 2.29

SPQ DPR1 64 6.00 21.00 9.83 2.67

SPQ DPR1 128 5.00 17.00 9.59 2.72

SPQ DPR1 256 5.00 19.00 9.54 2.87

RPQ Random 64 3.00 3.00 3.00 0.00

RPQ Random 128 3.00 3.00 3.00 0.00

RPQ Random 256 3.00 3.00 3.00 0.00

SPQ Random 64 3.00 4.00 3.74 0.44

SPQ Random 128 3.00 4.00 3.79 0.41

SPQ Random 256 3.00 4.00 3.65 0.50

maximum, minimum, and average values as well as the standard deviations for each algorithm and

each case. Tables 6 and 7 show the results of our tests performed with double precision and without

using the iterative refinement.

We have also run 100 tests for each of n = 64 and n = 128 and for the input matrices M where

we computed these matrices as the error-free productsM = S�TT and applied the extended iterative

refinement from [23] at the stage of computing thematrices K−1U and G−1. Tables 8 and 9 display the

results of these tests. As we expected, in the case of matricesM of Classes 2 and 4, the residual norms

decrease only to the level of the smallest positive singular value σn, whereas in the case of matrices

M of Classes 1 and 3 these norms immediately went below the level achieved with the costly SVD-

based algorithms and then kept rapidly decreasing towards zero. (We stopped the iterative refinement

process with the ratios at the levels well below 10−40.)

12.4. Solution of unstructured nonhomogeneous linear systems via augmentation

(a) Generation of input matrices

We first fixed pairs of n and k for n = 64, 128 and k = 7. Then for every pair {n, k} we generated

m = 100 instances of matrices M, P01, and P10 = PT
01 and vectors b as follows.

The matrices M have been computed as the error-free products S�TH where S and T were n× n

random unitary matrices (generated with double precision) and � = diag(σj)
n
j=1, σn−j = 10j−17 for

j = 1, . . . , k, and σn−j = 1/(n− j) for j = k+ 1, . . . , n− 1 (cf. [13, Section 28.3]).

P01 was random n× k matrix with ‖P01‖ = ‖M‖.
For every choice of these matrices we performed preconditioning tests and the solution tests as

follows.

(b) Preconditioning tests

We computed m ratios
cond(M)
cond(K)

for K =
(
M P01
PT
01 Iν

)
.

Table 10 displays the average (mean), minimum,maximum, and standard deviation for them ratios

for n = 64 and n = 128.

(c) The solution tests

In the solution tests we solved nonsingular linear systemsMy = bwhereM was the matrix gener-

ated above, bwas a random vector scaled so that ‖b‖ = ‖M‖ = 1. We first computed the null vector

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 877

Table 16

Numbers of PRQ and PSQ iteration loops in Algorithm 10.2(rq) and (sq) until convergence.

Iteration Matrix n Min Max Mean Std Diverged

RPQ Frobenius 64 5.00 12.00 8.43 1.37 0

RPQ Frobenius 128 5.00 39.00 9.78 3.45 0

RPQ Frobenius 256 6.00 15.00 10.24 1.92 1

RSQ Frobenius 64 4.00 19.00 10.79 3.34 0

RSQ Frobenius 128 4.00 59.00 12.04 5.63 0

RSQ Frobenius 256 4.00 21.00 11.68 3.79 1

RPQ DPR1 64 4.00 14.00 7.95 2.28 0

RPQ DPR1 128 5.00 15.00 7.53 1.9 0

RPQ DPR1 256 4.00 14.00 8.42 2.14 0

RSQ DPR1 64 5.00 21.00 9.44 3.26 0

RSQ DPR1 128 5.00 20.00 9.33 2.95 0

RSQ DPR1 256 5.00 20.00 9.71 3.08 0

RPQ Random 64 3.00 3.00 3.00 0.00 0

RPQ Random 128 3.00 3.00 3.00 0.00 0

RPQ Random 256 3.00 3.00 3.00 0.00 0

RSQ Random 64 3.00 4.00 3.9 0.30 0

RSQ Random 128 3.00 4.00 3.8 0.40 0

RSQ Random 256 3.00 4.00 3.58 0.50 0

Table 17

Number of iteration loops in Algorithm 10.3 until convergence.

