
                       

 

Contents lists available at ScienceDirect 

Chinese Journal of Aeronautics 

journal homepage: www.elsevier.com/locate/cja 

Chinese Journal of Aeronautics 25 (2012) 839-845

Time-triggered State-machine Reliable Software Architecture for 
Micro Turbine Engine Control 

ZHANG Qia,*, XU Guoqiangb, DING Shuitingb 
aSchool of Transportation Science and Technology, Beihang University, Beijing 100191, China 

bNational Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, Beihang University, Beijing 100191 , China 

Received 22 August 2011; revised 5 September 2011; accepted 23 September 2011 

Abstract 

Time-triggered (TT) embedded software pattern is well accepted in aerospace industry for its high reliability. Fi-
nite-state-machine (FSM) design method is widely used for its high efficiency and predictable behavior. In this paper, the 
time-triggered and state-machine combination software architecture is implemented for a 25 kg thrust micro turbine engine 
(MTE) used for unmanned aerial vehicle (UAV) system; also model-based-design development workflow for airworthiness 
software directive DO-178B is utilized. Experimental results show that time-triggered state-machine software architecture and 
development method could shorten the system development time, reduce the system test cost and make the turbine engine easily 
comply with the airworthiness rules. 

Keywords: airworthiness; time-triggered; finite-state-machine; model-based-design; turbine engine control 

1. Introduction1 

Micro turbine engine (MTE) can be used as an ef-
fective high speed propulsion system for miniature 
unmanned aerial vehicles (UAVs) and missiles, but 
nowadays the MTEs used are mostly developed by 
hobby model engine manufacturers. The control sys-
tem development and design within them are less 
strictly tested according to airworthiness rules such as 
hardware design command DO-254 and software de-
sign command DO-178B [1-3], especially the control 
software which was mostly developed by amateur 
hobbyists. In order to reach higher reliability and fulfill 
airworthiness command rules, DO-178B software cer-
tification should be planned and implemented, and the 
total control software design should be adapted, 
re-organized and re-evaluated [3-4]. 

In modern embedded system software development, 
                                                 
*Corresponding author. Tel.: +86-10-82339079. 
E-mail address: zhangqi01@buaa.edu.cn 
 
1000-9361      ©  2012  Elsevier  Ltd . 
doi: 10.1016/S1000-9361(11)60453-6 

two main architectures are commonly used, “event- 
triggered (ET)” or “time-triggered (TT)”. Event-trig-
gered designs handle multiple interrupts. The devel-
oper may write interrupt service routine (ISR) code to 
handle the various events directly or employ a conven-
tional real-time operating system (RTOS) to support 
the event handling. Whether an RTOS is used or not, 
the following result is the same: the system must be 
designed in such a way that events—which may occur 
at “random” points in time and in various combina-
tions—can always be handled correctly. These “ran-
dom” interrupts result in the unpredictability, and the 
complete system configurations and tests are difficult 
to implement [4]. However, time-triggered designs only 
have one interrupt enabled, and all other inputs are 
polled. This single interrupt is usually linked to a timer 
“tick”, which might occur (for example) every milli-
second. Among the timer “tick”, the system tasks are 
scheduled and triggered, so time-triggered architecture 
has good predictability and the traceability [2]. 

Finite-state-machines (FSMs) have been a great pro-
gress for the design of common digital circuit. How-
ever, they can be very useful also for software devel-

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81950983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/


· 840 · ZHANG Qi et al. / Chinese Journal of Aeronautics 25(2012) 839-845 No.6 

 

oper. Actually nowadays desktop operating systems 
and application software are mostly event-based and 
these fields can be easily handled with software based 
on finite-state-machines which are simpler and easier 
to understand, debug and modify [5-6]. Embedded soft-
ware can also benefit from state-machines because of 
their efficient way to use limited resources of system. 
Software finite-state-machines are a simple and elegant 
solution for system that must deal with timings and 
decisions. 

