flow velocity, even in stenoses selected on the basis of anatomy. This additive predictive value is retained even in intermediate stenoses when anatomical factors are particularly unhelpful. This supports the use of physiology in a wider range of stenoses when the aim of PCI is improve flow.

TCT-331
Real-World Clinical Experience of Fractional Flow Reserve Assessed With a Rapid Exchange Pressure Sensor on a MicroCatheter
Thierry Leferve1, Philippe Goyon1, Stephan Fichtlscherer2, Thomas Munzel2, Volker Schächinger1, Arne Liithi3, Ramon Lopez Palop4
1ICPS, Massy, France, 2Centre Cardiologique du Nord, St Denis, France, 3University Hospital Frankfurt, Frankfurt am Main, Germany, 4University Medical Center Mainz, Mainz, Germany, 5Goethe University, Frankfurt, Germany, 6Ospedale San Raffaele, Milan, Italy, 7Hospital San Juan de Alicante, Alicante, Alicante

Background: Fractional Flow Reserve (FFR) measurements have been limited by the difficulty of maneuvering 0.014 inch diameter pressure wires. The RXi system (ACIST Medical Systems, Eden Prairie, MN) is a new FFR technology utilizing a monorail ultrathin microcatheter with an optical pressure sensor located close to the distal tip of the catheter. FFR measured with the RXi system has been shown to be correlated closely with the PressureWireTM (St. Jude Medical, St. Paul, MN). A prospective, observational registry was set up to collect real-world clinical experience of the RXi system.

Methods: The ADVANCE-EU study enrolled 60 subjects at 7 centers in France, Germany, Italy and Spain. Patients 21 years of age or older provided informed consent and were enrolled in the registry following use of the Navus catheter to guide PCI strategy. Using physician preferred guidewires, FFR measurement and interventional treatment was completed per each centers standard care. Procedural success was defined as the ability of the Navus catheter to acquire FFR measurement without adverse device effect or device malfunction.

Results: Preliminary analysis was obtained in the first 45 patients (57 lesions) already monitored, mean age 69 yrs, diabetes mellitus 31%, stable angina 51%, radial access 84%, lesions were mostly located or severely tortuous in 36% and 11% of cases respectively and moderately or severely calcified in 54% and 16% of cases respectively. The Navus Catheter was used without adverse device effect or device malfunction in all cases. The lesions analyzed were successfully crossed with the Navus catheter in 93% of cases. Jailed side branches and moderate to severely calcified lesions that were not initially crossed by the Navus catheter were either left untreated or underwent PCI followed by FFR measurement with the Navus catheter.

Conclusions: The preliminary results of this real world prospective registry show that the RXi system can be used successfully to assess FFR in relatively complex anatomy and lesions. This new device may simplify FFR measurements by allowing the use of standard coronary guidewires to deliver an intracoronary pressure sensor. Final results will be presented at the meeting.

TCT-332
Relation Between Fractional Flow Reserve And Coronary Bifurcation Anatomy: A Novel Quantitative Model To Assess The Stenotic Severity Of Bifurcation Lesions
Shengxian Tu1, Mauro Echavarria-Pinto2, Clemens von Birgelen, Niels R. Holm3, Stylianos A. Pyxaras2, Indulis Kumsars4, Ming Kai Lam3, Ilona Valkenburg3, Gabri G. Toth1, Yingguang Li8, Javier Escaned2, William C. Wijns5, Christian Schlundt1, Thomas Redel2, Michael Scheuering2, David Groke2, Klaus Klingenbeck2, Lucian Itu3, Puneet Sharma3, Ali Kamen3, Dorin Comaniciu3, Stephan Achenthech1, Christian Schlundt1, Thomas Redel2, Michael Scheuering2, David Groke2, Klaus Klingenbeck2, Lucian Itu3, Puneet Sharma3, Ali Kamen3, Dorin Comaniciu3, Stephan Achenthech1
1Biomedical Instrument Institute, School of Biomedical Engineering, Shanghain Jiao Tong University, Shanghai, China, 2Cardiovascular Institute, Hospital Clinico San Carlos, Madrid, Spain, 3Department of Cardiology, Thoraxcentre Twente, Medisch Spectrum Twente, Enschede, the Netherlands, 4Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark, 5Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium, 6Department of Cardiology, Paul Stradins Clinical Hospital, Riga, Latvia, 7Cardiovascular Centre Aalst, OLV-Clinic, Aalst, Belgium, 8Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands

Background: Development of advanced quantitative models might aid establishing the relation between bifurcation anatomy and fractional flow reserve (FFR). The aim of this study was to present for the first time a new bifurcation model for quantification of stenotic severity in the entire bifurcation lesion. The diagnostic performance of this model was assessed by a 3-dimensional quantitative coronary angiography in predicting the functional significance of obstructive bifurcation stenoses was evaluated using FFR as reference standard.

Methods: Patients who had been admitted in five European hospitals for various studies involving FFR measurement in bifurcation lesions were randomly selected and analyzed by a core laboratory. Different diameters models including Murray model, Finet, and HK models were implemented in the proposed bifurcation model for optimization of reference diameter functions, resulting in different degrees of stenosis. The conventional straight, i.e., single branch, model was included to compare with the bifurcation model.

Results: Seventy-eight bifurcation lesions in 73 patients were analyzed. In 51 (65%) bifurcations FFR was measured in the main vessel. A total of 34 (43.6%) interrogated vessels had an FFR <0.80. Average minimum lumen diameter was 1.27±0.29 mm. The diameter stenosis optimized by the HK diameter model had the highest correlation with FFR ($r=-0.50, p<0.001$), as compared to the Finet model ($r=-0.49, p<0.001$), the Murray model ($r=-0.41, p<0.001$), and the straight model ($r=-0.23, p<0.001$). The AUC for predicting FFR ≤0.80 was significantly higher by the bifurcation model than the straight model, being 0.72 (95% CI: 0.61; 0.82) versus 0.60 (95% CI: 0.49; 0.71), p=0.001. Applying ≥50% diameter stenosis assessed by the bifurcation model for predicting FFR <0.80 resulted in 23 true positives, 27 true negatives, 17 false positives, and 11 false negatives.

Conclusions: The new bifurcation model provides comprehensive assessment of bifurcation anatomy. Compared to the straight model, identification of lesions with preserved FFR values in obstructive bifurcation stenosis was improved. However, Accuracy was limited by use of pure anatomy without integration of coronary flow.

TCT-333
Clinical Relevance of Post-Stent Fractional Flow Reserve after Drug-Eluting Stent Implantation
Joow-Hyang Doh1, Bon-Kwon Koo2, Chang-Wook Nam3, Sung Yun Lee3, Eun-Soek Shin4
1Inje University Ilsan Paik Hospital, Goyang, Korea, Republic of, 2Samsung Medical Center, Seoul, Korea, Republic of, 3Seoul National University, Seoul, Korea, Republic of, 4Keimyung University Donguan Medical Center, Daegu, Korea, Republic of, 5Inje University Ilsan Paik Hospital, Goyang-si, Korea, Republic of, 6Ulsan University Hospital, Ulsan, Kyoungangnamdo

Background: The prognostic value of post-stent FFR has not been clearly defined in patients with DES implantation. We sought to evaluate the association between fractional flow reserve (FFR) and clinical outcomes after drug eluting stent (DES) implantation with intravascular ultrasound (IVUS) assistance.

Methods: One-hundred and fifteen lesions (107 patients) with FFR measurement after DES implantation assisted by IVUS were enrolled. Post-stent angiographic and IVUS parameters were compared with FFR values. Clinical outcomes were assessed by target vessel failure (TVF) defined as a composite of target vessel revascularization, death or non-fatal myocardial infarction attributed to the target vessel.

Results: Mean post-stent FFR was 0.92±0.04. Minimal stent area by IVUS had a positive correlation with post-stent FFR ($r=0.36, p<0.001$). Post-stent FFR ≥0.89 was a physiologic cut-off value for 1-year TVF-free survival. Best cut-off value of minimal stent area to define post-stent FFR ≤0.89 was >5.4mm2, and its sensitivity and specificity were 63.2% and 90.0%, respectively. During a 3 year follow-up, lesions with post-stent FFR ≥0.89 had a better TVF-free survival rate than those with post-stent FFR <0.89 (89.3% vs. 61.1%, p=0.03). By Cox-regression analysis, post-stent FFR ≥0.89 was an independent predictor for TVF-free survival (Exp(B)=7.8, 95% CI=1.4-46.9, p=0.03).

