
ELSEVIER Theoretical Computer Science 156 (1996) 119-144

Theoretical
Computer Science

Finite automata and ordinals

Nicolas Bedon*

Institur Gaspard Mange. Universitk de Marne-la- VallPe. 2, rue de la butte verte.
93166 Noisy-le-Grand Cedex. France

Received September 1994; revised November 1994
Communicated by D. Perrin

Abstract

Several definitions of automata on words indexed by ordinals have been proposed pre-
viously. The first one was introduced by Biichi to prove the decidability of the monadic second
order theory of denumerable ordinals. Wojciechowski studied the properties of these automata
independently of the length of the input. The second definition, proposed by Choueka, works
only on words of length less than w”. In this paper, we restrict the domain of Wojciechowski
automata to the domain of Choueka’s ones (that is, given n < w, we keep only a-sequences for
c(< w”+l in the language defined by a Wojciechowski automaton) in order to prove the
equivalence between Choueka automata and Wojciechowski automata. Then, we obtain the
closure under complementation of the class of Wojciechowski’s definable sets, and finally we
give an algorithm for determinizing Wojciechowski autumata.

1. Introduction

Finite automata on w-sequences were first introduced by Biichi [l] to prove the

decidability of the second order monadic logic of integers. A Biichi automaton looks

like an ordinary one (that is, like a Kleene automaton), but in this case a word is said

to be accepted iff the set of states that appears infinitely often in a run of the

automaton on the word contains at least a final state.

Independently of Biichi, Muller [7] used automata on infinite words to study the

behavior of asynchronous circuits. A word is accepted by an automaton iff the set of

states that appears infinitely often in the run of the automaton on the word belongs to

a table associated with the automata. Muller automata are deterministic.

McNaughton proved in [6] the equivalence between Muller automata and Biichi’s

ones acting on infinite words.

Bi.ichi, in [2], generalized his idea to transfinite sequences. Automata acting on

transfinite words have two maps for transitions: one for successor ordinals (this is the

* Email: bedon@univ-mlv.fr

0304-3975/96/$15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00006-2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81951015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

120 N. Bedon/ Theoretical Computer Science 156 (1996) 119-144

map used in usual automata) and a second one for limit ordinals (to get through
infinity: the state reached for a limit ordinal depends only of states reached before).
For < a limit ordinal, if rp is the sequence of states denoting the run of the automaton
on a transfinite sequence, Biichi defined cp(<) to depend uniquely on {s E Y/V/? < 5
3y 5 > y > Bq(y) = s}. He used these automata to prove the decidability of the
monadic second order theory of [IX, <] for c(a countable ordinal, but could not use
them for uncountable ordinals (he proved the decidability of the monadic second
order theory of [w2, <] using an other kind of automata).

Choueka [4] generalized automata on infinite sequences to transfinite sequences of
length less than U” for a given n < w. The main difference between his idea and Biichi’s
idea [2] is the second map (call it f). For 5 a limit ordinal, 5 = p + u”, n < w, b = 0
or /I > o”, p belongs to f(r) iff there exists an infinity of k < co such that

J-(/I + o”-l . k) = p. Note that f is defined only for n < w, and that f(4) depends only
on values of f(a) for u < 5. Those automata are equivalent to regular expressions,
looking like Biichi’s w-regular expressions, but with a free o operator.

Wojciechowski [13] studied the behavior of Bfichi’s [2] automata, without a limit
for the length of inputs. He gave in [14] regular expressions equivalent to his
automata, being like Choueka’s but with one more operator, # , where a# means the
letter a repeated zero, a finite number, an infinite number or a transfinite number of
times.

The main result of this paper is the equivalence between Choueka automata and
Wojciechowski’s ones (if of course the domain of Wojciechowski automata is
restricted to Choueka’s one). As the class of Choueka definable languages is
closed under complementation (because Choueka’s deterministic and nondeter-
ministic automata are equivalent), then so is the class of Wojciechowski” definable
languages. In the proof, we use a construction for, given a Wojciechowski
automaton, obtaining a Choueka automaton defining the same language. The
proof of the equivalence is then immediate because the class of Choueka’s regular
expressions is include into the class of Wojciechowski’s regular expressions. The other
result is an algorithm of determinization for Wojciechowski automata. It is
obtained using the previous construction, the equivalence between Choueka’s
deterministic and nondeterministic automata, and a second construction com-
puting a deterministic Wojciechowski automaton given a deterministic Choueka
automaton.

The paper is not self-contained: the reader is supposed to be familiar with the theory
of ordinals and with the classical automata theory (on finite words). One can find the
classical theory of ordinals in [l l] ([lo] can be seen as a translation in french of pieces
of [l l] and a more modern approach in [9]. All the traditional automata theory on
finite words is in [S]. Finally, for the theory of automata on infinite words we refer to

C3,g, 121.
The paper is composed of three parts:

l In the first three sections we present an unified notation for definitions and results
of Choueka and Wojciechowski.

N. Bedon 1 Theoretical Computer Science 156 (19961 119-144 121

The second one is the proof of the equivalence of Choueka automata and
Wojciechowski’s ones.
The third one is the algorithm of determinization of Wojciechowski automata.

&. Notation and basic definitions

We refer the reader to [9-111 for the theory of ordinals.
All along this paper the letters i,_j, k, m, and n are integers (E N). Greek letters

(a, fi, y . ..) are ordinals. The 5 letter is always a limit ordinal. Finally, the cp letter
denotes a function.

We denote by Succ the class of successor ordinals, Lim the class of limit ordinals and
Ord = Succ u Lim u (0). Let CI be an ordinal less than ww, and urn. a, +
0 m-l.u,_r + ... + oO.ao, where al,..., a,,, and m are ordinals less than w, be the
normal form of CY. For short, we will write a = IF=, wi. ai. When we write CL = fi + wY
we are talking about the unique decomposition of a, where /3 2 my or B = 0. Thus, the
type of CI is the ordinal y.

Let Y be a finite set. An a-sequence aoala2.. . on Y (i.e. V/? < CI a@ E Y) is a function
cp:cr + Y such that VP < tx cp(p) = aP. The length of an Lx-sequence cp, denoted by 1 cp(,

is the ordinal cc. For practical reasons, Dq stands for cp(lJ). The sequence itself is

denoted by (B(P)B+, and ‘ply the restriction of cp to y < SC. Y# is the class of all
sequences, transfinites, infinites or finites, on 9, Y” the class of all a-sequences on
Y (a E Ord), and Y” the class of all sequences on Y of length less than a (a E Ord). If
cp is an w-sequence on Y. In(cp) will denote the set of elements of Y appearing
infinitely often in (scp)sca.

A word of length a is an a-sequence on a finite set, usually denoted by Z‘, called
alphabet. Each element of an alphabet is a letter. The word of length 0, also called the
empty word, is denoted by 1.

Let cp be an a-sequence and 8, y E Ord such that fi < y d a. We denote by cp [B, y[
the (y - b)-sequence such that cp [B, y[(6) = q(p + 6) for all 6 < y - B.

Let u be an a-sequence on a finite set C, and v be a /?-sequence on a finite set C,. The
product of u and v, defined u. v, is the (a + /Q-sequence w on C, u C, such that:

),w =
i

YU si 0 < y < a,

y_,v si a<y<a+p.

Given (a& <n n words on a finite alphabet C we recursively define IZ, the generalized

product:

n

I-I .={
uk.nlEk+rui if k < n,

u,
i=k II otherwise.

A k-regular expression is a regular expression describing a set of words of finite
length. An o-regular expression is a regular expression describing a set of words of

122 N. Bedon 1 Theoretical Computer Science 156 (1996) 119-144

infinite length. An a-regular expression is a regular expression describing a set of
words of finite, infinite and transfinite length.

Let Y be a finite set. We will denote [Y]’ or [Y’] the powerset of Y without the
empty set 8. [Sp]’ stands for 9, [Sp]“” for [[S“]“], and [Y’]: for Ul=, [Y]‘.
Extending this notation, if s E Y, {s}’ stands for s and {s}“+’ = {{s}“}. We remark
that {s}” E [Y]“.

If X E [YJ”, the type of X, t(X), is the integer m.
Let 9, C be two sets, n, i E N, i d n + 1 and 4 : [sP];t x C + Y be a function. We

call the restriction of d to i, denoted by &Ii, the function Jli: [Y]b-’ x C + 9’

defined by Vq E [9’]~-‘Vo E Ch!li(qy a) = &(q, a). If JZ is a relation, &Ii is a rela-
tion too, defined by (q E [Y]b- ‘, (r, p) E A Ii o (q, C, p) E A.