Software in airborne systems in the early 1980s re-
sulted in a need for industry-accepted guidelines for 
satisfying airworthiness requirements. DO-178, “soft-
ware considerations in airborne systems and equipment 
certification,” in its revised version—DO- 
178B—became the defining standard for aerospace 
systems and software. DO-178B is primarily a proc-
ess-oriented document in which objectives are defined 
and a means of satisfying these objectives is described. 
Failure conditions associated with the system and its 
software components undergo system safety assess-
ment according to the famous A-E categories, which 
determine the level of effort required to show compli-
ance with certification requirements. DO-178B has 
clearly defined objectives for key software lifecycle 
process activities including software requirements, 
design, coding, integration, verification and configura-
tion management. For each objective, outputs are 
specified that need to be created, verified and ulti-
mately, used for certification [7-8]. 

Model-based-design method was in its infancy when 
DO-178B was introduced, but with the increasing 
growth of software complexity, more and more com-
panies and organizations have adopted model-based- 
design [9-10]. Model-based-design emerges as a means 
of addressing the difficulties and complexities inherent 
in the designs of control systems. Developers recog-
nized that software design needs to start before physi-
cal prototypes and systems are available. Traditional 
design processes results in the delayed discovery of 
design and requirement errors later in the design cycle, 
which leads to expensive delays and missed windows 
of opportunities. Model-based-design provides a single 
design environment that enables developers to use a 
single model of their entire system for data analysis, 
model visualization, testing and validation, and ulti-
mately product deployment, with or without automatic 
code generation. Once the model is built and com-
pletely tested, accurate real-time software for the pro-
duction embedded design is automatically generated, 
thus saving time and reducing costs compared to tradi-
tional manual coding. Model-based-design with auto-
matic code generation can also be used in rapid proto-
typing, enabling sub-system designs to be tested and 
optimized [11-12]. Furthermore, model-based-design cre-
ates a structure for software reuse that permits estab-
lished designs to be effectively and reliably upgraded 
in a more simplistic manner [12-15]. 

In this paper, the compound time-triggered and fi-
nite-state-machine software architecture is imple-

mented for a 25 kg thrust MTE used for micro high 
speed UAV. The model-based-design development 
method using MATLAB/Simulink software tools is 
adopted according to DO-178B requirements. Nowa-
days there are no mature airworthiness command rules 
for UAVs. Britain is the first to propose the draft air-
worthiness command rules CAP722-UAV operations in 
UK airspace-guidance [16], and the design obeys the 
rules in it. Because of the complexity of control system 
software development, some simplifications are intro-
duced. Although the time-triggered architecture is sim-
plified according to system requirements, test result is 
satisfying. The finite-state-machine software structure 
provides a fast evaluation and test method for system’s 
performance and failsafe mode according to DO-178B. 
The total development experience has shown that the 
model-based-design method and hybrid reliable soft-
ware architecture are more efficient and economical.  

2. Software Architecture and Design Basics 

2.1. Time-triggered mode basics 

Time-triggered architecture means that we can de-
termine in advance before the system begins execut-
ing—exactly what it will do at every moment of time 
in which it is running. This level of predictability has a 
number of significant benefits, for both developers and 
eventual system users. The simplified time-triggered 
software architecture is illustrated in Fig. 1. The figure 
assumes that a system timer has been confirmed to 
overflow periodically (in this case every millisecond). 
This “system tick” is used in turn to trigger an ISR, 
represented in the figure as a function called Update ( ). 
The Update ( ) function schedules the system tasks and 
sets the corresponding flag bits. As a result, the system 
main program is just a while loop which dispatches 
tasks following execute sequences [4-5]. This software 
architecture provides reliability insurance because of 
its precise predictability. At the moment what the con-
trol system is doing is obviously. 

 
Fig. 1  Simplified time-triggered software architecture. 

