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Image inpainting plays a significant role in image processing and has many applications.
Framelet based inpainting methods were introduced recently by Cai et al. (2007, 2009)
[6,7,9] under an assumption that images can be sparsely approximated in the framelet
domain. By analyzing these methods, we present a framelet based inpainting model in
which the cost functional is the weighted �1 norm of the framelet coefficients of the
underlying image. The split-Bregman iteration is exploited to derive an iterative algorithm
for the model. The resulting algorithm assimilates advantages while avoiding limitations of
the framelet based inpainting approaches in Cai et al. (2007, 2009) [6,7,9]. The convergence
analysis of the proposed algorithm is presented. Our numerical experiments show that the
algorithm proposed here performs favorably.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Image inpainting refers to the filling-in of missing data in digital images based on the information available in the
observed region. The notion of image inpainting was first introduced into digital image processing in [1]. Since then, broad
applications of image inpainting have been found in image processing such as image restoration, film restoration, text or
scratch removal, error concealment, and digital zooming [2,10,12–14].

The problem of image inpainting can be formulated as follows. We view an image as a vector in R
n by sequentially

concatenating the columns of the image. Let f be an original image defined on the image domain Ω := {1,2, . . . ,n}. Let Λ

be a nonempty subset of Ω where original information of the image f is available in an observed image g . That is, original
information of the image on Ω \ Λ is missing. Let PΛ be an n × n diagonal matrix whose i-th diagonal entry is 1 if i ∈ Λ

and 0 otherwise. With this matrix, our goal is to find f from g such that f interpolates g on Λ, i.e.,

PΛ f = PΛg. (1)

Many successful inpainting methods have been proposed. Most of them are based on numerical PDEs [1,2,10–13]. Re-
cently, inpainting algorithms based on redundant systems have been developed and their efficiency for image inpainting
has been also demonstrated, see, for example, [6,7,9,14]. We are particularly interested in algorithms with redundant sys-
tems generated by framelet systems. Motivations for developing framelet based algorithms are that (i) the redundance of a
framelet system allows us to squeeze the information from the given data on Λ to the missing data on Ω \Λ by perturbing
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the framelet coefficients of the observed image; (ii) many images (e.g. cartoon images) can be modeled as piecewise smooth
functions and framelets can provide a good approximation to such functions via nonlinear approximation (see e.g. [3]); and
(iii) the redundant system reduces artifacts caused by data filling schemes. In what follows, the framelet decomposition op-
erator associated with a tight framelet system is represented by an m × n matrix A with m > n such that A� A = I , where I
is the n ×n identity matrix. Thus, for every vector u ∈ R

n , u = A�(Au), where the components of Au are called the framelet
coefficients of u.

Our inpainting algorithm proposed in this paper is motivated by the framelet based inpainting algorithm (FIA) in [6,7]
and the framelet and Bregman based inpainting algorithm (FBIA) in [9]. To better present the motivation of our inpainting
algorithm, we give a brief review to the FIA and FBIA for the model (1).

The framelet based inpainting algorithm (FIA) roughly has four steps. First, the image to be inpainted is transformed into
a transform domain using a framelet system. Secondly, the framelet coefficients are modified by a thresholding operator
with a carefully chosen threshold. Thirdly, the transformation is inverted to obtain an output image. Finally, an inpainted
image is obtained from the output image by replacing those pixels in Λ with the corresponding pixels of the image to
be inpainted. These four steps can be iteratively applied until certain stopping criteria is met. The corresponding FIA is as
follows:

f k+1 = (I − PΛ)A�Tλ

(
A f k) + PΛg, k = 0,1, . . . , (2)

where λ is a vector in R
m with nonnegative components and Tλ is the soft thresholding operator

Tλ(x) := (
tλ1(x1), tλ2(x2), . . . , tλm (xm)

)�
(3)

with tλi (xi) = max{|xi| − λi,0} xi|xi | . It was further shown in [6] that the resulting sequence { f k} converges to a solution of
the following constrained minimization problem

min
f ,d

{∥∥diag(λ)d
∥∥

1 + 1

2
‖A f − d‖2

2: f ∈ R
n, d ∈ R

m, PΛ f = PΛg

}
. (4)

Selecting the vector λ in (2) and (4) is crucial. The iteration (2) with λ having large components will damage small features
of the underlying image while this iteration with λ having small components will fail to remove the artifacts of the under-
lying image. To take these observations into consideration, it was suggested in [7] that for a given λ having sufficiently large
components, this vector in (2) is reduced by half every fixed number of iterations until the procedure converges.

