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Abstract—In this paper, by applying the continuation theorem of coincidence degree theory, we
establish some new criteria for the existence of multiple positive periodic solutions for the delayed
predator-prey model.

' (t) = z(t) (r(t) — a(t)z(t)) — b(t)f (z()) y(1),
¥'() = y(®) (c(O)f (2(t — 7)) —d(1)),

when functional response function f is monotonic or nonmonotonic. © 2006 Elsevier Ltd. All rights
reserved.
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1. INTRODUCTION

The dynamic relationship between predators and their prey has long been and will continue to
be one of the dominant themes in both ecology and mathematical ecology due to its universal
existence and importance,see Berryman [1].

Recently, Beretta and Kuang [2], Hsu et al. (3], Jost et al. [4], and Kuang and Beretta [5]
considered the system
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Fan and Wang [6] and Fan et al. [7] considered more general delayed ratio-dependent predator-
prey model with periodic coefficients and established some criteria for the existence of positive
periodic solutions.

In general, the response function f(u) is monotone. However, there is nonmonotonic re-
sponses occurrence, see Beretta and Kuang [2]. The so-called Modod-Haldane function f(u) =
cu/(m? + bu + u?) has been proposed and used to model, see [8]. Sokol and Howell [9] proposed
a simplified Monod-Haldane function of the form f(u) = cu/(m? + u?).

Ruan and Xiao [10] considered a special system with Monod-Haldane nonmonotonic functional

response
2'(t) = rz(t) <1 - %2) _ mﬂé(?i(gt()t)’

V) =30 (s ),

m2 +22(t)

(1)

(2)

with constant coefficients. Bush and Cook [11] have studied the system.

20 =ra() - ) - O

- 3)
t—1
") = y(t _pEr—T) d
y() y( )(m2+m2(t—7') )a
where 7, k, u, 7, and d are positive constants and m is a real constant. Xiao and Ruan [12] found
that there is a Bogdanov-Takens singularity for any time delay value. Chen [13] considered a
periodic predator-prey system with Type IV functional response.

In this paper, we consider the following more general delayed predator-prey system

a'(t) = z(t)(r(t) — a(t)z(t)) — b(t) f(=(£))y (?),
y'(t) =y (@) (c(t) f((t — 7)) — d(t)),

where 7, a, b, ¢, and d are all positive periodic continuous functions with period w > 0, 7 is a
positive constant.

The purpose of this paper is, by applying the coincidence degree theory developed by Gaines
and Mawhin [14], to establish the existence of one positive w-periodic solution of system (4)
when the functional response function f is monotonic and two positive w-periodic solutions of
system (4) when the functional response function f is nonmonotonic.

For the work concerning the existence of periodic solution of delay differential equations which
was done by using coincidence degree theory, see [6,7,15,16], but few papers have been published
on the existence of multiple periodic solutions before by using this method, see Chen [13].

(4)

2. PRELIMINARIES

In order to use the continuation theorem of coincidence degree theory, we need to introduce a
few notations.

Let X and Z be normed vector space. Let L : DomL C X — Z be a linear mapping and
N : X — Z be a continuous mapping. The mapping L will be called a Fredholm mapping of index
zero if dim ker L = co dimIm L < oo and Im L is closed in Z. If L is a Fredholm mapping of index
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zero, then there exist continuous projectors P: X — X and Q : Z — Z such that In P = Ker L
and InL = KerQ = Im (I — Q). It follows that L | DomLNKerP : (I — P)X — ImL is
invertible and its inverse is denoted by K. If Q is a bounded open subset of X , the mapping N
is called L-compact on Q if QN(Q) is bounded and Kp(I — Q)N : @ — X is compact. Because
Im Q is isomorphic to Ker L, there exists an isomorphism J : ImQ — Ker L.

THEOREM A. CONTINUATION THEOREM. (See [14].) Let L be a Fredholm mapping of index
zero and let N be L-compact on §. Suppose

(a) for each A€ (0,1) ,z € 0QNDomL , Lz # ANzx;
(b) QNz # 0 for each z € 8Q N Ker L and deg{JQN,QNKer L,0} # 0.

