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Abstract-In urban fire departments, fire companies are dispatched to respond to 
alarms which occur spatially and temporally in a generally unpredictable way. Also, 
the time during which one of the responding units is busy on a call, and hence 
unavailable to other alarms, is itself a random variable. This variability in demand and 
service time makes it difficult to maintain a balance between the need for effective 
response to alarms which occur now and those which may arrive in the future. In this 
paper, we discuss two specific mathematical models, based on work done by the Rand 
Institute in New York City, for determining not only how many but also which of the 
available fire-fighting units to deploy to any given alarm. Each is a Markovian decision 
model in which the conflicting objectives of adequate response to present or future 
incidents are explicitly accounted for. Similar considerations are applicable to other 
municipal emergency services. 

1. INTRODUCTION 

The optimal deployment over time of a set of limited resources under conditions of 
uncertainty can often be posed as Markov decision problems. In urban fire departments, 
for example, engine and ladder companies are dispatched to respond to alarms which 
occur spatially and temporally in a generally unpredictable way. Also, the time required 
to arrive at the scene of an incident and to extinguish a fire is itself only known 
probabilistically. This variability in demand and service time makes it difficult to 
maintain a balance between the need for effective response to alarms which occur now 
and those which may arrive in the future. Because of this random nature of both demand 
and length of service and in view of the usual restrictions that the fire-fighting force is of 
limited size, the number of units currently busy at alarms may be large enough to have 
saturated the ability of the system to handle new incidents which arrive in the interim. It 
is therefore of considerable tactical interest to determine not only how many, but which 
units to deploy to any given alarm so as to maintain an effective fire supression capability 
over time. Similar considerations occur in other municipal emergency services (police, 
ambulances, repair) and even in military combat, but we will illustrate the use of Markov 
decision theory by considering two specific problems concerning fire department opera- 
tions. Our treatment is adapted from mathematical models developed by the Rand 
Institute in New York City about a decade ago (see [l] for an overview of the Rand 
work). An interesting feature of the models discussed below is that they explicitly take 
into account the conflicting goals of reducing response time to alarms which occur now 
and to those which arrive later, thereby providing examples of stochastic multiobjective 
optimization. 
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2. MARKOV DECISIONS 

We briefly review here some of the elementary concepts of decision theory that will 
be needed later. For a more comprehensive treatment of the relevant background in 
Markov theory see, for example, the book by Ross [2]. 

Suppose we have a Markov process with a finite state space. Just after each 
transition, a decision rule is employed resulting in one of a finite number of actions. It is 
assumed that the rule is stationary in the sense that the action taken depends only on the 
state of the system and not on the chosen instant of time. A decision rule or, as it is 
sometimes called, a policy R is defined by assigning a specific action to each state. With 
n states and m actions to choose from in each state, there are nm possible policies R. A 
choice of R affects successive moves from state to state and so the transition probability 
from states i to j is written Pii( 

By viewing the process only at the moments of transition, we obtain a finite Markov 
chain which is assumed throughout to be aperiodic and irreducible. Let the state at 
instant I = 0, 1 . . . be described by the random variable xl and suppose that a cost CR(xI) 
is incurred in state xl as a result of policy R. When XI = j for j = 1 . . . n, we write 
CR(%) = CR(j). 

The expected average cost over an infinite time horizon under policy R, given that the 
system is initially in state i, is defined by 

V,(i) = l$ & E(& C&l) 1 XO= i). (1) 

The expected value in (1) can also be written as 

=$ CR(j) &$ P'ij(R), 

where Pii is the transition probability into state j in I steps. By the assumptions made, 
the equilibrium probabilities ?rR(j) of being in state j under policy R exist and are given 

by 

&j) = l,~m P’ij(R). (2) 

It follows that the limit in (1) can be obtained as 

VR = 8, CR(jbR(jh (3) 

independent of the initial state. The Markov decision problem is to minimize VR over all 
possible policies R. This may be shown to be equivalent to solving a particular linear 
program but in the two urban models to be discussed below the problem will be treated 
more directly. 