Conclusions: Post-stent FFR can be a useful predictor for long-term clinical outcomes after DES implantation and relevant to IVUS minimal stent area.

TCT-334
Model-Based Determination of Fractional Flow Reserve Based on Coronary Angiography – Initial Validation by Invasively Measured FFR
Christian Schlundt1, Thomas Redel2, Michael Scheuering2, David Groke2, Klaus Klingenbeck2, Lucian Itu3, Puneet Sharma3, Ali Kamen3, Dorin Comaniciu3, Stephan Achenthech1
1University of Erlangen, Department of Internal Medicine 2, Erlangen, Germany, 2Siemens AG, Healthcare Sector, Forchheim, Germany, 3Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ

Background: Invasive Fractional Flow Reserve (FFR) is the gold standard to identify hemodynamically relevant coronary stenoses. We developed and evaluated a new approach to determine lesion-specific FFR based on coronary anatomy as visualized by invasive coronary angiography.

Methods: In 52 lesions (48 individuals), Invasive FFRwas determined using a pressure wire during adenosine-induced vasodilation. Coronary angiograms from stent FFR after DES implantation and relevant to IVUS minimal stent area.

Conclusions: Post-stent FFR can be a useful predictor for long-term clinical outcomes after DES implantation and relevant to IVUS minimal stent area.
coronary tree. A novel prototypic computational model including an estimation of personalized boundary conditions was used for flow calculation to derive FFR\textsubscript{angio} based on angiographic anatomy, heart rate and blood pressure.

**Results:** Of 52 coronary lesions (LAD: 38, LCX: 6, RCA: 8), 12 were hemodynamically significant (FFR\textsubscript{invasive} < 0.80). FFR\textsubscript{angio} identified these lesions with an accuracy of 90%, sensitivity of 67%, specificity of 98%, positive predictive value of 89%, and negative predictive value of 91%. Correlation between FFR\textsubscript{invasive} (mean: 0.84 ± 0.12) and FFR\textsubscript{angio} (mean: 0.86: 0.09) was r = 0.82 (see fig. 1).

**Conclusions:** Model-based determination of coronary FFR based on invasive angiography has a high diagnostic accuracy when compared to invasive FFR. Further research will be performed to refine models and obtain further verification of the method.

---

**TCT-335**

**Validation of pressure-derived coronary flow reserve as an estimate of Doppler flow velocity and thermodilution derived coronary flow reserve**

Martin J. van Lierveld, Tim P. van de Hoef, Mauro Escavariu-Pinto, Javier Escamed, Jan Pick

1Academic Medical Center, Amsterdam, Noord Holland, 2Academic Medical Center - University of Amsterdam, Amsterdam, Noord Holland, 3Hospital Universitario Clinico San Carlos, Madrid, Spain, 4Hospital Clinico San Carlos, Madrid, Spain, 5Academic Medical Center, Amsterdam, Netherlands

**Background:** Coronary flow reserve is defined as the ratio of hyperemic to baseline blood flow and is concomitantly affected by both epicardial patency and microvascular function. Recent insights in the prognostic value of the coronary microcirculation in ischemic heart disease revived the interest of clinicians in CFR. Coronary pressure derived CFR (CFR\textsubscript{pres}) was introduced aiming to alleviate contemporary practical limitations. This simplified model neglects the effects of stenosis geometry on flow impediment, raising concerns on its validity. We sought to validate CFR\textsubscript{pres} against flow derived CFR\textsubscript{flow} determined by Doppler flow velocity and thermodilution in a large cohort of coronary stenoses of intermediate severity.