The time-triggered software architecture can be 
viewed as a single timer interrupt service routine that is 
shared between many different tasks. As a result, only 
one timer needs to be initialized, and any changes to 
the timing generally require only one function to be 
altered. Furthermore, we can generally use the same 
scheduler whether we need to execute one, ten or one 
hundred different tasks. This “shared ISR” method is 
very similar to the shared printing facilities (for exam-



No.6 ZHANG Qi et al. / Chinese Journal of Aeronautics 25(2012) 839-845 · 841 · 

 

ple) provided by a desktop operating system (OS) [2] 
such as Windows. 

2.2. Finite-state-machine basics 

Finite-state-machine method describes system as 
combinations of different states. System reacts to ex-
ternal inputs and changes current state to next state. To 
describe a finite-state-machine, normally four elements 
are required: states, inputs, transitions and actions. Two 
states, two inputs, four transitions and four actions fi-
nite-state-machine can be described using state dia-
gram as in Fig. 2. 

 
Fig. 2  State diagram of a simple finite-state-machine. 

The finite-state-machine starts from a default state 
which is always the power on startup program, and 
then responds to external inputs and decides what 
should do next. Software finite-state-machine imple-
mentation is a straightforward process and can be per-
formed in any programming language, ranging from 
the low level assembly language to high level ob-
ject-oriented programming language such as C++. In 
this system design, C language is used. 

The main advantage of using a state-machine in 
embedded design consists in its flexibility to add, de-
lete or change the flow of the program without im-
pacting the overall system code structure. The finite- 
state-machine software architecture offers an conven-
ient way to system test at different levels, which is vital 
to DO-178B A-E level categories [6,12]. Also, another 
benefit from finite-state-machine method is that fi-
nite-state-machine implementation for microcontroller 
only requires limited memory and registers. 

2.3. Model-based-design method for DO-178B 

Model-based-design re-engineers the traditional de-
velopment process from one which is paper-based to 
one that uses an executable model that is repository for 
all information about the concept, design and imple-
mentation [8]. The model is used throughout the four 
stages of development: research, design, implementa-
tion, and verification & validation. At each stage, the 
model is updated and elaborated ensuring continuity 
and traceability throughout the evolution of the design. 
Model-based-design is the use of models to describe 
the specifications, operation and performance of a 
component or a system of components [7]. 

Modern software tools such as MATLAB/Simulink 
have been widely used for model simulation, and in an 
endeavor to realize one environment for total stage, 
various additional tools were developed [9-10, 12]. Now 

MATLAB has been released with the DO qualification 
kit (for DO-178B), which allows selected verification 
tools to be qualified for a DO-178B project. As shown 
in Fig. 3, a highly automated verification workflow 
with qualified tools is now available. The modeling 
tools provide engineers with high degrees of flexibility 
for expressing designs. The code generation tools pro-
duce efficient results and provide many code optimiza-
tion options [9]. 

 
Fig. 3  Model-based-design method for DO-178B. 

3. Software Architecture Implementation and 
Development in MTE Control 

3.1. 25 kg MTE overview 

The 25 kg MTE is a single radial compressor and an 
axial flow turbine. The combustion chamber is annular 
type fitted with a unique “low pressure” fuel system. 
Both the front and the rear hybrid bearings are lubri-
cated and cooled by the fuel system. The engine con-
trol unit (ECU) software protects the turbine engine 
from misuse and accidental damage, and also imple-
ments failsafe protection airworthiness rules. The com-
plete assembled 25 kg MTE is shown in Fig. 4. 

 
Fig. 4  Assembled 25 kg MTE. 

The 25 kg MTE control system hardware diagram is 
shown in Fig. 5. In Fig. 5, RPM stands for revolutions 
per minute. The control system employs Freescale’s 16 
bit microcontroller MC9S12DG128 as its digital con-
trol core. MC9s12DG128 has 128 KB Flash ROM and 
8 KB RAM which are enough for the control program.  



· 842 · ZHANG Qi et al. / Chinese Journal of Aeronautics 25(2012) 839-845 No.6 

 

 
Fig. 5  Control system hardware overview. 