It may happen that a policy R determines two different costs CR,,(j) and C&j) for 
each state j. This results in an expected average costs VR.1 and VR.2 similar to (3). For 
example, 

VR.I = 2 CR,l(j)7Fi(R). (4) 
j=l 
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A change in decision rule R may decrease either V R,I or VR,* while increasing the other 
and so we seek a set of Pareto optimal solutions in the sense of policies R which cannot 
be altered to improve one cost without degrading the other. The usual procedure (see [31) 
is to form a new scalar valued function 

VR =avR,I+(l-~)vR,2 (9 

with 0 5 (Y 5 1 and to minimize this linear combination. The scalar a! acts as a trade-off 
parameter between the separate goals of minimizing VR,, or VR,2, and by varying (Y one 
generates the possible compromise (Pareto) solutions. 

3. ADAPTIVE RESPONSE 

We now turn our attention to an application of the foregoing by reviewing a simple 
model which is designed to answer the question of how many fire companies to dispatch 
to any given incident, a problem of interest in the actual day to day operations of many 
urban fire departments. There are M types of incidents, each of which occurs as an 
independent Poisson process at rate Ai, arranged in order of increasing probability of 
seriousness. Normal deployment to serious alarms, such as structural fires, is initially 
two ladder companies (as well as some engine or “pumper” companies which will not be 
considered here). Only one is sent when the fire is not serious, as in the case of a small 
brush fire. Because of the uncertainty of the incident, the dispatcher is faced with a 
decision on how many to dispatch. There are trade-offs. Sending two when the event is 
not serious reduces temporarily the number of companies which are available to a future 
incident, whereas if less are sent and the alarm is serious, this introduces the risk of a 
delay until an additional unit is dispatched. The delay may allow escalation and even loss 
of life. The decision to call for a second unit or to release one of those initially 
dispatched is made upon arrival at the scene of the fire. 

A compromise between a strong fire supression capability now and improved readi- 
ness for incidents which occur in the future can be formulated as a Markov decision 
process, as we now show. 

Let (m, n) be the state of the fire response system, where m is the number of first 
arriving fire engines which are presently busy at alarms and n is the number of busy 
second arriving units. If 

then the probability that a given alarm is of type i is given by AJA. Consider the 
following options for dispatch policy in state (m, n): 

1, if we send one unit to alarm-type i 
k(m, n) = (2, -f 1 we send two units to alarm-type i. (6) 

It is apparent that there are 2M different possible actions which can be taken in each 
state and that a choice of one of these constitutes a policy R in the sense of Markov 
decision theory. With each such policy R, define the sets S,, S2 for each (m, n) by 

SI = {i 1 ki(m, n) = I} 
S2 = {i 1 ki(m, n) = 2). (7) 



216 

Then, 
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prob(send one unit when in state (m, n)) = i izS Ai = ~(m, n) 
I 

prob(send two units when in state (m, n)) = $ iFS2 Ai = 1 - /?(m, n). 

The equilibrium state transition diagram is shown in Fig. 1, in which I/p, is the 
average time that first arriving units are busy at alarms and I/p2 is the average time for 
second arriving units, with service time assumed to be exponentially distributed. We 
assume there is a total of N fire companies in the region of interest. 