Matrix n Min Max Mean Std Diverged

Frobenius 64 3.00 34.00 7.23 4.67 1

Frobenius 128 3.00 27.00 7.00 3.66 2

Frobenius 256 4.00 25.00 7.21 4.31 0

DPR1 64 4.00 47.00 10.48 6.48 1

DPR1 128 3.00 25.00 10.02 4.76 0

DPR1 256 5.00 25.00 10.19 4.88 0

Random 64 4.00 6.00 4.47 0.58 0

Random 128 3.00 6.00 4.48 0.56 0

Random 256 3.00 5.00 4.48 0.54 0

Hermitian 64 4.00 6.00 4.83 0.45 0

Hermitian 128 4.00 5.00 4.7 0.46 0

Hermitian 256 4.00 5.00 4.57 0.50 0

z of the matrix (−b, M), then scaled it to obtain the vector (1, y)H , and finally output the solution

vector y.

Tables 11 and 12 display the average (mean), minimum, maximum, and standard deviation for

the relative residual norms
‖My−b‖
‖y‖ in our tests for n = 64 and n = 128, respectively. For each input

instance we computed the solution in two ways, that is by performing two iteration loops of the

extended iterative refinement and with no such iteration.

12.5. Approximation of the tails of the SVDs

We followed the recipes in Section 8 to compute approximationsWX to the ν-tails Tν of the SVDs of

nearly rank deficient n× n input matricesM having numerical nullity ν for n = 64, 128, 256 and ν =
2, 4, 16. ForW = K−1U and K = M + UVH we let thematrices X minimize the norms ‖WX − Tν‖, and
we output the relative residual norms r1 = ‖WX−Tν‖‖WX‖ , r2 = ‖MW‖

‖M‖‖W‖ , and r3 = ‖MQQH‖
‖M‖ . Here ‖MQQH‖

is the residual norm of the approximation to the matrix M by the rank-ν matrix M(I − QQH) for

Q = Q(W).

878 V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879

Table 18

Number of iteration loops in Algorithm 10.3a until convergence.

Matrix n Min Max Mean Std Diverged

Frobenius 64 4.00 34.00 10.37 6.01 2

Frobenius 128 4.00 40.00 11.36 5.75 13

Frobenius 256 5.00 86.00 15.49 12.58 14

DPR1 64 4.00 30.00 12.99 5.49 2

DPR1 128 6.00 52.00 13.49 6.49 4

DPR1 256 4.00 44.00 13.14 7.11 2

Random 64 3.00 6.00 4.48 0.75 0

Random 128 3.00 6.00 4.44 0.54 0

Random 256 3.00 5.00 4.45 0.52 0

We defined the n× n input matricesM by their SVDsM = S�TT where we chose random unitary

matrices S and T and a diagonal matrix � = diag(σj)
n
j=1 such that σj = 1/j, j = 1, . . . , n− ν , σj =

10−10, j = n− ν + 1, . . . , n, and cond(M) = 1010.We generated n× ν randommatricesU and V and

then scaled them to have the ratios ‖UVH‖/‖M‖ neither large nor small.

Table 13 displays theminimum,maximum and average values cond(K), r1, r2, and r3 as well as the

standard deviations in 100 runs of our tests.

12.6. Eigen-solving and root-finding tests

We counted the numbers of iteration loops until convergence in the RQ and SQ inverse iterations

with and without additive preprocessing in Algorithms (a) 10.1(sq) and (rq), (b) 10.2(sq0) and (sq0),

(c) 10.2(rq) and (sq), and (e) 10.3.

We applied these algorithms to (i) random general matrices, (ii) random Frobenius companionma-

trices, and (iii) random generalized companion DPR1 matrices, all of sizes n× n for n = 64, 128, 256.

In some tests we used random complex values x + y
√−1 defined by randomparameters x and y from

the real line interval [−1, 1). We used additive preprocessors uiv
H
i = yi−1yHi−1, as in [33], except for

Algorithms 10.3 and 10.3a, where we chose a random vector u and then set ui = vi = u for all i.

We initialized the iterations with the values λ0 chosen at random on a large circle according to the

recipes in Section 10.5. Tables 14–18 display the numbers of iteration loops until convergence in these

runs.

We stopped the iterations, by applying the stopping criteria in (10.4), (10.8), and Remark 10.3 with

the tolerance values t = 10−6, τ = 10−6 and τ̄ = 10−6.
In each test runwe allowed atmost 100 iteration loops. If this boundhas been exceeded,we stopped

iteration. In our tests of Algorithms 10.1, 10.2, 10.3, and 10.3a we observed this never, at most in 1%,

2%, and 14% of the runs, respectively. We displayed the number of such cases (if they occurred) in the

last column of the tables, marked as "diverged" and filled the rest of the tables based on the data from

the other iterations. The bound of 100 loops was never exceeded in our tests with randommatrices.