The speed sensor is KMZ10A which is an extremely 
sensitive magnetic field sensor, employing the magneto 
resistive effect of thin-film perm alloy. It is actually a 
resistor bridge and the output differential signal is am-
plified and converted to square wave. 

Control switch is just on-off switch interface and 
pulled up by a resistor to avoid electronic interference. 

Throttle sensor is a linear potentiometer which is 
sampled by microcontroller AD converter. Throttle 
signal means user’s thrust requirement. 

Exhaust gas temperature (EGT) sensor is K type 
thermocouple and can measure up to 1 000 °C. 

Serial communication interface (SCI) interface is 
used to interface to PC and monitor the control pro-
gram running status and gather experimental data for 
analysis. 

Background debug model (BDM) debug interface is 
used to download and reprogram the microcontroller. 

Gas valve and fuel valve are solenoid valve which 
control the propane gas and fuel flow. Propane gas is 
only needed on engine startup.  

Fuel pump is a gear pump driven by brush motor 
which provides fuel to engine after successful startup 
to idle run status. 

Glow plug is used for starting propane gas ignition 
and driven by a few burst pulses whose duty cycle is 
restricted to avoid the burnout.  

Starter motor is used at startup for speeding up the 
engine to startup speed. Also the motor will be used at 
emergency shutoff and normal shutdown to blow the 
fuel out of engine and cool down the engine, which is 
vital to safety requirement. 

3.2. Time-triggered state-machine software architec-
ture implementation  

As expressed in Section 2.2, the basic finite-state- 
machine model is timeless; it is not possible to model 
within the basic finite-state-machine framework system 
properties that are dependent on the progression of real 
time, such as the duration of computations or the lim-
ited temporal validity of real-time data. To overcome 
these limitations, efforts have been made to modify the 
finite-state-machine model to include some notion of 
time. The objective of this paper is to expand the ex-

isting work on basic finite-state-machines and timed 
automata to include the concept of a sparse global time 
base as a central element of the model. Such an ex-
tended finite-state-machine model can be called a pe-
riodic finite-state-machine (PFSM) model. The PFSM 
model incorporates the notions of state variables, 
global time, periodic clock constraints and time-   
triggered activities. Thereby, PFSMs enable a concise 
and intuitive representation of distributed control sys-
tems and reduce the gap between a modeled system 
and its implementation. 

Although finite-state-machine method is event-based 
in essence, it does not conflict with the time-triggered 
development method. In this control system design, the 
periodic timer interrupt overflow acts as trigger event, 
and the system finite-state-machine is evaluated in each 
event. As a result, this software architecture realizes 
time-triggered and finite-state-machine integration and 
precise time stamp information is included. This novel 
hybrid software architecture serves as a foundation for 
a model-based development process and formal analy-
sis for distributed embedded real-time systems. 

Basic finite-state-machine model data structure 
should be modified to include the time stamp, and this 
is straightforward and can be easily done [4]. In this 
system design, the main program firstly initializes the 
real time interrupt (RTI) and completes system control 
initialization, then adds Engine_Control_Update ( ) 
task, and lastly starts the task scheduler. In the while 
loop program, there only exists scheduler dispatch task 

[4]. In the RTI routine, all tasks’ status is updated. If 
scheduled, the task will be invoked by the task dispatch 
function SCH_Dispatch_Tasks ( ) and executed. The 
SCH_Dispatch_Tasks ( ) function checks all tasks’ 
status and determines which task will be executed. 

Up to the implementation of time-triggered schedule 
software architecture, finite-state-machine based en-
gine control task is the only task and the function is 
Engine_Control_Update ( ). In this function, engine 
control operation is divided into several states accord-
ing to the engine operation procedure. The normal 
complete operation procedure is shown in Fig. 6. 

 
Fig. 6  Engine normal complete operation procedure. 



