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Abstract Mammalian sialidases are key enzymes in the degra-
dation of glycoconjugates. Neu4L sialidase is localized to mito-
chondria and specifically expressed in brain. To elucidate the
pathophysiological roles of Neu4L in the nervous system, we
investigated the possible involvement of Neu4L in the apoptotic
neurodegeneration under the existence of catechol metabolites
generated by tyrosinase. We demonstrated that: (i) the expres-
sion level of Neu4L was dramatically decreased prior to apopto-
sis; (ii) the apoptotic phenotype was characterized by cytochrome
c release into cytosol concomitant with the trafficking of gangli-
oside GD3 to mitochondria; and (iii) the inhibitor of glucosylcer-
amide synthase partially recovered cell viability. Neu4L and its
substrate GD3 may act as key molecules in the mitochondrial
apoptotic pathway in neuronal cells.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Mammalian cells have effective glycosylation machinery and

specific pattern of expression of gangliosides is determined by

the balance of their biosynthesis and degradation [1–3]. Sialid-

ases constitute a family of enzymes that catalyze the removal

of sialic acid residues from glycoconjugates. In addition to

being a key enzyme in the degradation of glycoconjugates,

mammalian sialidase has been considered to play crucial roles

in various biological phenomena, such as cell proliferation, dif-

ferentiation, cell death, signal transduction, and cell surface

interactions [4–14]. Previous studies provided evidence for four

types of sialidase that differ in subcellular localization and
Abbreviations: DMEM, Dulbecco’s modified eagle’s medium; D-PD-
MP, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol;
MTT, 3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide;
Ab, antibody; DA, dopamine; Apaf-1, apoptosis protease activating
factor-1; AIF, apoptosis inducing factor
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enzymatic properties [15–17]. They are classified as intralysos-

omal sialidase (Neu1), cytosolic sialidase (Neu2), and mem-

brane-associated sialidases (Neu3 and Neu4). Neu3 is

localized mainly in caveolae microdomains of plasma mem-

brane [18,19], whereas Neu4 is recovered predominantly in

the mitochondrial/lysosomal membrane fractions [20]. These

mammalian sialidases have been cloned and characterized so

far and very recently, murine and human Neu4 cDNA has

been cloned [20–23].

The Neu4 cDNA encodes two isoforms. These isoforms

preferentially hydrolyze gangliosides as well as glycoproteins

and oligosaccharides. Although the isoforms cannot be distin-

guishable by substrate specificity, they exhibited different

subcellular localization. The long form (Neur4L) possesses

an N-terminal 12 amino-acid sequence predicted to be a mito-

chondrial sorting signal and is distributed in the mitochondrial

inner and outer membranes [20]. Interestingly, in contrast to

the short form (Neu4S) which is ubiquitously expressed,

Neu4L is specifically expressed in brain [20]. Although the

physiological roles of Neu4L in brain still remain elusive, its

substrate specificity and subcellular localization suggest that

it may be implicated in the mitochondrial apoptotic pathway

in neuronal cells [20,24–26].

We previously established SH-SY5Y cell lines expressing

human tyrosinase under the transcriptional control of exoge-

nous inducer [27,28]. Overexpression of tyrosinase in cultured

neurons resulted in: (1) increased intracellular dopamine con-

tent; (2) induction of oxidase activity not only for DOPA

but also for dopamine; and (3) increased intracellular reactive

oxygen species [28]. Furthermore, co-expression of a-synuclein

in these cells facilitated apoptotic cell death accompanied by

significant reduction of mitochondrial membrane potential

[27]. In the present study, using this cellular model, we investi-

gated the possible involvement of Neu4L and its substrate gan-

glioside GD3 in the apoptotic cell death under the existence of

catechol-oxidized metabolites generated by tyrosinase. We

demonstrate that overexpression of tyrosinase causes apopto-

tic neurodegeneration in SH-SY5Y cells. The apoptotic pheno-

type is characterized by cytochrome c release into neuronal

cytosol concomitant with the trafficking of GD3 to mitochon-

dria. Furthermore, the expression level of Neu4L is dramati-

cally decreased in the early course of apoptosis. Our data

provide evidence that Neu4L and its substrate GD3 may be

implicated in the mitochondrial apoptotic cascades in neuronal

cell death.
blished by Elsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Cell culture
In a previous study, we established SH-SY5Y neuroblastoma cell