References

[1] R.R. Bitmead, B.D.O. Anderson, Asymptotically fast solution of Toeplitz and related systems of linear equations, Linear
Algebra Appl. 34 (1980) 103–116.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (Eds.), Templates for the Solution of Algebraic Eigenvalue Problems:
A Practical Guide, SIAM, Philadelphia, 2000.

[3] D.A. Bini, G. Fiorentino,Design, analysis, and implementationof amultiprecisionpolynomial rootfinder, Numer. Algorithms
23 (2000) 127–173.

[4] D.A. Bini, L. Gemignani, V.Y. Pan, Inverse power and Durand/Kerner Iteration for univariate polynomial root-finding,
Comput. Math. (with Appl.) 47(2/3) (2004) 447–459 (also Technical Report TR 2002 020, CUNY Ph.D. Program in Computer
Science, Graduate Center, City University of New York, 2002).

[5] D.A. Bini, L. Gemignani, V.Y. Pan, Fast and stable QR eigenvalue algorithms for generalized companionmatrices and secular
equation, Numer. Math. 3 (2005) 373–408 (also Technical Report 1470, Department of Math., University of Pisa, Pisa, Italy,
July 2003).

[6] D. Bini, V.Y. Pan, Polynomial and Matrix Computations, Fundamental Algorithms, vol. 1, Birkhäuser, Boston, 1994.

V.Y. Pan et al. / Linear Algebra and its Applications 434 (2011) 854–879 879

[7] R.E. Cline, R.J. Plemmons, G. Worm, Generalized inverses of certain Toeplitz matrices, Linear Algebra Appl. 8 (1974) 25–33.
[8] J. Demmel, Y. Hida, Accurate and efficient floating point summation, SIAM J. Sci. Comput. 25 (2003) 1214–1248.
[9] R.A. Demillo, R.J. Lipton, A probabilistic remark on algebraic program testing, Inform. Process. Lett. 7 (4) (1978) 193–195.

[10] G.H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 15 (1973) 318–334.
[11] I.Gohberg, T.Kailath,V.Olshevsky, FastGaussianeliminationwithpartialpivoting formatriceswithdisplacement structure,

Math. Comput. 64 (1995) 1557–1576.
[12] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., The Johns Hopkins University Press, Baltimore, Maryland, 1996.
[13] N.J. Higham, Accuracy and Stability in Numerical Analysis, second ed., SIAM, Philadelphia, 2002.
[14] X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Kang, A. Kapur, M. Martin, B. Thompson, T. Tung, D.

Yoo, Design, implementation and testing of extended and mixed precision BLAS, ACM Trans. Math. Software 28 (2002)
152–205. Available at <http//crd.lbl.gov/∼xiaoye/XBLAS/>.

[15] M. Morf, Doubling Algorithms for Toeplitz and Related Equations, Proceedings of IEEE International Conference on ASSP,
IEEE Press, Piscataway, New Jersey, 1980, pp. 954–959.

[16] A. Melman, A unifying convergence analysis of second-order methods for secular equations, Math. Comput. 66 (1997)
333–344.

[17] W.L. Miranker, V.Y. Pan, Methods of aggregations, Linear Algebra Appl. 29 (1980) 231–257.
[18] T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci. Comput. 26 (6) (2005) 1955–1988.
[19] V.Y. Pan, Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros,

in: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, ACM Press, New York, 1995, pp. 741–750.
[20] V.Y. Pan, Solving a polynomial equation: some history and recent progress, SIAM Rev. 39 (2) (1997) 187–220.
[21] V.Y. Pan, StructuredMatrices and Polynomials: Unified Superfast Algorithms, Birkhäuser/Springer, Boston/NewYork, 2001.
[22] V.Y. Pan, Univariate polynomials: nearly optimal algorithms for factorization and rootfinding, J. Symbolic Comput. 33 (5)

(2002) 701–733 (Proc. version in Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC
01), ACM Press, New York, 2001, pp. 253–267).

[23] V.Y. Pan, D. Grady, B. Murphy, G. Qian, R.E. Rosholt, A. Ruslanov, Schur aggregation for linear systems and determinants,
Theoret. Comput. Sci., Special Issue on Symbolic–Numerical Algorithms, D.A. Bini, V.Y. Pan, and J. Verschelde (Eds.), 409
(2008) 255–268.