The steady-state balance equations can be found from inspection of the transition 

. 

m,ntl 

m-l,n m,n mtl ,n 

m-l +-I 
1 

m,n-I 

Fig. 1. State transition diagrams. 
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diagrams. For instance, when m, n 2 1, one has 

(A + npz+ mj~&~(rn, n) = A/?(m - 1, nMm - 1: n> + (m + 1hdm + 1, n) 

+ (n + I)~17r(m, n + 1) + A(1 - P(m - 1, m - 1))7r(m - 1, n - 1). (8) 

We now wish to construct a cost function. Let Ti(m, n) be the average response time of 
the first (j = 1) and second (j = 2) arriving fire engines to a new alarm when the system 
is in state (m, n). We assume that these units are the closest and next closest to the given 
incident. For the exposition which follows it suffices to know that Tj are determined as 
functions of j = N - (m + n) by the relation 

Tj(m, n) = Kjy-“2 (9) 

for suitable constants Kj which depend on the size of the region being serviced and on 
the impediments to travel. Relation (9) is known as the inverse square root law [l, 41. 
The quantity y represents the number of fire-fighting units still available to deploy (that 
is, which are not busy at other alarms). Therefore, the average response delay Uj(m, n) 
to any alarm for the first and second arriving units (j = 1,2) is given by 

U, = T, 

u 
2 1 

= Tz, if both units are initially dispatched 
T, + Tz, if initially only one unit is sent. 

Relation (10) can also be expressed as 

Uj(m, n)= 
I 

T,(m, n) 
T&n, n) + (2 ki(m, n))Tr(m, n) 

for j = 1 
for j = 2. 

Given the dispatch policy R, the expected cost (delay) in state (m, n) is 

C,(m, n) = 2 E(delay 1 alarm-type i)prob(alarn 
i=l 

1 type-i). 

(10) 

(11) 

(12) 

Now E(delay 1 alarm-type i) is independent of i and can be written as a linear 
combination, 

aUdm, n)+ (I- a)U2(m, n), 

for 0 I a 5 1, and so (12) becomes 

(13) 

Using the relation 
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expression (13) may be rewritten as 

CR(m,n>=aT,(m,n)+ (l- a)PT,(m,n)+(l- a)Tz(m,n). (14) 

From the form of (14) it is seen that the cost in state (m, n) (response delay) depends on 
the policy R only through the corresponding value of p as determined by (6) and (7). The 
expected average cost is then given by [see also (3)] 

VR = z CR(m,nhR(%n), 
(m,n) 

where ?rR(m, n) are determined from (8) for each choice of R. In view of (13), VR can be 
decomposed into a form which displays a linear combination of different costs as in 
relation (5). Let us consider what happens in the two extreme cases of (Y = 0,l. When 
(Y = 1, then CR(m, n) = T,(m, n). Let nTTR(m, n) correspond to an optimal policy and 
suppose ii(m, n) corresponds to the policy defined by p = 1 (that is, only one unit is sent 
to all alarms). When /3 = 1, the state transition diagram shows that the only possible 
states are (m, 0) for m 2 0. Therefore, for (Y = 1, we obtain from (14) that 

and 

v=c T,(m,n)ii(m,n). 
m 

Let the difference between state probabilities be given by 

6(m, n) = rR(m, n) - i;(m, 0). 

As relation (9) shows, Tr(m, n) 2 T,(m, 0) for n 2 0. Also Tl(m, 0) 2 Tr(O,O), and so we 
find that 

2 TdO, 0) x Wn, n). (15) 
cm. n) 

Since the sum of equilibrium probabilities over all states must equal unity, it follows that 
the last sum in (15) is zero. This shows that when cx = 1 an optimal policy is obtained by 
letting /3 = 1 for all states. This is an entirely reasonable conclusion in view of the fact 
that cx = 1 is tantamount to stating that only the response delays of the first arriving fire 
company are of any significance and that having two companies at a fire is of no 
importance under any circumstances. In the contrary case of (Y = 0, the cost CR becomes 
PT, + T2, and an argument completely analogous to the one given above shows that an 
optimal policy is achieved by setting p = 0 in all states. This means, of course, that one 
always sends two units to any alarm. We therefore see that the extremes of (Y 
correspond to either minimizing response time to all current alarms, with no concern for 
future risk due to the possible unavailability of units, or minimizing response time to 
alarms which may occur in the future, achieved by sacrificing serious alarms which 
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unless i = M, in 