Z(d) denote the set of words accepted by the automaton d.
Let 9’ and 9’ ’ be two sets. A function from 9’ to Y’ is also called a projection.

A projection p:C + C’ can naturally be extended to words: if u, v E Cx,
p(u. u) = p(u).p(u), and to sets of words: if d c Cx, p(g) = {p(x)/x E &}.

Let m, nE N,m sets Yl, Y,, and Y = ,401 x-e+ x9,. We recursively define
m projections pi: [Y]j -+ [Spi]’ (1 < i < m, j E N):

. If kl, qrn) E 9 then Pi((qlv ..., d) = qi.

. If {q1,..., qk} E [~I; then Pi((q1, .--,qk}) = {Pi(ql), ..., Pi(qk)}.

3. Automata

We refer the reader to [S] for the classical automata theory on finite words, and to
[3,8, 121 for the automata theory on infinite words.

When we talk about automata, we mean jinite automata. Infinite automata are not
the subject of this paper. We will use the terms %-automaton and n-automaton to point
out a Choueka automaton, and W-automaton for a Wojciechowski automaton.

3.1. %Z-automata

Choueka automata are a generalization of Muller’s ones. The behavior of both is
the same for infinite (0) words. Let us see how it works on (w + 1)-sequences: let

(Scp)S<o be the run of a deterministic Choueka automaton on the o first letters of the
word (that is, ~(0) is the initial state, cp(1) the state reached from ~(0) by the first letter
oftheword,..., q(n) the state reached from cp(n - 1) by the nth letter of the word,. ..).

q(o) is the set of states appearing infinitely often in (scp)sGw. Considering q(o) as
a state, cp(o + 1) if the state reached from q(o) by the wth letter of the word. Using
this idea, a run on an w. 2-sequence looks like two glued runs on o-sequences: the first
one begins at the initial state of the automaton, and the beginning of the second one
depends on the end of the first.

For 02-sequences, cp(o’) is the part of the powerset of the set of states such that
x E cp (w2) iff x appears infinitely often in (w. k cp) kco, and so on. An a-sequence is said

N. Bedon 1 Theoretical Computer Science I56 11996) 119-144 123

Fig.r 1. The way V-automata work.

to be accepted by the automaton if cp(c~) was defined to be a final state. We remark that

the transition function is from [Y]: x C + Y, where 9’ is the set of states, C is a finite

alphabet, and n is an integer, so the definition of a V-automaton depends on the

integer n, that’s why we call such an automaton n-automaton. Of course it is

impossible to define Z<“@ using a %-automaton, because the integer n forces the

length of the longest word accepted by the automaton to be lower than w”’ ‘. Fig. 1

sums up how a q-automaton works on an ok+ ‘-sequence:

The following is the formalization of the foregoing.

Definition 1. An a-sequence cp on Y is said to be continuous if V/I E Succ cp (B) E Y and

V/I E Lim q(p) = In($) where II/ is the unique w-sequence such that for all 0 d i < w

J/(i) = cp(y + on-’ . i) if /I = y + w”. A continuous a-sequence is then entirely defined

by its nonlimit values.

Example 2.

l Let cp be a continuous (w + 1)-sequence on a set 9’. q(o) is the set of elements of

Y appearing infinitely often in (pcp)8 <w.

l Defining the following (w’ + 1)-sequence on 9’ = {si, s2, sg, s4, s5}:

we have cp(d = (~1, SJ}, ~~(0.2) = (~1, SZ}, ~(0.3) = (~1, SJ), ~~(0.4) = (~1, SZ),

..,,(Pk2)= ((%,S2), {%,S3)}.

124 N. Bedon/ Theoretical Computer Science 156 (1996) 119-144

Fig. 2. A Biichi’s definable word.

Definition 3. A n-automaton d is a Suplet (9, _M, s*, 9, C> with:
l 9’ the finite set of states,
l JZ E IYl;j x C x Y the relation’ for transitions,
l s* E Y the initial state,
l 9 E [9’]: the set of final “states” (from now on, we will call, for evident reasons,

state any element of [.Y’];t, but set of states still means Y),
l C a finite alphabet.

_M:[9’]: x C x 9’ can naturally be extended from letters to words defining
,/4&:[9]1; x C’““” x [Y];t: if f4 is an a-sequence (a < IX”+ ‘) on C, (s, a, sf) E _Mc iff
there exists a continuous (~1 + l)-sequence cp on 9’ such that ~(0) = s, cp(cc) = sJ and

VP < 6 (cp(B), n(P), cp(B + 1)) E A.
A word u is said to be accepted by d iff there exists s/ E 9 such that (s*, u, sr) E &.
One can easily complete a %-automaton. In the sequel, when we talk about

%-automata, we will mean complete w-automata.

Definition 4. A subset A of Y# is called n-dejnable (V-de$nable) iff there exists an
n-automaton (%-automaton) d such that P’(d) = A.

Definition 5. A run of an n-automaton ~6’ = (9, _M, s*, 9, C) on a word u E C”,
a < w”+l, is a continuous (a + 1)-sequence cp such that q(O) = s* and Vj? c cc(cp(/?),

u(B), q(/3 + 1)) E _.M. If s&’ is a deterministic automaton, then this sequence is unique.
A run is said to be accepting if &a) E 5.

3.1.1. Characterization of W-definable words
Unlike finite words, infinite words are not always definable by a finite automaton:

an o-sequence x on C is definable by a Biichi automaton iff it is ultimately periodic,
that is, there exists y, z E C* such that x = y. zw. Graphically, if half-a-line represents
the infinite word (Fig. 2).

Choueka automata generalize this result to l/2” Euclidian n-dimensional spaces
with integral coordinates. We assume without loss of generality that C = (a, b).

An arithmetic progression is a set {a + rib/n = 0, 1,2, . . . and a, b E N}. The progres-
sion is said to be proper if b # 0. A Cartesian product of n arithmetic progressions of
which k exactly are proper ones is called a n-periodic set of order k. A set is ultimately
n-periodic of order k iff it is a finite union of n-periodic sets of order k (0 < k < n).

1 In Choueka’s original definition, automata arc deterministic (that is, transitions are not defined by

a relation, but by a function), but he proves in [4] the equivalence between his deterministic and

nondeterministic automata.

N. Bedon/ Theoretical Computer Science 156 (1996) 119-144 125

x
01 a:tb: a: j-26:

Fig. 3. A %-definable word.

Given u E C”, u E Ord, a E Z, we define P,(u) to be { fi < crlPu = a).

Let c1 = Eye,, wi. ai be an ordinal less than UP. By Dee(a) we mean the (m + l)-uplet

(a,, a,,,). One can easily extend Dee to set of ordinals by Dee, {aI, Q} =

{Dec(slI), Dec(q.)}, p E Ord.

Theorem 6 (Choueka [4]). Let x = Cp3,, wi. ai and u E {a, b}“. One can split u in
factors using the following:

We note that luijl = ~9. {u} is %‘-definable iff Vuij Dec,(P,(uij)) is an ultimately j-

periodic set.

Example 7. a = CO’. 3 + w + 2, u E {a, b}” (Fig. 3).
One can say that for each Uij there exists a k-dimensional box (k <j) that can be

translated infinitely often from its size in every k directions following axes of the l/2’
Euclidian space with integral coordinates representing Uij. In Fig. 3 one can see
a unique 2-periodic set of order 2.

Example 8. cc = w, u E {a, b}” (Fig. 4). This time, Dec,(P,(u)) is an union of two
l-periodic sets of order 1 and one l-periodic set of order 0 (the biggest point does not
appear anywhere else whereas the two others series of points are infinite).

126 N. Bedon / Theoretical Computer Science 156 (1996) 119-144

t w -;:
ä W

Fig. 4. Dots represent the positions of a’s, other letters are b’s.

3.2. W-automata

Wojciechowski’s definition of automata is closer to ordinals than Choueka’s.
Unlike Choueka’s, a w-automaton can accept words of any length. The definition of
the second transition function is based on the notion of cofinality of a set of ordinals
with an ordinal.

Definition 9. Let { E Lim and d be a set of ordinals all lower than 5. d is said to be
cojnal with 5 iff Va < c 3/3 E 8’ /? > ~1.