Then the equation Lz = Nz has at least one solution lying in Dom L N §.

In this paper, we shall use the notation

1 w
== dt
@ w/o u(t) dt,

where u is a continuous w-periodic function.

3. MONOTONE CASE
In this section, we will study the existence of positive w-periodic solution of system (4) when
the functional response function f satisfies the following monotone condition (M):
(i) f € CY(R,R) and f(0) =0;
(i) f'(z) >0 for z € [0, +00);
(iil) imy— 400 f(z) =k >0, k is a constant.
LEMMA 1. Assume that condition (M) holds. If system (4) has one positive w-periodic solution,
then k¢ > d.
The proof is obvious and we omit it.
THEOREM 1. Assume (M) and the following conditions hold:
(Hy) kc > J,
(Hy) 7 > ae”, where A = |In f~1(d/c)| + 27w.
Then system (4) has at least one positive w-periodic solution.

Proor. Consider the system
zi(t) = r(t) — a(t) exp {z1(t)} — b(t) f (exp {z1(¢)}) exp {z2(t) — z1(t)},

y(t) = —d(t) + c(t)f (exp {z1(t = 7)}).

(5)

It is easy to see that if the system (5) has an w-periodic solution (z(t), z5(t))T, then (exp{z}(t)},
exp{z5(t)})T is a positive w-periodic solution of system (4). Therefore, for have (4) at least one
positive w-periodic solution, it is sufficient that (5) has at least one w-periodic solution. In order
to apply Theorem A to system (5), we take

X=2Z= {x(t):(wl (t),22(t)T € C (R, R?) 12 (t +w) =2 (t) forteR}

and denote
Il = [[e2 (23,22 )7 = max loa ()] + maxt & [0,] [z (2)]
Then X and Z are Banach space when they are endowed with the norm ||-||. Set

o [T —a®exp {1 ()~ () F (exp o (0)) exp {2 (1) — 1 ()
N “)‘[ —d () + e (t) f (exp o (£ — 7)) ]
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and L e L e
Lz:a:’,Px:—/ z(t) dt, zelX, Qz:—/ z(t) dt, ze€Z.
w Jo W Jo
Evidently, ker L = R: ImL = {z | f: z(t)dt = 0, z € Z} is closed in L and dimker L =
codimIm L = 2. Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized

inverse ,(to L)K, : Im L — ker P N'dom L has the form

Kp(z):/otz(s) ds—é/ow/otz(s) dsdt.

Thus,
ON 'Lls /0“’ [r(t) — a(t) exp{z1(t)} — b(t)f (exp {z1(t)}) exp {z2(t) — z1(¢)}] dt
% / " [=d(t) + c(t)f (exp {ar(t — 7)) dt
0
and
[ 1r(6) = as)exp a1 (9)} = B(s) (exp fan (5))) exp {(s) = 1(s)}] dJ
K,(I-Q)Nz= |0 .
/0 [=d(s) + c(s) f (exp {z1(s — 7)})] ds

[% /0“’/0 [r(s) — a(s) exp {z1(s)} — b(s)f (exp {z1(s)}) exp {z2(s) — z1(s)}] ds dt}
é /ow /0 [=d(s) + e(s)f (exp {z1(s = 7)})] dsdt
l: (5 B %) / [r(s) — a(s)exp {z1(s)} — b(s)f (exp {z1(s)}) exp {z2(s) — z1(5)}] ds}
_ 0 |

(5 _ .;.) / " [—d(s) + ()1 (exp {an(s = 7)) ds

Clearly, QN and K,(I — Q)N are continuous and, moreover, applying the Arzela-Ascoli theorem,
it is easy to show that QN(Q), K,(I — Q)(f) are relatively compact for any open bounded set
Q C X. Hence, N is L-compact on ), where  is open bounded set in X. Corresponding to
equation Lz = ANz, A € (0,1), we have

z1(t) = A[r(t) — a(t) exp {z1(£)} — b(£) f (exp {z1(£)}) exp {z2(t) — z1(£)}],
zy(t) = M[=d(t) + ¢ (t) f (exp {z1 (t = 7)})].