No.6 ZHANG Qi et al. / Chinese Journal of Aeronautics 25(2012) 839-845 · 843 · 

 

0-t1, the start switch is on, the start motor is power 
on and the engine reaches 7 500 r/min startup speed. 

t1-t2, the start motor stops, the glow plug is on, and 
the propane gas valve is open (pulsing). Until t2, the 
EGT begins to increase. 

t2-t3, the start motor restarts, the glow plug is off, the 
propane gas valve is normally open. Until t3, the engine 
speed reaches 10 000 r/min which is the suitable time 
to offer fuel to engine and the pump motor is power on.  

t3-t4, the start motor, the propane gas valve and the 
fuel pump are all on. Until t4, the engine speed reaches 
36 000 r/min; the gas valve and the start motor are shut 
off. 

t4-t5, the engine is powered only by fuel. Until t5, the 
engine speed reaches 50 000 r/min and the engine 
starts to calibration. 

t5-t6, the engine keeps the calibration speed until t6. 
t6-t7, the engine decreases to idle speed 36 000 r/min. 
t7-t8, the engine works at idle speed. 
t8-t9, the engine works normally according to user’s 

throttle input. 
t9-, the engine stops if the start switch is pushed off. 

The fuel pump is power off and the start motor is 
power on to cool down the engine. 

0-t8, time fragments all belong to startup process and 
can be integrated into a startup state, so the engine 
control finite-state-machine is divided into different 
states according to the normal system operation proce-
dure.  

According to the engine operation procedure, the 
corresponding control finite-state-machine chart is 
shown in Fig. 7. 

 
Fig. 7  Engine control finite-state-machine chart. 

Once the system state-machine chart division is 
completed, implementing a state-machine in software 
is a straightforward process and can be easily per-
formed in any programming language. In this system 
design, C language is used for its portability and flexi-
bility. The implementation code uses “switch-case” 
structure to describe the system state-machine. 

3.3. Model-based-design for DO-178B 

Manned aerial vehicle airworthiness DO-178B 
command rule classifies system potential failure condi-
tions into Level A to Level E, as shown in Table 1.  

Table 1  DO-178B software failure level 

Level Failure condition Description 

A Catastrophic Failure may cause a crash 

B Hazardous 

Failure has a large negative impact on 
safety or performance, or reduces the 

ability of the crew to operate the plane 
due to physical distress or a higher 
workload, or causes serious or fatal 

injuries among the passengers 

C Major 

Failure is significant, but has a lesser 
impact than a hazardous failure (for 

example, leads to passenger discomfort 
rather than injuries) 

D Minor 

Failure is noticeable, but has a lesser 
impact than a major failure (for exam-
ple, causing passenger inconvenience 

or a routine flight plan change) 

E No effect 
Failure has no impact on safety, aircraft 

operation, or crew workload 

 
UAV airworthiness is still under development, and the 
draft document CAP722 is a good reference. CAP722 
has proposed which command rules should be used ac- 
cording to different UAV conditions [10, 12, 16]. 

In this paper, the DO-178B failure level is simplified, 
and only Levels A, B are included because the MTE 
targets UAV applications. According to system opera-
tion procedure, Level A failure cases include fuel pump 
error, power error; Level B failure cases include over 
temperature, over speed, loss of communication and 
control switch error. 

After DO-178B software failure levels are deter-
mined, model-based-design with MathWorks is im-
plemented [12, 14]. According to Fig. 3, the following 
software development workflow is implemented. 

1) Requirement process  
For requirement validation, use traditional peer re-

views of the requirements. For requirement linking, use 
the requirements management interface to establish 
links between the model and high level requirements in 
textual or third-party tool form.  

2) Modeling process 
For the low level requirements, Simulink and 

Stateflow are used for modeling. And this paper uses 
Stateflow to model the control software finite-state- 
machine, which is more efficient and convenient. It 
must be noted that in model process, the model means 
not only the control algorithms and safety boundaries, 
but also the test information and comments which are 
much more important for later test and review. It can 
also be said that only the model containing all informa-
tion can provide a single “truth” in the design.  