Now we can define the motion of continuous a-sequence for Wojciechowski’s idea.

Definition 10. An a-sequence cp on 9’ is said to be continuous if V’p E Succ cp(/3) E 9

and VB E Lim, N-9 = {s E .V{Y < #VP(Y) = s is cofinal with 8). As for Choueka’s >
definition of continuous a-sequences, a continuous a-sequence is entirely defined by its
nonlimit values.

Example 11.
l

l

Let 50 be an (w + 1)-sequence on a set 9, q(w) is the set of elements of 9’ appearing
infinitely often in (B’p)Bco.
Defining the following (w2 + 1)-sequence on 9’ = (sl, s2, s3, s4, ss >:

lg 69

r
n

\
0 times

*
I >
s,s,... s, SISl ‘.’ “.
w -

0 times w times

-v--J-
Igo ko

we have cp(w) = {sly sj}, cp(w9) = (G, s2), cpW3) = {sl, G), cph-4) = @I, SZ),
a.., cpN21 = (SI, s2, $37 s4).

Definition 12. A W-automaton d is a Suplet (9, J%, s*, 9,X:> with:
9 the finite set of states,
JY c [9] u Y x Z x 9’ the transition relation.
s* E 9’ the initial state,
P E [Y] u 9 the set of final “states” (from now on we will call, for evident
reasons, state any element of [,Y] u 9, but set of states still means 5p),
C is finite alphabet.

N. Bedon 1 Theoretical Computer Science 156 (1996) 119-144 121

_&i!: [Sp] u Y x C x Y can naturally be extended from letters to words defining
_&I [Y] v Y x C# x [YJ u Y: if u is an a-sequence on C, (s, u, sf) E &Ye iff there
exists a continuous (LX + 1)-sequence cp such that ~(0) = s, cp(cr) = sJ and V’i < LX,

(cp(i), u(i), V(i + 1)) E Jz.

The accepting condition of a word by a W-automaton is the same as the one for
Choueka automaton, the only difference being the definition of continuous sequences.

Definition 13. A subset A of Y# is said to be W-definable iff there exists a W-
automaton d such that Y(d) = A.

The definition of a run is the same as for Choueka automata.
The following few examples show how W-automata work (.E = (cr}). In all these

Figs. 5-9 circles are shadowed when they represent states of the automaton not
element of 9, but of [P’]!.

Example 14.

:..... ,.,. :.:.:.: : 80 0 ; @g,.‘: 0 :...:.’
._....
. . . .

Fig. 5. A W-automaton accepting d”.

Example 15.

Fig. 6. A W-automaton accepting O*

One just have have to change the final states to accept only words of length
c1 E Succ u (0) or words of length 0: E Lim.

Example 16.

Fig. 7. A W-automaton accepting u” ’

128

Example 17.