line (TR5TY6 clone) expressing human tyrosinase under the transcrip-
tional control of the T-REx� Tetracycline-regulated mammalian
expression system (Invitrogen) [28]. In this cell line, addition of tetra-
cycline (Sigma, 1 lg/ml) to the culture media, resulting in a depression
of the cytomegalovirus promoter activity, promotes expression of the
tyrosinase encoded by pcDNA4/TO/tyrosinase. Cells were maintained
in Dulbecco’s modified eagle’s medium (DMEM; Invitrogen/GIBCO)
containing 7 lg/ml Blasticidin S (Invitrogen) and 300 lg/ml Zeocin
(Invitrogen) supplemented with 10% heat-inactivated fetal bovine ser-
um (Invitrogen/GIBCO) and 2 mM LL-glutamine (Invitrogen/GIBCO)
at 37 �C under humidified 5% CO2/air.

2.2. Cell viability assay and detection of DNA fragmentation
Cells (0.5 · 105 cells/cm2), seeded in 96-well plates, were incubated

overnight and, thereafter, cultured in DMEM with or without tetracy-
cline for indicated periods. In some experiments, cells were treated
for 12 h with an inhibitor of glucosylceramide synthase, DD-threo-1-phe-
nyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP; Sigma)
prior to the tyrosinase induction. Cell survival rates were evaluated
using the 3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide
(MTT; Sigma) assay as described elsewhere. Assessment of apoptosis
by DNA fragmentation were conducted using whole cell lysates
(1 · 106) according to the method described elsewhere [29].

2.3. RT-PCR analyses of mammalian sialidases
Total RNA was extracted from cultured cells using the RNA-Bee�

reagent (TEL-TEST, Inc.) according to the manufacturer’s protocol.
From 5 lg total RNA, cDNA was synthesized using 200 U murine
leukemia virus-reverse transcriptase (Superscript� III RT; Invitrogen)
and oligo(dT)12–18 primers in a final volume of 20 lL. The cDNAs were
used as a template for PCR amplification. The following primer pairs
were used: Neu1-F (5 0-TGAGAACGACTTCGGTCTGGTG-30),
and Neu1-R (5 0-CCAGGAAACACCATCATCCTTG-3 0) for Neu1
(403-bp), Neu3-F (5 0-GACTGGTCATCCCTGCGTAT-3 0), and
Neu3-R (5 0-GAGCCATGATTCTGACGGTGTT-3 0) for Neu3 (469-
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Fig. 1. Generation of cytotoxic catechol o-quinone
bp), Neu4-F (5 0-CCGTCTTCCTCTTCTTCATCGC-3 0), and Neu4-R
(5 0-CATTGCAGTAGAGGAAGCTGCC-3 0) for Neu4 (411-bp), and
Neu4L-F (5 0-CCACCCATGATGAGCTCTGCAG-3 0), and Neu4L-
R (5 0-GCGATGAAGAAGAGGAAGACGG-3 0) for Neu4L (447-
bp). PCRs were conducted under the conditions described previously
[20]. To normalize sample variations, the expression of b-actin was
measured as a loading control. Gel photo was scanned and densitomet-
ric analysis was performed using the Scion Image software, version 4.03
(Scion Corporation).