**Methods:** We evaluated the CFR in 419 stenoses from 322 patients with coronary artery disease. In 299 coronary stenoses CFR\textsubscript{flow} was evaluated by means flow velocity measurements, calculated as the ratio of hyperemic average peak flow velocity (APV) to APV during basal conditions and CFR\textsubscript{pres} as indicated above. In addition, in 120 coronary stenoses CFR\textsubscript{flow} was determined by means of the thermodilution, defined as the ratio of hyperemic to baseline mean transit time. CFR\textsubscript{pres} was calculated as the square root of the pressure-drop across the stenosis during hyperemia divided by the square root of the pressure-drop at baseline.

**Results:** CFR\textsubscript{flow} was higher than CFR\textsubscript{pres} [median 2.17 (1.56-2.7) vs 1.48 (1.23-1.83); p < 0.001]. There was a moderate overall linear correlation between CFR\textsubscript{flow} and CFR\textsubscript{pres} (p < 0.001; R\textsuperscript{2}=0.09). Bland Altman analyses showed a mean bias of -0.57, with a proportional error of -0.41 (p < 0.001) and significant heteroevadasticity as well as by constant (A= -0.52 (95% CI: -0.37 to -0.65)) and proportional (B=0.49 (0.41 to 0.58)) differences.

**Conclusions:** CFR\textsubscript{pres} systematically underestimates CFR\textsubscript{flow} values measured by contemporary invasive methods, and its magnitude of deviation is related to the magnitude of underlying CFR\textsubscript{flow}. Hence CFR\textsubscript{pres} cannot be used as an alternative to CFR\textsubscript{flow}.

---

**TCT-336**

**Deferral Versus Performance of Coronary Intervention Based on Coronary Pressure-driven Fractional Flow Reserve: Systematic Review and Meta-analysis**

Bruno R. Nascimento, Ana Flavia L Belfort, Gabriel T. Pereira, Antonio Laoz, P Ribeiro, Guillaume Rafael S Athanase

1Hospital das Clinicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 2Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 3Hospital das Clinicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

**Background:** Fractional flow reserve (FFR) has been proposed as the gold standard to assess functional severity of coronary artery stenosis and to stratify which lesions should be subjected to coronary intervention (PCI). Our aim was to determine the safety of using FFR as a decision-making tool for deferral or performance of PCI, based on data from published studies.

**Methods:** Systematic review by independent researchers was performed in PubMed and EMBASE including papers indexed until October 11th 2013 that used FFR (0.75 or 0.80) to determine in which lesions PCI should be performed or deferred. Outcomes of interest were death, myocardial infarction (AMI) and new revascularization (RV). Comprehensive Meta Analysis was used to pool study results and for meta-regression.

**Results:** After peer review, 60 abstracts remained and 19 papers (12 observational studies and 7 randomized-controlled trials) were included for analysis, totaling 3,097 patients (3,796 lesions). Nine papers had two arms (PCI and Defer) and 10 had only the Defer arm; FFR cut-off was 0.75 in 15 studies, and 0.80 in 4. Weighted mean follow-up time was 21.2 months (6.9 to 53). In indirect comparisons, PCI and Defer groups had similar death: 2.2% (CFR\textsubscript{95%}: 0.9-5.1%); I2=72.7) x 2.0% (95% CI: 1.1-3.5%); I2=40.5, p=0.86, and AMI rates: 1.9% (0.8-4.0%); I2=0) x 1.9% (1.3-3.1%); I2=49.8, p=1.00. RV rates were higher in the PCI group: 14.0% (8.0-23.2%); I2=87.8) x 4.4% (8.8-6.9%); I2=58.9, p=0.002. Direct comparisons, including two-arm trials, also showed no differences in death: OR = 1.86 (0.81-4.27, I2=11.5, p=0.14) and AMI rates: OR = 0.75 (0.21-2.69, I2=47.1; p=0.66); RV rates were again higher in the PCI group: OR = 3.10 (1.25-7.70, I2=72.2; p=0.015). Meta-regression suggests influence of the proportion men on the RV rates (β =0.058, p < 0.02). No other co-factors (age, hypertension, diabetes, FFR cut-off) influenced the outcomes.

**Conclusions:** Based on pooled data, FFR seems to be a safe and useful tool to determine lesions to be treated. Higher RV rates were observed in the PCI groups, speculatively related to restenosis. This data, however, should be parsimoniously interpreted, given the considerable heterogeneity of the studies published so far.