N. Bedon / Theoretical Computer Science 1.56 (1996) 119-144 .
.,.A

0 e,o ““’ . .

~~~ ~~‘~~: 0 ..,, ..::::::y,.. . . 
1 

Fig. 8. A W-automaton accepting uw2. 

Example 18. 

Fig. 9. A W-automaton accepting all words of denumerable length. 

Let u be an a-sequence on {c}. 
If CI E Succ, the (CI + l)-sequence cp defined by VP E Succ, cp(/?) = 1 is a run of the 

automaton on U, because for 5 E Lim, 5 -c 01 we have (p(5) = {l}, and (1, cr, 1) E JZ and 

({l>& l)EA. 
If a E Lim, a < ol, ct. is the limit of an increasing progression of ordinals (/$),, <_. Let 

us assume, for each pi of this progression, that Cp(pi) = 2 and q(y) = 1 for all others 
ordinals in Succ. At the end of U, the state reached is either { 1,2} or {2}, which are 
both final states. 

Now let us assume that c( = oi and u is accepted. Then, 2 E cp(oi). We define r to 
be (y -C wi/&) = 2). Let y0 be the lowest element of r, yi the element of r immedi- 
ately greater than yO, and so on. As r is not a denumerable set, one can build an 
increasing progression of denumerable ordinals (yJ<,. Let /I be the limit of this 
progression. As is well known, the limit of an increasing progression of denumerable 
ordinals is a denumerable ordinal, and wi is not limit of such a progression, so 

P < al. As B E Lim, 2 E P(B) and MB, 0, cp(P + 1)) is not a transition, so u cannot be 
accepted. 

One can verify that the shortest sequence accepted by a YY-automaton depends on 
the number of states of this automaton. Precisely, the length of this sequence is an 



N. Bedon / Theoretical Computer Science 156 i 1996) 119-144 129 

ordinal belonging to {M = Cy+,, oi.ai/Crzl i.ai + a0 < k} where k is 19’1. We refer to 
[13] for the proof. It follows that the class of w-definable sets is not closed under 
complementation and that deterministic and nondeterministic 9T-automata are not 
equivalent. 

4. a-regular expressions 

In the sequel %-a-regular expression stands for Choueka’s a-regular expression and 
-W-a-regular expression for Wojciechowski’s a-regular expression. 

In this section, we sum up the proofs of the equivalence between regular expressions 
and automata for both ideas. Given d an automaton, gk denotes the regular 
expression equivalent to 22. 

4.1. V-a-regular expressions 

Definition 19. Let C = {cri, . . . . uk) be a finite alphabet. A %-a-regular expression is 

a finite word on the alphabet Z u { + , . , w, *, (,), 1,8} such that: 
0 8 is a %-a-regular expression, 
0 2 is a V-a-regular expression, 
0 0 E C is a V-a-regular expression, 
l if ei and e2 are both %-a-regular expressions, then so is e, + e2, 
l if e, and e2 are both V-a-regular expressions, then so is e, . e2, 
l if e is a %-a-regular expression, then so is (e), 
l if e is a V-a-regular expression, then so is e*, 
l if e is a V-a-regular expression, then so is e”. 

If e is a V-a-regular expression, let 2 be the set of words denoted by e: 

. O=S, 
_- 

l e, + e2 = cu e2, 
. ;*=e* 9 
l X=;L, 

0 e1‘e2 = el’e2, 
_ 

0 e=P, 
0 z3a = CT, 

0 (e) = f?. 
All the operators have their usual meaning, but unlike in Btichi’s o-regular expres- 
sions, the w operator is free (as the * operator) in %-a-regular expressions. 

4.1 .I. From V-a-regular expressions to deterministic %‘-automata 
In his original article, Choueka gave a method to pass from a g-a-regular expres- 

sion to a deterministic %Z’-automaton defining the same language. 



130 N. Bedon { Theoretical Cornpurer Science I56 (1996) II9-144 

Ideas for union and intersection are using the usual product technic (as for Kleene 
automata). The complement is obtained as usual by switching final states to nonfinal 
and nonfinal to final. 

Formally, if &’ = (9,_,, JY~, s:,F*, C) is an n,-automaton and 93 = (Ypg, &ZB, sf, 
FB, c) an n,-automaton, assuming for example that nA > nB we define the HA product 

automaton to be % = (YA x ys, &c,(s;, sgf),&,c), where (ql, Q, q2) E & - 

(Pi (qd 6 pdqd) E AA and (P2(d, 0, P2h2)) E AB if% E [YA x ~I#]?, q2 E YA x 9~ 

and Q e C. One can easily show that Y(g) = P’(d) u 9(a) if q E Fc o PI(q) E FA or 

p2(4) E =FB, y(W = -WJ~ n ~(W if 4 f %* ~~(4) E YA and p2M E FB. 

We note that if JZ~ and $9 are deterministic n-automaton, then so is %. 
Let 3 = (Y’,&, s*,9, C) be a deterministic n-automaton. The deterministic n- 

automaton ?# such that 9’(99) is the complement of 9(d), denoted 9(d) is 
.5@ = (9, JV, s*, [Y];f\9, c>. 

In order to keep the determinism of an automaton, the obtention of product, Kleene 
closure (*) and o operation uses a construction called Weak S@U because one can 
derivate it from Safra’s proof of the equivalence between Bi.ichi automata and Muller 
automata (but the weak Safra construction is not really due to Safra). Let 
d = (YA, .&(A, s,*, FA, C) and 3? = (YB, J%~, ~3, @& C} be two deterministic g-auto- 
mata, m = 1 [Y”]: 1 (&I is an n-automaton), and take m + 2 copies of $3. The deterministic 
automaton V such that Y(%‘) = Z(d). 9(@ is made to have the m + 2 copies of 
$# working simultaneously with &. Each copy of $3 can be either active or inactive (ready 
to start (on the initial state) and insensitive to the input). At the beginning all copies of 93 
are inactive, only & works (& already works). $7 actives an inactive copy of W when d is 
leaving a final state, after switching off all actives copies of $3 which are in the same state, 
except the first actived one. The word is accepted ifit leads to a final state of a copy of 3. 

Formally, let & = (YA, AA, sf, PA, Z) be a deterministic n,-automaton and 
93 = (YB, JY~, s,*, SD, C) be a deterministic n,-automaton. Assume now that 
nA > nB and define m = 1 [YB]“” f (m = I[ys]“B1 if n,_, 6 ns). In order to express the 
notion of inactivity of a copy of 99 we add a new state to YB: 9’; = YB u {i} (i stands 
for inactive) and we extend the transition function AB: VO < j < nAVo E 

Z &2;( { i}j, a) = i and JZB(q, a) = q’ * ,&(q, a) = q’. Now we are ready to begin the 
construction of 59 = {Yc = 9’A x (9’~m”2\Y~+2), AC, (s,*, i, . . ., i), SC, C), the weak 
Safra deterministic nA-automaton. The transition function verifies Ac(q, a) = (q’A, 

‘B qiB1 *‘-I qm+2 ) iff the three conditions below are true: 
- q’* = ~A& (!d, a). 

- If g 1 < j < k/pj(q) = pk (q) then qLB = dB(pk (q), a) else qiB = i. 
- If pi(q) E FA then q;B = AB(ssf, a) with p the lowest integer such that pP(q) = {i}r~q). 

To use the foregoing idea to build a deterministic %‘-automaton 93 such that 
Y(ciB) = Z’*(d) one just have to take 1 [yk]“i + 2 copies of ~4 working simulta- 
neously, in case &# = (YA, A,., , A+, s gA, Z) is an n-automaton. An inactive copy of 
JZZ is actived each time a copy of & is in a final state. For desactivation we keep the 
same rule as for the product construction. % is in a final state iff one of the copies of 
& is in a final state, or if V is in its initial state SC” = (sA*, i, . . ., i). 



N. Bedon 1 Theoretical Computer Science 156 (1996) 119-144 131 

Fig. 10. The automaton accepting U*. 

The weak Safra construction cannot directly be used to obtain P’(d) defining 

9c = {q E [sp,];^+ l /31 < i < jq(31 < j d m + 2 such that qi E q and pj(qj) E 9A) 

because more than UO(&‘) the set of words which have an infinity or prefixes in 
, 

Y*(a), denoted by 3’*(d), is accepted, as is shown in the example below. The 
deterministic n-automaton accepting P”(JzZ), is build observing that’ U” = U* . ‘;: 

where the deterministic automaton defining V is obtained from U*‘s one applying 
determinism preserving operations (union, intersection, product and complementa- 
tion: if &* = (9 = {si, . . . . s,}, A, s*, %, C) is a deterministic automaton such that 