[24] V.Y. Pan, D. Ivolgin, B. Murphy, R.E. Rosholt, Y. Tang, X.Wang, X. Yan, Root-findingwith eigen-solving, in: DongmingWang,
Li-Hong Zhi (Eds.), Symbolic-Numeric Computation, Birkhäuser, Basel/Boston, 2007, pp. 219–245.

[25] V.Y. Pan,D. Ivolgin, B.Murphy, R.E. Rosholt, Y. Tang,X. Yan,Additivepreconditioning formatrix computations, LinearAlgebra
Appl. 432 (2010)1070–1089 (Proc. version inProceedingsof theThird International Computer Science Symposium inRussia
(CSR 2008), Lecture Notes in Computer Science (LNCS), vol. 5010, 2008, pp. 372–383).

[26] V.Y. Pan,M.Kunin, B.Murphy, R.E. Rosholt, Y. Tang, X. Yan,W.Cao, Linking theTPR1,DPR1andarrow-headmatrix structures,
Comput. Math. Appl. 52 (10–11) (2006) 1603–1608.

[27] V.Y. Pan, B. Murphy, R.E. Rosholt, Y. Tang, X. Wang, A. Zheng, Eigen-solving via reduction to DPR1matrices, Comput. Math.
Appl. 56 (2008) 166–171.

[28] V.Y. Pan, G. Qian, Randomized preprocessing of homogeneous linear systems of equations, Linear Algebra Appl. 432 (2010)
3272–3318.

[29] V.Y. Pan, G. Qian, On Solving Linear System with Randomized Augmentation, Tech. Report TR 2009009,
Ph.D. Program in Computer Science, Graduate Center, the City University of New York, 2009. Available at
<http://www.cs.gc.cuny.edu/tr/techreport.php?id=352>.

[30] V.Y. Pan, G. Qian, A. Zheng, Randomized Preconditioning versus Pivoting, Tech. Report TR 2009010, Ph.D.
Program in Computer Science, Graduate Center, the City University of New York, 2009. Available at
<http://www.cs.gc.cuny.edu/tr/techreport.php?id=352>.

[31] G. Peters, J.H. Wilkinson, Inverse iteration, ill-conditioned equations and Newton’s method, SIAM Rev. 21 (1979) 339–360.
[32] V.Y. Pan, X. Yan, Null space and eigenspace computations with additive preprocessing, in: Jan Verschelde and Stephen

Watt (Eds.), Proceedings of the Third International Workshop on Symbolic–Numeric Computation (SNC 2007), July 2007,
London, Ontario, Canada. ACM Press, New York, 2007, pp. 152–160.

[33] V.Y. Pan, X. Yan, Additive preconditioning, eigenspaces, and the inverse iteration, Linear Algebra Appl. 430 (2009) 186–203.
[34] J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM 27 (4) (1980) 701–717.
[35] G.W. Stewart, Matrix Algorithms, Basic Decompositions, vol. I, SIAM, Philadelphia, 2001.
[36] G.W. Stewart, Matrix Algorithms, Eigensystems, vol. II, SIAM, Philadelphia, 1998.
[37] H. Unger, Nichtlinear behandlung von eigenwetaufgaben, ZAMM Z. Angew. Math. Mech. 30 (1950) 281–282.
[38] R.E. Zippel, Probabilistic algorithms for sparse polynomials, in: Proceedings of EUROSAM’79, Lecture Notes in Computer

Science, vol. 72, Springer, Berlin, 1979, pp. 216–226.

	Matrix computations and polynomial root-finding withpreprocessing
	Introduction
	Definitions
	General and structured matrices
	Random sampling, random matrices, and Gaussian random variables

	Three standard algorithms for computations in the null spaces
	Multiplicative preprocessing for null space computations
	Additive preprocessing for null space computations
	Preprocessing by means of randomized augmentation
	Estimates for the impact of input perturbations
	Approximation by nearby structured or lower rank matrices
	Extension to the solution of a nonhomogeneous linear system
	Applications to eigen-solving
	The inverse iteration for eigen-solving, RQs and SQs
	Inverse iteration with additive preprocessing
	Newton's linearization with additive preprocessing
	Modifications of the inverse iterations with additive preprocessing
	How can we initialize the inverse iteration and its extensions?

	Root-finding for polynomial and secular equations
	Numerical experiments
	Solution of singular Toeplitz linear systems
	Generation of unstructured input matrices and additive preprocessors
	Computation and approximation of complete annihilators with additive preprocessing
	Solution of unstructured nonhomogeneous linear systems via augmentation
	Approximation of the tails of the SVDs
	Eigen-solving and root-finding tests

	References