which case we STOP, 

let I -+ 1 +I 

Define 

k_= I, with prob j - ‘t’ x,/h 
/:I 

k, ‘2, with prob $, x,/x -a 

Fig. 2 

arrive now. In effect, the trade-off parameter is an indicator of how much one wished to 
discount future costs. There will be no attempt here to solve the general minimization 
problem (see Swersey [5]) but we do want to show that the size of the problem can be 
drastically reduced by proving that the optimal policy can be chosen to have a special 
form. In order to do this, suppose that l? is an optimal decision rule defined by some 
Ei(m, n) for i = 1,2. . . M. Now construct a new decision rule in the following way. 
Suppose, first, that for an alarm of type 1, Al/h 2 p(m, n), where p is the sum over i in 
SI of Ai/h and S, is determined by El. Then send one unit to this alarm with probability /? 
and send two with probability Al/A - p. For all other alarms of type i > 1, send two. Then 
continue as indicated in the flow diagram of Fig. 2. 

It is clear that there is a smallest integer i*, 1 5 i* I M, for which 

Moreover, under this new policy one has 

i*-I i*-I 

prob(send one unit) = z, hi/A + @ - z, hi/A = j? 

(16) 

prob(send two units) = j=$+, Ai/A + $ AilA - @ = 1 - fi. 

Therefore, the transition probabilities for this policy are the same as for the optimal 
policy E so that the steady-state probabilities ~(m, n) as determined by (8) are un- 
changed. Moreover, the expected average cost, (15), also remains unaltered in value 
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which determines CR in (14) are the same for the new policy as for d. Thus, we have 
obtained a new optimal decision rule which is defined by 

ki(???y t2) = 1 1, if i I i*(m, n) 
2, if i 2 i*(m, n). (17) 

At the cutoff value i = i*, we randomize by sending one unit with probability 

and two with probability 

i*-I 

p - 2 hi/h. 
i=l 

That is. if 

i < i*, send one 

i > i*, send two 

i = i*, send one or two according to the randomized scheme given above. 

Roughly, this policy (known as the “Swersey cutoff theorem” [l, 51 states that one fire 
company is sent to all less serious alarms and two to all the more serious incidents, 
which is certainly plausible. The value of the optimal decision rule in this form is that it is 
simple to implement in practice when i*(m, n) is known. Moreover, the search for 
i*(m, n) has now been reduced from a total of 2M possible actions in each state (m, n) to 
the much smaller number of M + 1 possibilities (ignoring randomization) enumerated by 
ki(m,n)=lforisjandki(m,n)=2fori>j,j=O...M. 

4. SPATIAL RESPONSE 

It is not uncommon in practice for the vehicles dispatched from facilities stationed in 
two adjoining sectors to cooperate by providing mutual aid in the event that one or the 
other is not able to respond to a call. The interdistrict response to calls outside the 
primary area of responsibility introduces an important consideration in the design of 
district boundaries. In an effort to minimize the maximum response distance (or time, as 
the case may be) one would be inclined to draw the boundary between two services 
areas A and B, so that all points in A are closer to the facility located in A than in B, and 
vice versa for B. However, if the average alarm rate As is much larger than the rate A,+ 
then when all units in B are saturated because of the heavy demand, the next arriving 
call in B is answered by a unit from A. The average response time, however, would be 
lower if the district boundaries had been closer to the facility B. This can be demon- 
strated mathematically (which will be done below) and is illustrated in Fig. 3. This 
represents a somewhat idealized situation in which each district has a facility located at 
its center with one responding unit. In effect what the figure suggests is that under 
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District A 
with alarm 
rate X, 

District B 
with alarm 
rate X, 

C 1” arrivlng call 

Total travel distance with 
conventional boundory design 

2”6 arriving 

/- 

COll 
2M arriving 
call , 

\ 0 

--f 

0 r / 
0 

Cl”arriving call 

Total travel distance with boundary 
moved to the right. This total is 
now less than in the conventional 
design 

Fig. 3. The effect of changing district boundaries on overall response time. 

interdistrict dispatching there is a trade-off between the two conflicting objectives of 
rapid response to a call now and the ability to respond effectively to calls in the future. 
This is not too dissimilar to the decision of how many units to send to a given alarm 
which we considered earlier. The question now is which units to send, which is a 
problem of districting. This can be turned into a Markov decision problem, as we will see. 