L?(&*) = u*, defining ~4: = (9, JY, si, {sj}, C), Kj = 2’(&~), Wj = I/j n 

Vlj n C+, WIj’ = Wij n no=, Ulik, K = (VI: n U*).(iJ~=, Wij), we have 
V = lJi 6). If V is defined by a deterministic n-automaton (9, A?, s*, %, C) then the 
deterministic n + l-automaton accepting P is d’ = (9, _A!, s*, %‘, C) with 
%’ E [sp];” andqE%‘oqn%#@. 

The following is an example on finite words of the computation of the deterministic 
automaton accepting V from the deterministic automaton of U * such that U” = U *. ?. 

Example 20. U = a.b*, U* = (a.b*)* = A + u.(a + b)*, U” = (a.b*)“, fi = u’b” 

(Fig. 10) 

We remark that U” $a. b” E 6 *. Let us apply the algorithm. 

K = 8, v21 = 8, I’,, = a. (a -I- b)*, I’22 = (a + b)*, 

WI, = 0, w2, = 0, W,, = u.(a + b)*, 

W,, = a. (a + b)* n (a + b)* = a. (a + b)*, 

W;, =0, 6, =0, 

WI2 = u.(u + b)* n u.(a + b)+ = u.(u + b)* n (A + a + b.(u + b)*) = a. 

W;, = u.(u + b)* n (A + a + b.(u + b)*) = a, 

V=(u~(u+b)*n(u~b)*)*~u+((u+b)*n(u+b)*)*~u 

= (a.b*)+.u + (a. b*)*.u = (u*b*)*.u. 

So (a. b*)w = (a. b*)* . (a 

ZProoE [3]. 

* I+‘;j = {x E wjjRk such that x has a proper prefix in Wik}. 



132 N. Bedon/ Theoretical Computer Science 156 (1996) 119-144 

The passage from a %-a-regular expression to a deterministic %-automaton defining 
the same language is then effective. 

4.1.2. From deterministic q-automata to %‘-cr-regular expressions 

In this section automaton means deterministic automaton. 

A n-automaton d = (9./Z, s*, 9, C> is said to be of type 0 if 9 E [9’]: and & is 
neither of type 1 nor of type 2. We call & automaton of type I if 9 E [9’]” and d is 
not of type 2, automaton of type 2 if J? = A),, and 9 c [P’]“. 

The computation of the %-a-regular expression from a type 1 n-automaton 
d = (9’,9, A, s*, C) uses Kleene’s theorem: Let Q = [y]” u {s*} = {ql = 

s* , . . . . qm}, for 1 < i,j < m VG = {U E CW”/‘M,(qi, U) = qj}, and for 1 < k < m 
Vk = P-l + vi-l (V&l)*. vtjyl. The V-a-regular expression denoting 

Z(d) is “‘7 VE. 
Now we describe how to obtain a ?S-a-regular expression from a type 2 (n + l)- 

automaton J&’ = (9’,9, A, s*, C). The following algorithm is similar to the one 
which computes an o-regular expression equivalent to a Muller automaton. Let us 
assume, without loss of generality, that 9 contains only one element q = {ql, , . . , qm}. 

Let @ = (9, A, s*, {ql}, C) b e a type 1 n-automaton and (%i) be the family of 
type 1 n-automata: 5%‘; = (9’ u {t*}, ATip t*, {qi+ I}, C) with q,,,+i = q,,Va E CA!i(t*, 0) 

= A!(qi, CJ), Vq E [Y]~-2Ai(qy CJ) = d(q, a) and Vl < j < m Ai(qj, o) = &(qj, a). 
Let V be the V-a-regular expression denoting 5?(d), Vs be the one denoting 3(W) 
and Vci, the one for 9’(%‘r), then V= VB.(Vc, a.. Vc,,,)w. 

Now, the general case. Let us suppose that d = (9, .&Z, s*, F, C> is a type 0 n- 

automaton and, for simplicity, 9 = {q}. For each X E [9’]:, we define 
&x = (9, J%‘, s*, (X}, Z), &F = (9, +HI,,,+i, s*, {X}, C) if X E [P’]“‘, and WF,, = 

(9 u {t*), .Ai*l,+ 1 u _&‘, t*, {Y}, C) where t* is a new state, YE [Sp]” and 
Vo E Z A!‘(t*, a) = q o A(X, o) = q. The relation below gives gA, a %-m-regular 
expression denoting Y(d) (q E [91k): 

kti<n XECYI’ 
CT* = cf., + 

( 
+ kf41Ax-QJ . 

> 

Given an n-automaton d, the construction of &A is then effective. 

4.2. Equivalence between deterministic n-automata and nondeterministic ones 

Theorem 21 (Choueka [4]). Let V denotes an n-dejinable language Z and p : Z --) Z’ be 

a projection, then p(V) is n-dejnable. 

Theorem 22 (Choueka [4]). Nondeterministic automata are equivalent to deterministic 

ones. 



N. Bedon / Theoretical Computer Science 156 (1996) 119-144 133 

Proof. Given a nondeterministic n-automaton & = (9’,9, .Ai, s*, C> we build a de- 
terministic one $3 = (9, A’, s*, F, C x 9’) taking &‘(q, (8, 4’)) = q’ o (q, CT, q’) E &‘. 

Let JB be the W-a-regular expression denoting U(@, and p : C x Y + C the projection 
defined by &a, b) = a. One can easily see that ~(8,) denotes 2((d). As we know how 
to obtain a deterministic n-automaton equivalent to ~(8’~) we have an algorithm 
determinizing W-automata. 0 

Theorem 23 (Choueka [4]). A subset of C# is V-dejinable ifs it is dejinable by a 

W-u-regular expression. 

Corollary 24. Given d and S% two %-automata, the questions below are decidables: 

0 Lz+d) = 0? 

0 Z(d) A Lz(@) = 0? 

0 T(Jzl) = _Y(99)? 

0 9(d) E Y(@? 

Proof. The construction and simplification of &A answers 2’(d) = 8. The class of 
V-definable languages is closed under complementation because deterministic and 
nondeterministic automata are equivalent. As is closed under union and intersection, 

2’(d) n 9(9It) = 0 is decidable and so is (_F’(&‘) n _%‘(a)) u (dp(S3) n 9(zZ)) = 0, 

an other formulation for S(d) = U(W). The question Y(d) E U(93) is equivalent 
to (Y(B) n 2?(Sd)) = Y(d). 0 

4.3. W-u-regular expressions 

Definition 25. Let Z = {cri , . . . , rsk} be a finite alphabet. A W-a-regular expression is 
a finite word on the alphabet C u { + , . , #, O, *, (,), II, S} such that: 
0 0 is a W-a-regular expression, 
0 ;1 is a W-a-regular expression, 
0 cr E C is a W-a-regular expression, 
l if el and e2 are both W-a-regular expressions, then so is e, + e2, 
l if e, and e2 are both W-a-regular expressions, then so is ei .ez, 
l if e is a W-a-regular expression, then so is (e), 
l if e is a W-a-regular expression, then so is e*, 
l if e is a W-a-regular expression, then so is e”‘, 
l if e is a W-n-regular expression, then so is ex. 

If e is a W-cl-regular expression, let F be the set of words denoted by e: 

. @=s, 
_- 

* el +e2=cuG, 

. e*=p 3 
0 I=n, 

- -- 
0 el.e2 = e1.e2, 



134 N. Bedon / Theoretical Computer Science 156 (1996) 119-144 

All the operators have their usual meaning, except the new one, e”, standing for e is 

repeated jinitely, infinitely or transjnitely often. The # operator is free and as for 
%-a-regular expressions the o operator is free too. 

4.3.1. From W-u-regular expressions to W-automata 

Let J# = (YA, JZ*, st, F*, C> and 9 = (YB, _.HB, s,*, P,,, C> be two V-auto- 
mata. 

The construction of the V-automaton % such that Y(V) = 5?(d) u Y(g) (respec- 
tively Y(U) = U(&) n U(&?)) uses the product technic: 9 = (9, x Ys, MC, 

(~5, $2, pc, 0 where (qr,c, q~) E AC * (pl(ql), 0, pl(qd) E MA and (pdql), 6, 
p2(q2)) E AB if q1 E [,4pA x 9’JA and q2 E 9, x Lf$. We have Y(U) = 5?(d) u U(W) 
(respectively, U(%) = Y(d) n LZ(B)) if q E Fc o p1 (q) E FA or (respectively and) 
p2(q) E FB. If & and 99 are deterministic automata, then so is %. 

To deal with product and Kleene closure one can use weak Safra construction, so 
the determinism of the resulting automaton depends on the determinism of d and 2% 

A problem arises with determinism preserving when dealing with the o operator. 
One can see V-automata as automata made of stages: q E [YJi o q belongs to the ith 
stage of the automaton, and q can be reached by an other state of the same stage by 
a continuous (/? + &)-sequence (/? 2 oi or p = 0). According to the definition of 
continuous a-sequence, the moving up into the (i + 1)th stage is obtained by repeating 
infinitely often states belonging to ith stage. 

1 Y+l . . . { }i+l [Y]i+1 

Wojciechowski automata are made of only two stages. Thus, the idea of repeating 
infinitely often a final state in a stage (that is, the w operator) is a little bit more 
difficult to express: in order to know if a stage q E [Sp] have been repeated infinitely 



N. Bedon/ Theoretical Computer Science 156 (1996) 119-144 135 

often new states have to be add to Y such that all transitions from q are to these new 