Suppose that z(t) = (z1,22)" € X is a solution of system (6) for a certain A € (0,1). By
integrating (6) over the interval [0, w], we obtain

(6)

/Ow [r(t) — a(t) exp {z1(t)} — b(t) f (exp {z1(t)}) exp {z2(¢) — z1(8)}] dt = 0,

/ " 12d(t) + e(t) f (exp {za (¢ — )})] dt = 0.

Hence, "
/0 [a(t) exp {z1()} + b(¢) f (exp {z1(t)}) exp {z2(¢) — 21(¢)}] dt = Tw (8)

and

[ 0 o oae - mp e = do o)
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From (6)—(9), we obtain

) |z} (2)] dt < wr(t) dt
w owones »
+ [ 00 (210} + 601 (030 (21 exp ) — 224} do = 27
and » » »
/0 () dtg/o d(t)dt+/0 o(®)f (exp {1 (t — 7)}) dt = 2diw. (1)

Note that (x1(t),z2(t))T € X , then there exist ¢,£,n € [0,w] such that

cf (exp{z1(¢}) = d,z2(¢) = é?én zo(t), z2(n) = max zo(2). (12)
w] te[0,w]

By (12) and (M), we have _
z1(¢) =Inf! (g) : (13)

Hence,

Immmmnm+/ﬂﬂmut

(14)
<|lnf~ ( >|+2rw— A.
By (8), (12), and (14), we have
7w > bwf (exp {~A}) exp {z2(¢) — A}
=bwf(e~4)e A exp {22(£)}
and
7w < awexp {A} +bw f (exp {A}) exp {z2(n) — A}
= awe? + bwf(e?)e? exp {za(n)}.
Hence,
z3(€) <In7—Inbf(e *)e 4
and
x9(n) > In(F — @e?) — Inbf(e)e.
Therefore,
< Ig / |£E2 | dt (15)
<In7—Inbf(e”*)e 4 + 2dw =: By
and »
> aa(n) ~ [ o) de )
> In(7 — ae?) — Inbf(e4)e? — 2dw =: Bs.
Let
B = max {|B1[,|Bal},
then

lz2(t)] < B.
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Clearly, A and B; (i = 1,2) are independent of A\. Under the assumption in Theorem 1, it is easy
to show that the equations
F—au— Bf(u)2 =0,
¢ (18)
d—ef(u) =0,

has a unique solution
(u*,v*)" € /Ri = {(w,v) |u>0, v>0}.
Denote H = A+ B + G, where G > 0 is taken sufficiently large such that
”(ln{u*},ln{v*})TH = [In{u*}| + |In{v*}| < G

and define Q = {z(t) € X : ||z|| < H}. It is clear that Q satisfies Condition (a) of Theorem A.
When z = (z1,25)" € 02 Nker L = 9Q N R?, z is a constant vector in R? with |z|| = H. Then

7 — aexp{z1} — bf (exp{z1}) exp{z2 — 71}

QNz = [ ~
—d + ¢f (exp{z1})

Furthermore,
deg {JQN, ker L N Q,0}

—aexp {w1}+5f (exp {z1}) exp {z2—21} —bf' (exp {z1}) exp{aa} —bf (exp{z1}) exp {z2—a1}

cf’ (exp{z1}) exp {z1} 0
= sgn (bf (exp {z1}) f' (exp {z1}) exp {z2}) # 0.

=sgn det |:

According to the Theorem A we know that the system (5) has at least one w-periodic solution.
The proof of Theorem 1 is complete. |

4. NONMONOTONE CASE

In this section, we will study solution of system (4) when the functional response function f

satisfies the following nonmonotone condition (N):
(i) feCYR,R)and £(0) = 0;

(ii) there exists a constant ! > 0 such that (z —1I)f'(z) <0 for z # 1 ;

(iii) limgz— 0 f(z) =0.
LEMMA 2. Assume that condition (N) holds. If system (4) has one positive w-periodic solution,
then d < f(1).