2.4. Subcellular fractionation
Collected cells (5 · 107) were homogenized in 0.8 ml of ice-cold frac-

tionation buffer mix using Dounce tissue grinder (50 strokes in each
preparation). Cell lysates were separated into mitochondrial and cyto-
solic fractions by using ApoAlert� Cell Fractionation Kit (Clontech)
according to the manufacturer’s specifications. Antibodies (Abs) to
b-tubulin and Cox 4 were used to confirm the successful separation
of mitochondrial and cytosolic fractions. Protein concentration was
determined by the Bradford assay (Bio-Rad).

2.5. Western blot analysis
SDS–PAGE and Western immunoblot analyses were performed

according to established technique [30]. In brief, 10 lg of total protein
from cell lysates were electrophoresed on a 13% SDS–PAGE gel and
transferred to a PVDF membrane (Immobilon-P; Millipore). The
membranes were incubated with anti-cytochrome c Ab (1:100), anti-
Cox 4 Ab (1:250, as parts of ApoAlert kit described above), and
anti-b-tubulin Ab (1:500; Sigma) followed by horseradish peroxidase-
conjugated secondary Ab (1:1000; Amersham Biosciences) and devel-
oped with the ECL plus detection system (Amersham Biosciences).
Immunoreactive bands were visualized with a LAS-3000 luminescent
image analyzer (Fuji Photo Film). Densitometric analysis was per-
formed as described previously.

2.6. Immunocytochemistry
Immunocytochemical studies were conducted as previously

described [31]. The following primary antibodies were used: mouse
monoclonal anti-ganglioside GD3 (1:500; abcam), mouse mono-
clonal anti-tyrosinase (1:2000; NeoMarkers), and rat polyclonal
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anti-cytochrome c (1:500; Santa Cruz Biotechnology). Positive immu-
nostainings were detected after treatment with AlexaFluor 488 and
AlexaFluor 647-conjugated secondary Abs (1:5000; Molecular
Probes). For the staining of mitochondria, cells were incubated with
MitoTracker Green (Molecular Probes) prior to fixation. Fluorescent
images were analyzed with a FV300 confocal laser scanning micro-
scope system (Olympus) equipped with HeNe-Green (543 nm),
HeNe-Red (633 nm), and Ar (488 nm) laser units. In double labeling
experiments, images were collected using a single excitation for each
wavelength separately, and then were merged by a Fluoview image
acquisition software (version 4.3; Olympus).
2.7. High-performance thin-layer chromatography
Cells (107) were mechanically harvested and washed with PBS and

lyophilized. The glycolipids were extracted in sequence with 5 ml of
chloroform/methanol (C/M) (1:1, v/v), 2.5 ml of C/M (2:1, v/v), and
2.5 ml of C/M (1:2, v/v), and then evaporated to dryness. After desalt-
ing by dialysis, the glycolipids were again lyophilized and dissolved in a
small volume of C/M (2:1, v/v) and one-tenth of the amount was chro-
Fig. 2. Overexpression of tyrosinase induces mitochondria-mediated apopt
DNA fragmentation is observed after 120 h of tyrosinase induction. Tim
immunocytochemical (B: tyrosinase, green; cytochrome c, red, scale bar = 10
are measured to confirm successful fractionation. Densitometric analysis
mitochondrial fractions.
matographed on high-performance thin-layer chromatographic plate
(Baker) in C/M/0.2% CaCl2 (60:40:9, v/v/v). Glycolipids were visual-
ized with the orcinol-H2SO4.