states, and all transitions to these new states are from q. In other words, all these news 

states mark the passage by q. The infinite repetition of these new states means the 

infinite repetition of q, and is easy to express, because they all belong to the lowest 

stage of the automaton. Example 17 illustrates such a situation. We note that this 

construction is the only one available and implies the loss of determinism. More 

formally, the construction of the %‘“-automaton $9 such that Z(V) = Y’(&‘) is given 

by the following: % = (9’c = 9’.,, x (0, 11, AC, (~2, 0), 9c, 1) where (ql, o, q2) E AC 

iff one of the conditions below is true: 

l 41 6 9~ u CYA x {O)l, e E 9~ x (0) and h(q1), c‘, plh)) E: AA7 
. 41 E yc ” CYA x {O)l, PIhI) E FA, q2 E % x {I)? ($9 c‘, Plk2)) E A/l. 

Final states are Fc = {q E [Yc]/l E p2(q)} union {q E [9&/pl(q) E FA} if sf E 

9 A. 
The construction of the dir-automaton %Z such that _!Z’(+‘Z) = P(.&‘) uses the 

forgoing memorization technic. We need a new initial state SC in order to accept 

A:%? = (yc = YA x (0, l> u {s;}, A,-, sc, * @c, C>, where (q,, CT, q2) E AC iff one of 

the four following conditons is true: 

l 41 =sc*,q2E~Ax{O},(sA*,~,Pl(q2))EJfiA, 

l 41~~A~{~~~}~~~AX{~}1~~2~~AX{~)and(~~(~~)~~~pl(~2))~~A~ 

l 41 E yA x {Of l> ” cyA x (")l, Plhl) E 9A~ q2 E spA x il), b:> O, Pl(q2)) E MA> 

l 41 E cyA x I05 1)1, 1 E P2(41), q2 E ,4pA x (l}, 62, O> q2) E AA. 

Final states are Fc = ($} ” (4 E YA x {O> l} " yspA x {o}lhl(d E FA) " 

(4E c% x f", 1j1/1EP2(d). 

4.3.2. From 9f”-automata to -W-cl-regular expressions 

Definition 26. Let d = (9, A, s*, 9, C) be a “W-automaton, i and f E [Y];, 

P E [Y]. Let S,(i, P,f) denote a Y+‘--cz-regular expression defining the set of words 

W such that a run cp of d on u E W begins with i, ends with f, and V/3 E Succ, 

0 < P < I ul cp(P) E P. BY SS,(i, p,f) we denote a w-g-regular expression represent- 

ing the set of words W such that a run cp of & on u E W begins in i, ends in f, V/3 E Succ 

O<B<lulcp(P)~PandV5~Lim5<lulcp(t;)#P. 

Definition 27. Let 9’ be a finite set and P E [Sp] such that P = {sl, s2, . . . , sk}. 

Let i < k, Pci) = P\{si}y and di(P,f) = Ep,(sl, Pc2), s2).Lfx(s2, Pc3), ~3)..- 

&?x(Si.. 1, Pci’, si).~x(si, PciO’),f) where io 1 = i + 1 if i # k, 1 otherwise. Let 

S,,,,(P) = dTX(S1, P’2’,sl).6,(s*, P(3’,S3)*..&k(Sk-1, P(k),Slr)b&x(Sk. P”‘,sl). 

Given a w-automaton, the relations below, defined by induction on the number of 

elements of the set of states appearing in a run, provide an algorithm to compute 

a %‘“-u-regular expression equivalent to the “llr-automaton: 

(1) S,(i, PJ) = S&,(i, P,f) + bb,(i, P, P)‘bb,(P, P, P)#.bb,(P, P,f) if f #P, 

(2) S,(i, P,f) = &S,(i, P,f) + SS,(i, P, P).bb,(P, P, P)” if f= P, 



136 N. Bedon / Theoretical Computer Science 156 (1996) 119-144 

(3) JS,(k P,_f) = b,(i, P”‘,f) + 8,(i, P(l), SI)‘~~~~(P)*.U~ <j< k Jjlp,f) 

iff #P, 

(4) bB,(i, P,f) = a,(& P(l), sl)~~loop(P)o if f= P. 

Theorem 28 (Wojciechowski [14]). A subset of I# is w-definable iff it is definable by 
a “W-a-regular expression. 

5. Equivalence between %-automata and W-n-automata 

In this section the equivalence between %-automata and w-automata is proved, 
assuming of course that the domain of “W-automata is restricted to the one of 
V-automata. 

Let d be a w-automaton, n be an integer, _Y1 = P’(&‘) and Y2 = Z(d) n C’“““. 
When we talk about d as a #‘--automaton the language defined by d is Yr. When 
we talk about JZZ as a “W-n-automaton the language defined by & is Y2. 

First of all we give an algorithm taking a w-n-automaton d as input and building 
a %-automaton d defining the same language as d as output. Although the formal- 
ism is boring, the base idea, illustrated in the example below, is simple: 

Example 29. Let C = {a, b}, u = (UP’)“‘, v = (b”)” and d be the following V-automaton: 

Fig. 11. 

Let cp” be the run of d on u and cp” be the run of SB on v. These figures represent cp” 
and (p”: 

Fig. 12. 



N. Bedon / Theoretical Computer Science 156 (1996) 119-144 137 

Assuming the states used during the run of d on u [o. i, 0. i + (k - l)[ (respective- 
ly, u [u. i, CIJ. i + (k - 1) [) have been memorized in cp”(w . i + k) (0 < i, k < o) (respec- 
tively, cp”(o . i + k)) the two runs become: 

Fig. 13. 

and the “memories” (or histories) associated (because runs are continuous sequences) 
with cp”(o’) and cp”(02) allow us to distinguish between u and u after reading w2 
letters. If 5 E Lim, the union of histories in the projection of ~(5) is the set of states 
s such that (y/cp(y) = s} is cofinal with 5, so we have expressed the notion of 
Wojciechowski’s continuity, starting from a %-automaton. 

Definition 30. Let Y be a finite set. We define the flat function 8: [Y]” + [VJ by 

9(4 = (41, . . . . qk})=lJ:=iP(qi) if q~[9’]“, n>O and ql,...,qkEIY]“-l, or 

p(q) = (4) if 4 E CYIO. 

Definition 31. Let cp be a run of an n-automaton & = (Y, _M, s*,9, Z) such that 
Vcr~Succcp(a)=(s”,h,*,...,h”,),s”~~afiniteset,h~,,~,~~[~]u{~}andk~~. 
As a run is uniquely determined by its nonlimit values, we define cp’ to be the unique 
continuous sequence (according to Choueka) such that Va E Succ, cp (~1) = (sa, hi, . . . , h”,) 

o q’(a) = 9. The run cp’ is called projection of the run q from Y’ to 9’. 

Definition 32. W’({(s,, h,, . . . . ho), . . . . (sk, h,, . . . . ho)}) = U:=, {sk}, k n E N. 

Definition33. Wk({(sl,h~ ,..., II;) ,..., (s,,,,hr ,..., h~)})=U~=‘=,ht,m,n~~andkdn. 

Definition 34. fst((al, . . . . a,)) = aI. 

Definition 35. Let d = (9, A, s*, 9, C) be a Y#‘--automaton. Starting from d we 
build an n-automaton (Y’, .M’, s*‘, F’: C) (m < n): 

0 Y’=Yx([Y]u(0})x...x([Y]u{0}). 
\ Y I 

n - 1 times 

OS *’ = (s*, 0, . ..) 0). 
I I 

n - 1 times 



138 N. Bedon / Theoretical Computer Science 156 (1996) 119-144 

l IfaEC,then((s,h,_, ,..., ho),o,(s’,h:,_2 ,..., &)) E 4’ iff s E 9, s’ E 9, Vi < n - 2 
hi = hi u {s}, and (s, 0, s’) E J?. 

l IfaEC,then(XE[~‘]m,a,(s’,hl_2 ,..., hb))E~‘iffs’EY,Vi<mh:=~,Vi~m 
hi = gj(9(X)) and 

i 

(W,_,(B(X)),a,s’)EJZ if narn> 1 

(9?(X), 0, s’) E Jz if m= 1. 

0 Ifs’=(s,hn_2 )...) h,)ESP’,S’EF*SE%E 
0 If x E [Y’]“, 

XEF’ 0’ 1 9%?,_,(9(X))EF if n > m > 1 

. W’(X)EF if m= 1. 

We will call any %-automaton obtained from a “W-automaton using this definition 
a W2C-automaton. 

As is shown in the lemma below, adding histories does not change the infinite 
repetition of a state in runs of automata. 

Lemma 36. Let (9, A, s*, 9, C> be a l(lr-automaton and d the corresponding 
WZC-automaton. Assume d is an n-automaton. Let cpl be a run of d on a word u E C’“‘+’ 
and (p2 the projection of (pl on 9’. Then s E W’(B(cp, (/I + om)))-=s E P((p2@ + mm)). 

Proof. According to Choueka’s definition of continuous u-sequences, it is sufficient to 
show that s E .%‘(B(cp, (mm))) o s E 9((p2(~m)). As (p2 is obtained by projection of 
cpi, * is trivial. The other way, -=, is proved by a two-step induction on m. 

If m = 1, the definition of B implies s E B(cp, (w)) o s E (p2 (w). So according to the 
definition of continuous a-sequences, r = {y/(p2(y) = s> is infinite. Let y. be the 
smallest ordinal in r, yi the smallest ordinal in r\{~,}, and so on. We build the 
infinite serie (ri)i <o. We have cp2(yj) = SO 3hi_,, . . . . h’,/q,(yj) = (s, hL_2, . . . . h:). If 
cpi lo = (so, hf_2, . . . . hg), (sl, hA_2, . . . . h:), . . . . (Sk, hi_2, . . . . Ak,), . . . the definition of 
histories implies k > k’ =S Vi, h:’ E hf, and, as Y is a finite set, there exists k, such that 
Vk > klVi < n - 2, hf = h:‘. Then, {y/cpi(y) = (s, hi’_,, . . . . h!)} is infinite and accord- 