It is best to begin by considering the case of two fixed service areas (or “response 
neighborhoods”) A,, AZ (as shown in Fig. 4) which are the primary sectors of respon- 

Unit U, 

Unit- U, 

Fig. 4 
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sibility for two fire companies Ur, UZ. Alarms occur as independent Poisson processes at 
rates A,, A2 and service time for each unit is exponential at the same rate p. 

When a call arrives in A,, it is serviced by UI, if available. Otherwise, it is serviced by 
U?. If both units are busy, then the call is “lost” (that is, it is handled by a backup unit 
from outside the region). Each server can either be busy or free (label these possibilities 
by a one or zero, respectively. Then the system has four states: 

(O,O)-both free 

(l,O)-- U, busy, Uz free 

(0, 1)-U, free, Uz busy 

(1, l)-both busy. 

The equilibrium equations are easily obtained for this system, where A = A, + hz: 

(A + CL~O = AITOO + PL~TII 

2~7711 = A(TIO + TOI) 

Anou = 1-47~10 + nod 

(A + CL~OI = Au~oo+ PTII, 

which, together with noo+ rrlo+ nuI + roll = 1, can be solved to give 

1 
flTToo = 1 + p + p*/2 

xlo = PI + P2/2 
1+p nc+ 

~oI = P? + P212 
1+p 7Tn0 

(18) 

Tll = p2/2 TcHh 

where pl = Al/p, p2 = A21p. If one does not distinguish between servers, then noI + rrlo 
represents the probability of one unit being busy, without caring which. In this case, the 
formulas (18) are identical with the well-known Erlang formulas [2], as is easily verified. 
Moreover, since the Erlang formulas remain valid for an arbitrary service time dis- 
tribution having finite mean l/p [6], one might suppose that (18) also holds true for 
arbitrary service time distributions. That this is so was shown by Chaiken and Ignall [7]. 
Thus, (18) represents an extension of the Erlang case. 

We now pose a decision problem. Suppose the given area actually consists of M 
contiguous but disjoint subregions (or “atoms”) in which the calls arrive at Poisson rates 
hri, i = 1 . . . M. The two areas Al, A2 of primary responsibility are to formed as clusters 
of these atoms. There are 2M ways of accomplishing this and each of these affects 
overall response time since they alter district boundaries. A policy R consists in 
choosing a specific partition of the M atoms into sets Al, A2 and so we can write 
S,(R) = {j ( atom j belongs to Ai as a result of policy R}. Then let 

hi = c & for i = 1,2. 
i in S, 

(19) 
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Our system has four states (m, n), 0 % m, n I 1, whose probabilities v,,,,” depend on the 
choice of R through the values of A,, A?. These are given by (18). Then, following Eq. (3), 
the total average response time to any alarm, conditional on the call not being lost (the 
probability of which is 1 - n,,) is given by 

VR = 2 CRY nbhn, 
OSVI, “51 

(20) 

where the “cost” CR(m, n) is average travel time under policy R to an alarm when the 
system is in state (m, n). If tik is the mean travel time of unit Ui to a call originating in 
atom k(1 I k 5 M) then, since &/A is the probability of an alarm from atom k, 

CR@, 0) = (+ k& 
2 

t2kik)m - VII) 

CR(O, 1) = (ik$, hkik)I(J - Tll) 

cR(l,o) = ($ g, hxhx)lo - 711) 

cR(1, 1) = 0. 