The proof is obvious and we omit it.

From condition (), we can easily know that, if d < &f(l) , then the equation f(u) = d/ has
two positive solutions, namely r1,75. Without loss of generality, we suppose that r; < ry, and
we have the following conclusion.

THEOREM 2. Assume (N) and the following conditions hold:
(Hs) d <ef(l);
(Hy) 72 > ref™;
(Hs) 7 > ael, where L = max{|In7y|,|Inrs|} + 2Fw.
Then system (4) has at least two positive w-periodic solutions.

PRrROOF. By the similar analysis as that of Theorem 1, we have

&f (exp{z1(Q)}) = d.
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Hence
z1(¢) =1nr or z1(¢) =Inr,.

By (10), we have
j21(8)] < |z2(O)] + / 124 (1) dt

(19)
< max {|Inry|, |Inre|} + 27w = L.
From (8), (12), and (19), we obtain
Fw > bwf(e L)e L exp {z2(€)}
and
Fw < awel + bwf(el)el exp {zo(n)} .
Hence, .
2a(t) < a(€) + [ Ia(0)] 20
<In7—Inbf (e7L) el + 2dw =: By
and "
ea(t) > wa(n) = [ I (0] de o

>1In (F - (‘zeL) —Inbdf (e[’) el — 2dw =: By.
Let C = max{|Bs|,|Ba|}, then |z2(t)] < C. Clearly, L and B; (i = 3,4) are independent of A and
equation (18) has two solutions (u;,v;)7 € intR%, i =1,2.

Choose E > 0 such that E > max{|Inu;|,|Inuz|,|Invi|, |Invs|} and choose a sufficiently small
e>0,letly =Ilnr —2fw—¢,ly =Inr; + 2fw+¢, I3 = Inry — 2fw — ¢, Iy = Inry + 27w + €, such
that Il < Is.

Set

Q) ={z = (z1,22) € X : 21(t) € (I1,12),]z2(t)| < C+ E},
Qo = {.’L‘ = (1:1,1‘2) e X: .’l?l(t) € (lg,l4), |$2(t)| < C+E}
Then both §; and Q5 are bounded open subsets of X. It is easy to see that Q; N Qy =0 and Q;
satisfies requirement (a) in Theorem A for i = 1,2. Moreover, QNz # 0 for x € Q; N R? and
deg(JQN,Q; NKer L,0) = (—1)"+1 £0,i=1,2.
So far we have proved that Q; (i = 1,2) satisfies all the assumptions in Theorem A. Hence,

system (5) has at least two w-periodic solutions z* and #. Then, exp {z*} and exp {£} are two
different positive w-periodic solutions of system (4). The proof of Theorem 2 is complete. 1

From Theorem 2, we can easily obtain the following results.
COROLLARY 1. Assume (H3),(Hy), (N) and the following condition hold:
(He) 7> arqe®™ forr; > 1.
Then system (4) has at least two positive w-periodic solutions.
COROLLARY 2. Assume (Hs),(Hy), (N) and the following condition hold:
(H7) 7> (a/r1)e?™ for ro < 1.
Then system (4) has at least two positive w-periodic solutions.

We also remark that our above results can be extended to the following system
'(t) = z(t)(r(t) — a(t)z(t — 1)) — b(t) f(z(2))y(t — o),
y'(t) = y(£)(c(t) f(z(t — 72)) — d(t))-
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5. APPLICATIONS

In this section, we apply our results in Sections 3 and 4 to the Monod-Haldane models.
Consider the following system

2'(t) = a(t) [¢(t) — a(t)a(t)] - _b%?(/tgw,
| (22
y'(t) = y(t) ;—aﬁ((tt—__:)) —d@)|,

which can be obtained by letting f(u) = u/(m + u) in system (4), where all the functions are
defined as that of system (4).
By Theorem 1, we have the following result.
THEOREM 3. Assume that
(i) ¢>d,
(ii) 7> made* /(¢ —d) for (m +1)d > ¢
or 7> a(¢—d)e*“ /md for (m+1)d < ¢
or ¥ > ae*™ for (m+1)d =é.
Then (22) has at least one positive w-periodic solution.