ing to the definition of continuous a-sequences, (s, hi’_2, . . . . h:) E cpl (co) = 

%4%(4) * s E W’(+%Jl(4)). 
Our induction hypothesis is (1): s E Y((P~(w~)) * s E W’(B(cp, (wm))). Now we 

show that Vk < w s E 9(cp1(om.k)) = s E W’(9(cp, (wm - k))). It is obvious for k = 1. 
Let us assume that s E B(cp, (urn. k)) =S s E W’(B(cp, (o*. k))) in order to prove (2) : 
s E B(cp, (~“.(k + 1))) =z. s E R’(B(cp, (oY”.(k + 1)))). om.(k + 1) = 0”. k + co”’ and 
mm. k > o” so using the definition of continuous u-sequences again (2) is true if (1) is 
true, and (1) is true. So Vk < w s E 9((p2(om. k)) =r s E B’(9(cp1 (corn. k))). 

Now we show that s E 9(cp2(om”)) + s E W’(S(qoi (am+‘))). If s E ~Y(~D~(w~+‘)) 
then AXE [YJ” such that X E(P~(uJ~+’ ) and s Ed, so by the definition of 
continuity (k/q2(com. k) = X 3 is infinite, i.e. (k/s E B(cp, (corn. k))) is infinite and by 



N. Bedon 1 Theoretical Computer Science 156 (1996) 119-144 139 

induction hypothesis {k/s E W’(P(cp, (corn’ k)))) is infinite so by the definition of 
continuous a-sequences s E &?‘(B(cp, (mm+ ‘))). 0 

Lemma 37. Let u E C”, (cpf ) be the set of runs of a W-automaton 

d = (9, ~‘4, s*, 9, C> on u and {vi} be the set of runs of the corresponding W2C 
n-automaton ~2’ = (YP: A’, s *I, F’, C> on u. Then Qi3j (and reciprocally, Qj3i) such that: 

(A) Zf a E Succ, Q/3 E Succ G u fst(q;(/?)) = q;(p). 

(B) If CI E Lim such that the unique decomposition of M is CI = fl+ o”’ with m > 0 and 

/I = 0 or /? 3 arm, then: 

W’(cpl(4) = cPt (4 ifm=l, 

W,_,(9(cp:(ol))) = cpf(cr) if n b m > 1 

Proof. By transfinite induction. 
Ifcr=O,wehave fst(&(O)=(s*,O,...,@)=s*=cp{(O). 
Let us assume now that the lemma is true for VP < a, in order to show that this 

hypothesis implies that the lemma is also true for u + 1. We know that, by induction 
hypothesis, given a 9+‘--automaton, the corresponding W2C-automaton and a word u, 
if there exists a run of one of the two automata on u, there exists a run of the other on 
u such that they both verify (A) and (B). Let cpi and (p2 be two such runs. We try to 
extend cpi and ‘p2 by one more transition. If a E Succ, fst ((pi(g)) = ‘pi (a) and accord- 
ing to the definition of the W2C-automaton (cpf (cc),.u, cpi (a + 1)) E _.4! o 

((cpt (4, h, - 2, . . . . h&a, (cp’l(a + l), hn-2 u {cp’,@)}, . . . . ho u {v~(~}))E.M’, so we 
have fst((pi(a + 1)) = qf (a + 1). If CI E Lim and a = w, by induction hypothesis 
~‘((P~(c()) = cpi(a), and by the definition of M@‘((P~(cL)),, u, cpl (a + 1)) E JZ o 

(cPz(~,.u, (cpr(x + l), %~V(CP&~)), . . . . Wi (9(~~(4)), 8) •1’~ and we have 
fst(f&(a + 1)) = cpi (a + 1). If o! = w”, m > 1, by induction hypothesis cpl(a) = 

99,_,(9(~2(a))) and by the definition of JZ’@,,_~(~((P~(C~))),, u, cp,(cr + 1)) E 

J-=(cP~(&u,(cP~(~+ l),W,-,(~(cp,(a))),...,W,(~(cpz(cr))),0,..-,0))~~ and 
fst(cpz(ol + 1)) = cpl (a + 1) once again. 

We assume now that CL E Lim and the lemma is true Qy < a. Let /? + urn be the 
unique decomposition of a. Obviously, q’;(a) = {s/{y/cp\(y) = s> is cofinal with 
e} = {s/{y > p/cp’,(y) = s> is cofinal with a}. This remark and Choueka’s definition of 
continuous a-sequences allow us to restrict the proof to a = wm. If a = o, we have 
W’(cp:(cr)) = cpi(a) by immediate application of the previous lemma and because 
Choueka’s definition of continuity and Wojciechowski’s are identical for the case 
of o-sequences. We now turn to the case m > 1, assuming s E cpi(o”), so 
{v < o”/cpi(y) = s} is cofinal with urn. By induction hypothesis, cp’; (y) = s 5 
fst(cpi(y)) = s, so {y < o”/fst(cpi(y)) = s) is cofinal with urn, and r = (k/Qn - 1 > 
13m-2s~B?t(~(~~(~~-~~k)))} is infinite because histories hi are cleaned only 
during the transitions from ‘pi(oi+i. k) to (pi(w’+‘. k + l), and because of the 
foregoing lemma. As r is infinite, using once again the foregoing lemma, it comes 
s E Rr(P(cpi(o”))) Ql m - 2 < 1 < n - 1 and in particular s E W,_2(9’(cp’,(o”))). 



140 IV. Bedon / Theoretical Computer Science I56 (1996) 119-144 

Now let us show the converse. Let us assume that s E 9,,,-_,(P(cpi(o”))). 
cpi(ol”) = In(ll/), where II/ is the unique continuous o-sequence such that 
$(i) = &P-l. i), so s ~9,,,_~(P(rp~(w”))) =S 3X E [Y]“-‘/s E 9’,-2(9(X)) and 
{k < w/&o”-‘*k) = x} is infinite. As histories hm_l are cleaned only during the 
transitions from cpi @Y”- ’ . k) to (01 (urn - ’ * k + l), and observing the way histories are 
filled, we have that {k < w/3ycP-’ *k < y < oY”-~ ‘(k + 1) fit(cpi(y)) = s} is infinite, 
and so by induction hypothesis {k -=I w/3yr0”‘-~ * k < y < come1 -(k + 1) pi (y) = s} is 
infinite, so {y/cpi (y) = ) s is cofinal with urn, this implies s E ~0: (am). Cl 

Lemma 38. The language accepted by a w-n-automaton and the one accepted by the 

corresponding W2C-automaton are identical. 

Proof. Let & = (9, A, s*, 9, C) be a ?Y-n-automaton and SS” = (9’, .M’, s*‘, 
P’, Z) be the corresponding W2C-automaton. Let u be an a-sequence accepted by 
S# and cpl an accepting run of J# on u. Using the previous lemma there exists an 
accepting run (p2 of &’ on u verifying: 

(A) If oz E Succ, VP E Succ < p fit(cp&?)) = q&3). 

(B) If a E Lim such that the unique decomposition of a is a = p + corn with m > 0 
and /I = 0 or p 3 a”‘, then: 

I ~‘(502(00) = cph) if m= 1, 

~,-2(~,(V2(a))) = Soda) if m > 1. 

If a E Succ we have j3(qZ(a)) = VI(a), but, according to the definition of F’, 

cP&)Ep *(~&),h,-2,..., h,) E 9’ so u is accepted by .&‘. If a = #? + urn and 
m = 1 we have cpl(a) = 9’((p2(a)) and k%“(cp2(a)) E 9 * q,(a) E 9” so u is accepted 
by d’. If m > 1 we have ~9&,,-~(9((~~(a))) = VI(a) and 9&,,_2(B(cp2(a)))~9 * 
cp2(a) E 9’ so u is accepted by ~2’. The proof of the converse is similar. 0 

Theorem 39. A YF-n-automaton is equivalent to an n-automaton and reciprocally. 

Proof. V-definable languages are representable by V?-a-regular expressions, the set of 
%-a-regular expressions is include into w-a-regular expressions’ one, and w-a- 

regular expressions are equivalent to w-automata. Then, for each V-automaton an 
equivalent w-automaton can be build. 

Conversely, given a +--n-automaton, the corresponding WZC-automaton (a V- 
automaton) always exists and defines the same language. Cl 

Corollary 40. The class of -W-n-definable languages is closed under complementation. 



N. Bedon / Theoretical Computer Science 156 I1 996) I 19-144 141 

c-automaton W-automaton 

Fig. 14. 

Proof. The class of g-definable languages is closed under complementation and is the 
same as w-n-definable languages’ one. 0 

6. Equivalence between nondeterministic and deterministic W-n-automata 

First of all we give a construction computing a deterministic “W-automaton from 
a deterministic n-automaton such that the input and output automata are equivalent. 
The algorithm for determinizing w-n-automata is then easy to find. Note that more 
than determinizing a %‘“-n-automaton the algorithm transforms a W-n-automaton 
into a w-automaton. 

Let & = ( yk, dA, sf , FA, C) be a deterministic n-automaton. Fig. 14 explains the 
construction for each p E [.Y]y : 

The main idea is to memorize the passage by a state p E [Y’]‘, 0 < i < n, by adding 
news states that can be reached only from p, in such a way that all transitions from 
p are to these new states. For evident reasons, these new states are called witnesses 

states (of the passage by p). In the previous figure (p, a, i) and (p, b, i) are witness of the 
passage by p E [YA]‘. Then, we have to find an equivalent of p for Wojciechowski’s 
definition of state in a limit point. 