The framelet and Bregman based inpainting algorithm (FBIA) was proposed for the minimization problem

min
f

{‖A f ‖1: f ∈ R
n, PΛ f = PΛg

}
. (5)

The idea of Bregman iteration is to transfer the constrained problem (5) into a series of the following unconstrained ones⎧⎪⎨
⎪⎩

f k+1 = arg min f

{
‖A f ‖1 + μ

2

∥∥PΛ f − PΛg + ck
∥∥2

2: f ∈ R
n

}
,

ck+1 = ck + (
PΛ f k+1 − PΛg

)
,

(6)

where c0 = 0 and μ > 0 is a parameter introduced by the Bregman iteration. It was proposed in [9] to apply the split-
Bregman technique [15] for solving f k+1 in the first step of (6). The corresponding algorithm is⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un+1 = arg min
u

{
μ

2

∥∥PΛu − PΛg + ck
∥∥2

2 + γ

2

∥∥Au − dn + bn
∥∥2

2: u ∈ R
n
}
,

dn+1 = arg min
d

{
‖d‖1 + γ

2

∥∥d − Aun+1 − bn
∥∥2

2: d ∈ R
m
}
,

bn+1 = bn + (
Aun+1 − dn+1

)
,

(7)

where b0 = 0, d0 = 0, γ > 0 is a parameter introduced by the split-Bregman method. The limit of un in (7) is considered to
be f k+1 in (6).

By comparing the FIA with the FBIA, the advantages of the FIA and the corresponding model (4) over the FBIA and the
corresponding model (5) are that the vector λ in model (4) provides some flexibility for handling framelet coefficients and
the pixels of f k on Λ are always consistent with the available data of g in the FIA. On the other hand, the advantage of the
FBIA and the corresponding model (5) over the FIA and the corresponding model (4) is that the parameters μ and γ in the
FBIA remain unchanged, however, the vector λ in the FIA varies.

Motivated by the FIA and the FBIA, we consider the following framelet based minimization model

min
f

{∥∥diag(λ)A f
∥∥

1: f ∈ R
n, PΛ f = PΛg

}
(8)

for image inpainting and develop its numerical algorithm by using the split-Bregman technique. Our proposed algorithm
will possess the advantages of both the FIA and the FBIA. That is, the parameters in the algorithm are fixed and the output
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of each iterate of the algorithm matches with the observed data on Λ. Moreover, unlike the FBIA in which the Bregman
iteration technique was used twice, our algorithm uses the Bregman iteration technique only once. As demonstrated in
numerical experiments, our algorithm converges in relatively less number of iterations than the FBIA.

The remaining part of the paper is organized as follows. In Section 2, we propose our framelet based split-Bregman
iteration inpainting algorithm. In Section 3, we present the convergence analysis of the algorithm. Section 4 is devoted to
numerical experiment of the algorithm in the context of impulsive noise removal and compares the numerical performance
of our proposed algorithm with that of the FIA and FBIA. Finally, our conclusions are given in Section 5.

2. A framelet based split-Bregman iteration inpainting algorithm

In this section, we propose our framelet based split Bregman iteration inpainting algorithm. We begin by reviewing the
Bregman iteration technique.

The Bregman iteration method is originated in functional analysis for finding extremum of a convex function [4]. It has
been successfully applied to improve image reconstruction quality in the context of total-variation regularization [18] and to
solve �1-related minimization problems [8,9,15,20]. The Bregman iteration is defined via the Bregman distance. For a convex
function J , the Bregman distance with respect to J between two points u and v is defined as

B p
J (u, v) := J (u) − J (v) − 〈u − v, p〉,

where p is in ∂ J (v) := {q: J (s) � J (v) + 〈s − v,q〉, for all s} the subdifferential of J at the point v . The B p
J (u, v) measures

the closeness between u and v in the sense that B p
J (u, v) � 0 and B p

J (u, v) � B p
J (w, v) for all points w on the line segment

connecting u and v .
Let L ∈ R

m×n and g ∈ R
m be given. We briefly review the Bregman iteration for the following constrained minimization

problem

min
u

{
J (u): u ∈ R

n, Lu = g
}
, (9)

where J is a convex function. We assume that J (u) is coercive, i.e., whenever ‖u‖2 → ∞, J (u) → ∞. This ensures that the
set of solutions to problem (9) is nonempty.