2.8. Statistical analysis
The data from the MTT assay were statistically analyzed using mul-

tivariate analysis of variance (ANOVA) using the Dr SPSS II statistical
software for Windows (SPSS Japanese Inc.). Each treatment and cor-
responding control were carried out in triplicate. Eight wells per group
were used and the data were reported as means ± S.E.
3. Results and discussion

3.1. Catechol-oxidized metabolites generated by tyrosinase

induce mitochondria-mediated apoptosis in SH-SY5Y cells

Although glycoconjugates including gangliosides are major

constituents of vertebrate brain and much evidence has accu-
osis in SH-SY5Y neuroblastoma cells (A). Typical internucleosomal
e-dependent cytosolic accumulation of cytochrome c confirmed by
lm) and Western blot analyses (C). Expression of b-tubulin and cox-4
shows the intensity of the cytochrome c bands of cytosolic and
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mulated suggesting that disialoganglioside GD3 is indispens-

able for the activation of the mitochondrial pathway of cell

death [25,26,32–36], the role of ganglioside GD3 in neuronal

apoptosis is still obscure. Likewise, the potential role of gangli-

oside-modifying enzymes in the process of neurodegeneration

remains to be elucidated. In the present study, we have

addressed this issue in the tyrosinase-overexpressing neuro-

blastoma cell lines [28]. Human tyrosinase catalyzes both the

hydroxylation of tyrosine to L-DOPA and the subsequent

oxidation of L-DOPA and dopamine (DA) to their o-qui-

none-metabolites (Fig. 1) [28,37]. These catechol-oxidized

metabolites are highly cytotoxic and it has been shown that

the artificial expression of tyrosinase in cultured cells triggers

the cascade of melanin synthesis and produces toxic intermedi-

ates followed by growth retardation or cell death [38,39].

Indeed, we previously demonstrated that following the induc-

tion of tyrosinase in SH-SY5Y cells, small pigmented granules

similar to neuromelanin appeared in the cytoplasm. After 72 h

of tyrosinase induction, cell growth gradually declined and be-

gan to detouch from the culture plate [27]. Consistent with

these previous observations, 120 h after induction of tyrosi-

nase, internucleosomal DNA fragmentation, a hallmark of

apoptosis, was observed in this cellular model (Fig. 2A). Con-

trol cells expressing empty vector alone did not show any

change in cell growth (data not shown).

The toxicity of DA and L-DOPA is well documented using

cellular and animal models [40]. Previous report has provided

evidence that addition of DA in culture media could induce

SH-SY5Y cells to release cytochrome c from mitochondria in

a time-dependent manner [41]. In addition, cytosolic cyto-

chrome c binds to apoptotic protease activating factor-1

(Apaf-1) and subsequently, triggers the sequential activation

of caspase-9 and caspase-3 [42]. Using subcellular fraction-

ation and Western blotting analysis, we confirmed that the

overexpression of tyrosinase resulted in cytosolic accumulation
Fig. 3. Induction of tyrosinase causes a striking redistribution of GD3 to i
plasma membrane (A). After 120 h, the magnified image shows that GD3 flu
marker, MitoTracker (green) (B). Scale bar = 10 lm.
of cytochrome c (Fig. 2B and C), which in turn could effect the

activation of caspase-9. Of note, caspase-3 inhibition potently

blocks DA-induced apoptosis but does not affect cytochrome c

release [41], indicating that caspase-3 activation is not required

for cytochrome c release and therefore DA-induced cyto-

chrome c release precedes the onset of apoptosis. These data

suggest that cytochrome c release is not a consequence but

rather an initiator of catechol-oxidized metabolites induced

activation of caspases and subsequent apoptotic cell death.

Taken together, our data clearly showed the overexpression

of human tyrosinase in SH-SY5Y cells increased intracellular

catechol-oxidized metabolites and ultimately led to apoptotic

cell death via the activation of mitochondrial pathway.