Definition 41. Let d = (9”, _M,.,, s:, SA, C) be a deterministic n-automaton. The 
algorithm below computes a deterministic l(y^-automaton 99 = (YB, Aa, s& 4tB, C) 
such that Y(J&‘) = U(W): 

9, = 9,4; MB = .MAll; FB = F* n [Y&; sg* = sA* 
Vp E [sPJ/Definitions of continuity for Choueka et Wojciechowski are equivalent for 

w-sequences/ 
tl0E.Z 

q = (p, 6, 1) new state $ YB 

YE +- 9B ” (4) 

~B(P, c.) = 4 

VdEC 



142 N. Bedon 1 Theoretical Computer Science 1.56 (1996) 119-144 

For i = 2 to n 

VP E WAI’ = {PI, . . . . Pk} 
VCTEZ 

(p, 0, i) new state $ Ys 

YB + %J u {(P, 0, i)> 
If A‘4 (P, 4 E 9* 

9~ + ?E u ((P, 6 i)} 
Vq E [sP,]/(Vj E [l . ..k] 3r E q3fl E Z/r = (Pj, CT, i - 1)) 

A (7k, 0, i - 1) E 4/r $ p) fi W, 0, Q/k > i - 1)) 
V’aEC 

The W-automaton obtained by the algorithm is called a C2 W-automaton. 

Before showing that the languages accepted by the input W-automaton and the 
output W-automaton are identical we need two lemmas on ordinals. 

Lemma 42. Let cc be an ordinal of unique decomposition a = /? + ~3, o > n > 0, and 

o > r 2 n. There does not exist a set of ordinals of type r cojinal with a. 

Proof. Thenormalformofcris(k~N,Vl~i~k+lmi<wanda~+~=n) 

a = oal~rnI + ..a + coak*mk + oPk+L.mk+l. 

Let y be the ordinal of normal form 

Y = cob’.rnl + -1. + Coak.mk + cOak+l.(mk+I - 1) + 1. 

Obviously, y < a. The smallest ordinal fl of type r bigger than y is y + a’, and b 2 a. 
So there does not exist an ordinal /? such that t(B) = r and y < p < a. Cl 

Lemma 43. Let a = /I + w”, o > n > 0 and r be a set of ordinals of type n - 1 cojnal 
with a. r has an infinity of elements that can be written p + UJ’- ’ + k, k < co. 

Proof. r cofinal with oloVa<a3yEry>a, and a=B+w”*p<a. Let y~r 
such that y > @. There exists an unique k, 0 < k < co, such that y = fi + a”-’ - k, 
0 < k < co, and as y < a and r is cofinal with a there exists y’ in r such that y’ > y and 
y’ can be written in an unique way y = p + w”- ’ * k’, k < k’ -=c w. This operation can 
be infinitely repeated, because r is cofinal with a, so the lemma holds. 0 



N. Bedon 1 Theoretical Computer Science 156 (1996) 119-144 143 

Lemma 44. Let & = (Yk, A_.,, s:, gA, C) be a deterministic %-automaton, SY = (YB, 

A%‘~, SE, FB, C> be the C2 W-automaton obtained from d, u a word on C, cpt; the run of 

J?J on u and cpi the run of xl on u. Then, depending on CI, one of the condition below is true: 

(1) cp$(a) = {(PI,-, n - I), . . . . (pk, -, n - I)} u P * v:(a) = (PI, . . . . pk} 
if TV can be written in a unique way c( = fi + w”, n > 0, P c [.5fB] such that P contains 

only states with third part strictly less than n - 1, pl, . . . . pk E [YJ-’ and - standing 
for any element of C, 

(2) 4+(a) = (p, 6, n) 0 (p:(5) = p if tl = 5 + 1, t(5) = n, n > 0. 
(3) &(a) = &(a) otherwise. 

Proof. By transfinite induction on c(. 
If tl = 0, q”,(O) = sg* = sA* = &(O). 
Let cx E Ord. Let us assume that the lemma is true for ~1, we show that it is true for 

CL + 1. If cx E Lim we have (1) and according to the construction (2) holds. If c1 E Succ, 
either (2) or (3) is true. If (3) then (3) holds again after reading one letter, because in this 

case A&, 0) = JtiA(9, a). If (2), ~1 = 5 + 1, &(cc + 1) = ~&G(oO = (pts u, GO)+, u) = 

~.4(~.4((P;1.(4) = P?<&U) = &@ + 1) so (3). 
Now, let us assume that c( E Lim and that the lemma is true for p < ~1. We show that 

this implies that the lemma is true for c(. 
Assume that @(cc) = (pl, . . . . pk}. We can suppose without loss of generality that 

k = 1. Let cx = fl+ w” be the unique decomposition of tl. There exists an infinity of 
ksuchthat &(/?+w”-‘.k)=p, so {P+o”-‘.k/k<o,cp~(P+o”-‘.k)=p,} is 
cofinal with cc By induction hypothesis, p1 = cpE(/I + co- ‘. k) o &(p + 

w”-‘.k+ l)=(~~,~ +o”-‘.kU,n-1) so {/3+w”-‘.k+ l/cp$(/?+o”-‘.k+ l)= 

(P 1,8+0 “- 1 .k u, n - l)} is cofinal with c(, because C is a finite set. We can deduce 
3a E C(p,, U, n - 1) E &(a). 

Conversely, (pl, (T, n - 1) E &(ol) * {y < M/&(Y) = (pl, y, n - l)} is cofinal with 
M, that is to say, by induction hypothesis, that r = {y < a/$(y) = pl} is cofinal with ~1. 
As pl E [YA]“-‘, Vy E I’t(y) = n - 1. According to Lemma 43 {y E r/y = 
/?+OJ-‘. k, k < co, &(y) = pl} is infinite so pl E cpi(cr). 

Let us assume now that r = (q, a,j) E &(a) withj > n - 1. Then {y < IX/&(~) = r} 
is cofinal with ~1, that is to say, by induction hypothesis, that r = {y < a/cpi(y) = q} is 
cofinal with LX. As q E [Y,Jj, t(y E r) = j, contradiction with Lemma 42. 

Thus (1) is proved, so the lemma is proved. 0 

Theorem 45. Let d be a deterministic %-automaton and 9J be the corresponding 

C2 W-automaton. Then _Y(&‘) = Z(W). 

Proof. Let d = (YpA, -MA, s;, gA, C), W = (YB, AB, si, 5FB, C), u an u-sequence 
such that u E P(d), cpz the run of d on u and & the run of 9 on u. If 0: E Lim, 
c1 = 1-3 + o”, 0 > n > 0, let cpE(a) = {pl, . . . . pk >. According to the construction, all the 

elements of [Y”] such that the longest line of the algorithm holds belong to FB if 

{P 1, ..‘> pk) E FA, but cpk(cr) is one of these elements, so u is accepted by 98. If 



144 N. Bedon / Theoretical Computer Science I56 (1996) 119-144 

a = 5 + 1, t(t) = n, w > n > 0, u E _Y(sQ) 3 &(a) = AA(f$(& u) E SA, following 
the construction AA(rp;l.(& u) ~9~ *((p:(5), t; , u n) ELF~, and according to the pre- 
vious Lemma cpb(cr) =((pE(Qru,n) so u E S?(W). Otherwise, cp# E PA and as 
gA n [YA],j c .FB and &(cr) = &(a), u is accepted by SY. 

The proof of correction can be made in a similar way. 0 

Corollary 46. Nondeterministic W-n-automaton are equivalent to deterministic ones. 

Proof. In order to determinize YV-n-automaton one have to build the corresponding 
W2Cautomaton, to determinize it and to build the C2W-automaton from it, which is 
deterministic. 0 

Acknowledgements 

The author wishes to express his thanks to Dominique Perrin for suggesting the 
problem, directing the researches and for his active interest in the publication of this 
paper. 

References 

Cl] J.R. Btichi, On a decision method in the restricted second-order arithmetic, Logic, Methodology and 
Philosophy of Science: Proc. Internat. Congr. (Stanford University Press, Stanford, 1962), l-l 1. 

[2] J.R. Biichi, Decision methods in the theory of ordinals, Bull. Am. Math. Sot. 71 (1965) 767-770. 
[3] Y. Choueka, Theories of automata on w-tapes: a simplified approach. J. Comput. System Sci. 8 (1974) 

117-141. 
[4] Y. Choueka, Finite automata, definable sets, and regular expressions over w”-tapes, J. Comput. System 

Sci. 17 (1978) 81-97. 
[S] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation 

(Addison-Wesley, Reading, MA, 1979). 
[6] R. McNaughton, Testing and generating infinite sequences by a finite automaton, 1form. Control 

9 (1966) 521-530. 
[7] D. Muller, Infinite sequences and finite machines, Switching Circuit Theory and Logical Design: Proc. 

Fourth Ann. Symp. (IEEE, New York, 1963) 3-16. 
[S] D. Perrin and J.E. Pin, Mots infinis, LITP Report Paris 93-40, to appear. 
[9] J.G. Rosenstein, Linear Ordering (Academic Press, New York, 1982). 

[lo] W. Sierpidski, Legons sur les nombres transfnis (Gauthier-Villars, Paris, 1950). 
[ 1 l] W. Sierpibski, Cardinal and Ordinal Numbers (Polish Scientific Publisher, Varsovie, 1965). 
[12] W. Thomas, Automata on infinite objects, Handbook of Theoretical Computer Science, Vol. B (Else- 

vier, Amsterdam, 1990) 135-191. 
[13] J. Wojciechowski, Classes of transfinite sequences accepted by finite automata, Fundamenta Infor- 

maticae 7.2 (1984) 191-223. 
[14] J. Wojcieahowski, Finite automata on transfinite sequences and regular expressions, Fundamenta 

informaticae 834 (1985) 379-396. 