3) Coding process  
Auto code generation can be realized with the com-

bination of Real-time Workshop Embedded Coder and 
Embedded IDE Link™ product. In this design, 
Metrowerks Codewarrior for HCS12 V4.7 IDE devel-
opment environment is used. The control model algo-
rithm can be converted to source code automatically, 
and the structure of files is standard [15-16], as shown in 
Fig. 8. The verification of the source code, whether it is 
automatically generated or not, requires a code review 



· 844 · ZHANG Qi et al. / Chinese Journal of Aeronautics 25(2012) 839-845 No.6 

 

as part of the DO-178B process. PolySpace products 
are used to automate portions of the code review by 
using the DO qualification kit. 

 

Fig. 8  Auto code generation files structure. 

4) Object code testing process  
DO-178B requires that equivalence class tests be 

performed on input data ranges. The model coverage 
tool helps in this area because it can record signal 
ranges during testing and show the minimum and 
maximum values achieved. Additionally, the Simulink 
design verifier can be set up to automatically generate 
equivalence class test cases using the test objective 
block on input signals. In this case the user must spec-
ify the test values based on the data range and desired 
equivalence classes. 

4. Experiment and Test Results 

The software development experiments follow three 
stages: 

1) The time-triggered finite-state-machine control 
system architecture is implemented. The time-triggered 
mode is realized through the microcontroller’s timer 
overflow ISR which appears every millisecond. The 
control finite-state-machine structure is implemented in 
the Engine_Control_Update ( ) function.  

2) The total system control model is realized and 
simulated. MATLAB, Simulink and Stateflow software 
tools are used to model the system architecture. The 
DO qualification kit is used to meet the requirement of 
DO-178B airworthiness command rule. Various com-
ponents and system failure modes are modeled and 
evaluated through simulation, and the simulation re-
sults are documented in the system model. 

3) The total actual system is tested. At this stage, 
various practical abnormal work situation and failure 
mode according to DO-178B are evaluated. The con-
trol model is revised and information is documented.  

At the first development stage, three software archi-

tectures are evaluated. Table 2 shows their memory 
space requirement in practice. Time-triggered finite- 
state-machine method requires the same memory 
spaces as event triggered manual code method, and 
much less than event-triggered with RTOS support. 
Event-triggered mode method offers good real time 
performance, but the manual code method introduces 
latent uncertainty and error because of human work. 
Also the system reliability test cannot be implemented 
easily, and careful test draft should be planed. Event- 
triggered architecture with commercial RTOS can be 
used to reduce the human error and enforce the ro-
bustness. In this system design, μC/OS is ported and 
evaluated. Because the RTOS must deal with compli-
cated task management, content switch and priority 
determination, this method requires large memory 
spaces. Combining the memory space requirement, real 
time performance, predictability and test cost, the time- 
triggered finite-state-machine method provides an ap-
propriate method for MTE control. 

Table 2  Requirement of different memory spaces  
Byte 

Memory 
Mode 

Data ROM RAM 

ET-manual code 28 2 243 180 

ET-RTOS(μC/OS) 58 4 786  1 184 

TT-FSM 25 1 846 168 

 
Although the time-triggered finite-state-machine in 

this system is simplified to one task Engine_     
Control_Update ( ), the system shows satisfying pre-
dictability and traceability. Predictability is obvious 
because the timer overflow occurs every millisecond, 
and the only task is Engine_Control_Update ( ). The 
traceability can be easily realized through monitoring 
the control state-machine implemented in Engine_ 
Control_Update ( ) function in which time stamp is 
added. The control software algorithm can be easily 
modified with MATLAB Stateflow tool. The modifica-
tion is graphical and the source code generation is 
automatic. Adding and deleting states do not affect the 
main control system software structure at all. This 
software architecture improves efficiency greatly com-
pared with event-triggered structure.  