3.2. Catechol-oxidized metabolites induce the trafficking of

ganglioside GD3 to mitochondria in SH-SY5Y cells

It has been known that mitochondrion is a key destination

for the apoptogenic ganglioside GD3, as shown by the reports

that apoptosis induced by ceramide and tumor necrosis factor-

a caused targeting of GD3 to mitochondria [36,43]. To deter-

mine whether the mitochondrial targeting of GD3 occurs in

response to catechol-oxidized metabolites, we monitored the

colocalization of GD3 in our cellular model following the

tyrosinase overexpression by immunocytochemical methods

(Fig. 3A). As predicted by previous reports [36], in basal con-

dition, most of ganglioside GD3 in SH-SY5Y cells was pre-

dominantly located at the plasma membrane. However, after

the induction of tyrosinase, GD3 underwent a striking redistri-

bution to intracellular compartment accompanied by its disap-

pearance from the plasma membrane. Furthermore, 120 h

after the tyrosinase induction, a magnified image showed that

GD3 fluorescence appeared to be largely colocalized with

mitochondrial marker, MitoTracker (Fig. 3B). The redistribu-

tion of GD3 to mitochondria during apoptotic process has

been detected in other cell lines such as rat hepatocyte [36],
ntracellular compartment accompanied by its disappearance from the
orescence (red) appeared to be largely colocalized with mitochondrial
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suggesting that this phenomenon is not a cell type-dependent

event.

3.3. Early decrease of Neu4L expression during the apoptotic

neuronal cell death induced by tyrosinase overexpression

The primary targets that are critical to the toxicity induced

by catechol-oxidized metabolites is not understood, but likely

candidates include many of the proteins important for the

maintenance of normal mitochondrial functions [44,45]. Sev-

eral reports documented that mitochondrion is a key organelle

for the apoptotic process triggered by ganglioside GD3

[32,33,42]. Actually, GD3 is known as a cell death effector

causing the loss of mitochondrial membrane potential accom-

panied by the release of several molecules such as Apaf-1,

apoptosis inducing factor (AIF), caspase-9, and cytochrome

c [25,26,35]. With regard to its substrate specificity and subcel-
A
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Densitometric scanning analysis shows the intensity of the GD3 bands (lo
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lular localization, it is plausible that Neu4L may regulate the

level of mitochondrial GD3. To our surprise, among mamma-

lian sialidase genes expressed in the nervous system

[14,20,46,47], the expression of Neu4L began to decrease

remarkably during the first 24 h of tyrosinase induction, and

the partial decrement of Neu4 (L plus S) expression seemed

to reflect the striking decrease of Neu4L expression

(Fig. 4A). In control cells expressing empty vector, the expres-

sion level of Neu4L was unchanged (data not shown). In agree-

ment with these findings, the ganglioside patterns by thin-layer

chromatography revealed the time-dependent increase of

endogenous GD3, GD1a, GM1 and GM2 after tyrosinase

induction (Fig. 4B). In SH-SY5Y cell lines, there is a contro-

versy about the endogenous expression of GD3 [48] presum-

ably due to a low content of this molecule. It is also

interesting to note that sialidase-resistant GM1 was increased
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in spite of the downregulation of Neu4L, suggesting that GM1

biosynthesis might also be modulated in the apoptotic process.

Moreover, in accordance with previous observations [25,36],

pretreatment of D-PDMP, a potent inhibitor of glucosylcera-

mide synthase, partially recovered cell viability in a dose-

dependent manner (Fig. 4C). Thus, these data imply that down

regulation of Neu4L sialidase may induce the accumulation of

mitochondrial GD3 followed by the induction of apoptotic cell

death. Although further evidence is needed to establish critical

roles of GD3 in neuronal degeneration, previous studies also

suggested its involvement in apoptotic signaling. For example,

it was reported that b-amyloid peptide induces the upregula-

tion of intracellular GD3 in rat cortical neurons, which triggers

the subsequent development of apoptosis [49]. In primary

cultures of rat cerebellar granule neurons, early and transient

increase of the ganglioside GD3 was shown to contribute to

the development of apoptosis [35].

In conclusion, our data provide evidence that Neu4L and its

substrate GD3 are involved in the neuronal apoptosis induced

by catechol metabolites. Further experimental work is needed

to check if downregulation of Neu4L is, in fact, the principal

executioner of the apoptotic cascade in neuronal cells.
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