Consider the following system with Holling III-type functional response function

1.2
2/ () = 2(t) [r(t) — a(t)a(®)] - ‘b‘%%:%)ﬁ
(23)
) = _et-r)
v =0 | O )

which is a special case of (4) by letting f(u) = u?/(m + u?), where all the functions are defined
as above.
By Theorem 1, we have the following result.
THEOREM 4. Assume that
(i) ¢>d,
(ii) 7> ae*™“/md/(¢ — d) for (m+1)d > &
or 7> ae’™\/(¢—d)/md for (m+1)d< ¢

or ¥ > ae’™ for (m+1)d=¢.
Then (23) has at least one positive w-periodic solution.
Consider the following system with Holling III-type functional response function

xz
2/(t) = 2(t) [r(t) - a(t)z ()] — — ﬁfte)xa()t)fg(t)’

(24)
2
/ z (t - T)
= t
VO =0 | e r 2= )
which is a special case of (4) by letting f(u) = u?/(m + eu + u?), where all the functions are
defined as above.
By Theorem1, we have the following result.

THEOREM 5. Assume that
(i) e>d,
(i) 7> ae®™(de + \/d%e% + 4dm(c — d))/2(¢ — d) for de + \/d2e? + 4dm(c — d) > 2(¢ — d)
or 7> 2(¢ — d)ae®™ /(de + \/d2e? + 4dm(c — d)) for de++/d2e? + 4dm(¢ — d) < 2(¢—d)
or 7> ae*™ for de 4+ \/d2e? + 4dm(¢ — d) = 2(¢ — d).

Then (24) has at least one positive w-periodic solution.




Existence of Multiple Positive Periodic Solutions 1461

Consider the following system with the Monod-Haldne nonmonotonic functional response func-
tion

(1) = o(t) [r(t) — a(t)a(t)] — 2DTOYO

m + z2(t) o5)

y(0) = (o) [ e 2D e,

22— 7)

which is a special case of (4) by letting f(u) = u/(m + u?), where all the functions are defined
as above.
By Corollaries 1 and 2, we have the following result.

THEOREM 6. Assume that
(i) &> 2y/md;
(ii) (e*™ + 1)/ — 4md? > ('™ — 1)g;
(iii) r > ae?™ (¢ + v/&% — 4md?)/2d for (m +1)d > ¢ and & > 2d
or r > 2dae*™ /(¢ — /& — 4md?) for (m 4+ 1)d > ¢ and ¢ < 2d.
Then (25) has at least two positive w-periodic solutions.

Consider the following system with the Monod-Haldne nonmonotonic functional response func-

tion.
b(t)z(¢)y(t)

#/(6) = 2(0) [ (1) — @) (0)] — o e

(26)
z(t—1)
m+ex(t—7)+22(t—7)

y'(t) = y(t) ()

which is a special case of (4) by letting f(u) = u/(m + eu + u?), where all the functions are
defined as above.
By Corollary 1 and Corollary 2, we have the following result.

- d(t) ’

THEOREM 7. Assume that

(i) &> @y +e)d;
(ii) (e*™ 4+ 1)\/(¢ — ed)? — 4md? > (™ — 1)(¢ — ed);
(iii) r > ae?™ (¢ — ed + /(¢ — ed)? — 4md?)/2d for (m +e +1)d >
or r > 2dae*™ /(¢ — € — \/(¢ — ed)? — 4md?) for (m + e+ 1)d

Then (26) has at least two positive w-periodic solutions.

candc> (2+e)d
>candc < (2+e)d.
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