Apparently there is only one opportunity to exercise a decision rule, and that is in state 
(0, O), where, as we have seen, there are 2M choices. In the other states, response time to 
a call is independent of how the region is partitioned into the two districts. 

In order to display VR as the linear combination VR = CUVR,I+ (1 - (u) VR,z as in Eq. (5), 
simply define CR,l(O, 0) = CR(0, 0) and C&O, 0) = 0, C~,l(l, 0) = 0 and C&l, 0) = CR( 1, O), 
CR,I(O, 1) = 0 and CR,z(O, 1) = CR(0, 1). Then 

VR = ~cR(o,ohO,O+(1 -~)[cR(l,o)~I,O+ CR@, l)~O,ll (21) 

Now 

2 tikik = $, tikik - F tikik 

and so if we subtract and add 

to (20) or (21) it follows that 

VR= ’ 
A(1 - Tll) [ 

TOO k& (tlk - f2k)ik + $, t,kik + (TIO + ‘%I) 2 f2kik-j. 
k=l 

Now substitute in the values of noI and rlo from (18): 

vR = A(l?r,,) 
kzs (flk - t2k)ik - i$ $, tlkik + $8, t2kik] + % , 
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(Y= 
t,khk + 1+ P + P2/2 

1+ p 

Observe that (Y is a constant independent of S,, SZ and hence independent of the choice 
of policy R. Now define a constant S by 

s= 6 $, ttlk - t2k)hk/h. (22) 

Then, since pl = (p/h)h,, 

VR = A~llT_oo?r,,) (k&&k - f2k -s)ik)+ (y, (23) 

which is clearly minimized by making the sum as negative as possible. This is achieved 
by choosing Ai to be the set of atoms defined by 

A, = {k 1 t,k - t2k 5 s} 
A2 = {k 1 t,k - t2k > s}. 

The Markov decision problem is completely resolved in this case, a result which was 
established by Carter, Chaiken, and Ignall [8]. Note that if S = 0, then the optimal policy 
describes a boundary in which the travel times of U,, U2 to any incident are equal. In 
this case, one follows the rule “dispatch the closest unit” to any alarm, a policy which is 
nonoptimal when S# 0 even though it is the one generally observed in most public 
services. In essence, S represents the amount of shift from the equal time boundary. It is 
clear that (23) applies to any geographic configuration of atoms. 

It is useful to consider the extreme cases of (Y. When (Y = 1, then VR = CR(O,O) rro,o 
where ~~~~ is independent of the choice of R as we see from (18). Proceeding as above, 
CR(O, 0) may be written as 

cR(o, 0) = ; k$, tlkhk + ,Fs (t2k - hk)ikr 
2 

in which the first sum in the right is also clearly independent of the decision rule R. 
Therefore, the minimum of VR is achieved by letting the sum of terms t2k - tlk over k in 
S2 be as negative as possible. This means that S2 is defined by t2k I tlk or, to put it 
another way, the region is partitioned so as to always send the closest unit. Thus, a = 1 
corresponds to a policy which ignores future degradation of service under the optimistic 
assumption that there is always a sufficient number of fire-fighting units available to 
respond to new calls. The choice cx = 0 in (21) considers the opposite situation in which 
one pessimistically believes that at least some fire companies are always busy on other 
calls and hence unavailable to respond to current alarms. Under these circumstances, the 
closest unit is never sent except for a most fortuitous choice of alarm rates ,$. 

The above considerations may be extended to the case of more than two sectors in 
which r response vehicles are located. Each unit may or may not be busy so that there is 
now 2’ possible states in the system instead of just four. The corresponding model is 
called the “Hypercube Model” [9] since the states are described as vertices of a 
hypercube in r-dimensional space. A discussion of the case r = 3 is in [lo] and [ll]. A 
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treatment of the Markov decision process in this more general setting is also provided by 
Jarvis [ 121. 
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