Over-temperature is a common problem for MTE. 
According to DO-178B failure level definitions, this 
system assigns over temperature fault to Level B. In 
this situation, the control system should shut down the 
fuel pump and power on the start motor. The start mo- 
tor works until the engine temperature falls into free air 
temperature scope. In the control state-machine, the 
over temperature error flag is recorded. The engine run 
data can then be downloaded to PC to be analyzed. 

Through successful hardware in the loop (HIL) 
evaluation of the control software’s correct perform-
ance, the actual engine test bench experiments are car-



No.6 ZHANG Qi et al. / Chinese Journal of Aeronautics 25(2012) 839-845 · 845 · 

 

ried out. A successful engine run cycle is shown in Fig. 
9. The EGT limit is 750 °C and the speed limit is   
115 000 r/min. It can be seen that these two parameters 
are in good control.  

 
Fig. 9  Engine run cycle speed and EGT data. 

5. Conclusions 

The model-based-design method and time-triggered 
finite-state-machine hybrid software architecture im-
plementation indicate that: 

1) Time-triggered software pattern is simple and re-
liable. 

2) Finite-state-machine method provides great trace-
ability and efficiency for engine control task. 

3) Model-based-design and DO-178 qualification kit 
provide complete uniform software environment for 
airworthiness command. 

References 

[1] Falla M. Advances in safety-critical systems. Lancaster: 
University of Lancaster Press, 1997. 

[2] Hatton L. Safer C: developing software for high-  
integrity and safety-critical systems. London: McGraw- 
Hill, 1994. 

[3] Hilderman V, Baghai T. Avionics certification: a com-
plete guide to DO-178 (software), DO-254 (hardware). 
Leesburg: Avionics Communications Inc., 2007. 

[4] Pont M J, Parikh C R. Li Y, et al. The design of em-

bedded systems using software patterns. Proceedings of 
Condition Monitoring, 1999; 221-236. 

 
[5] Drumea A, Popescu C. Finite state machine and their 

application in software for industry control. 27th Inter-
national Spring Seminar on Electronics Technology, 
2004; 1: 25-29. 

[6] MISRA. Guidelines for the use of the C language in 
vehicle-based software. London: Motor Industry Soft-
ware Reliability Report, 1998. 

[7] MathWorks. Model-based design for DO-178B. Mas-
sachusetts: Mathworks, 2010. 

[8] RTCA/DO-178B. Software considerations in airborne 
systems and equipment certification. Washingtong D.C: 
RTCA Inc., 1992. 

[9] Erkkinen T, Potter B. Model-based design for 
DO-178B with qualified tools. AIAA-2009-6233, 2009. 

[10] Marian N, Guo Y. Model based design of embedded 
software. Research and Education in Mechatronics 
2006; 156-163. 

[11] Smith P F, Prabhu S M, Friedman J H. Best practices 
for establishing a model-based design culture. SAE 
Paper, 2007-01-0777, 2007. 

[12] Anthony M, Behr M, Jardin M, et al. Model-based 
design for large high-integrity systems: a discussion on 
verification. and validation. Association for Unmanned 
Vehicle systems International, 2010; 180-195. 

[13] Holliday N. Software development with real-time 
workshop embedded coder. Mathworks Aerospace and 
Defense Conference, 2008; 152-163. 

[14] Potter B. Use of MathWorks tool suite to develop 
DO-178B certified code. ERAU/FAA Software Tool 
Forum, 2004; 152-159. 

[15] Mathworks. Embedded target for Motorola HC12 for 
use with real-time workshop. Massachusetts: Math-
works, 2008. 

[16] CAP722. Unmanned aerial vehicle operations in UK 
airspace—guidance. London: Directorate of Airspace 
Policy, 2002. 

Biography: 

ZHANG Qi worked as a lecturer in Beihang University from 
2004 and now is a Ph.D. candidate there. His main research 
interests include aero-engine electronic fuel supply and con-
trol system design. 
E-mail: zhangqi01@buaa.edu.cn 

 