Given u0 = p0 = 0, the Bregman iteration for problem (9) is generated by⎧⎪⎨
⎪⎩

uk+1 = arg min
u

{
B pk

J

(
u, uk) + γ

2
‖Lu − g‖2

2: u ∈ R
n
}
,

pk+1 = pk − γ L�(
Luk+1 − g

) ∈ ∂ J
(
uk+1

)
,

(10)

where γ is a fixed step size. The convergence analysis of the Bregman iteration was given in [18]. In particular, under fairly
weak assumptions on J , it was proved that ‖Luk − g‖2 → 0 as k → ∞. The Bregman iteration (10) can be reformulated into
a compact form as follows: Given b0 = 0,⎧⎪⎨

⎪⎩
uk+1 = arg min

u

{
J (u) + γ

2

∥∥Lu − g + bk
∥∥2

2

}
,

bk+1 = bk + (
Luk+1 − g

)
.

(11)

This form will be used in the remaining part of this paper. As an example, Eq. (6) is the Bregman iteration for problem (5).
Next, we will present our framelet based split-Bregman iteration algorithm for problem (8). To this end, we introduce

some notations. For a vector f ∈ R
n , f |Ω\Λ and f |Λ are vectors formed by the components of f corresponding to the

indices in Ω\Λ and Λ, respectively. For the framelet matrix A, A|Ω\Λ and A|Λ are matrices formed by the columns of A
corresponding to the indices in Ω\Λ and Λ, respectively. Then we have that

A f = A|Ω\Λ f |Ω\Λ + A|Λ f |Λ.

For simplicity, for problem (8), we denote

u := f |Ω\Λ, D := A|Ω\Λ, and c := A|Λ f |Λ.

Further, the constraint PΛ f = PΛ g yields f |Λ = g|Λ , that is, the vector c is available. Hence, finding f in problem (8) is
equivalent to finding u in the following minimization problem

min
u

{∥∥diag(λ)(Du + c)
∥∥

1: u ∈ R
|Ω\Λ|}, (12)

where |Ω \ Λ| is the cardinality of the set Ω \ Λ.
To develop the Bregman iteration method for problem (12), we introduce an auxiliary variable d = Du + c, whereby

problem (12) becomes

min
{∥∥diag(λ)d

∥∥
1: u ∈ R

|Ω\Λ|, d ∈ R
m, Du + c = d

}
. (13)
u,d
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By identifying (u,d), ‖diag(λ)d‖1, Du − d, and −c as u, J (u), Lu, and g , respectively, in problem (9), and following the
iterative procedure (11), the Bregman iteration method for problem (12) is⎧⎪⎨

⎪⎩
(
uk+1,dk+1) = arg min

u,d

{∥∥diag(λ)d
∥∥

1 + γ

2

∥∥Du + c − d + bk
∥∥2

2: u ∈ R
|Ω\Λ|, d ∈ R

m
}
,

bk+1 = bk + (
Duk+1 + c − dk+1

)
,

(14)

for k = 0,1, . . . , starting with b0 = 0. The convergence of {uk} and {dk} from (14) was discussed in [17,18] under the
assumption that the minimization problem in the first step of (14) was solved exactly. An approach proceeds by alternatively
updating uk+1 and dk+1, eventually converging to an optimum of minimization problem (14). This approach is described as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Input: bk, c, uk = 0

while “uk and dk do not converge” do

dk+1 ← arg min
d

{∥∥diag(λ)d
∥∥

1 + γ

2

∥∥Dunew + c − d + bk
∥∥2

2: d ∈ R
m
}
,

uk+1 ← arg min
u

{
γ

2

∥∥Du + c − dnew + bk
∥∥2

2: u ∈ R
|Ω\Λ|

}
,

end

(15)

where dnew (respectively unew) is either dk+1 (respectively uk+1) if it is available or dk (respectively uk) otherwise. Updating
uk+1 and dk+1 can be efficiently and explicitly computed. In fact,

dk+1 = Tλ/γ

(
Dunew + bk + c

)
and uk+1 = D�(

dnew − bk),
due to D�D = I and D�c = 0. However, it is not desirable to solve the minimization problem in (15) to full convergence. As
numerically tested in [9,15], it is usually enough to update uk+1 and dk+1 once by the approach (15). We therefore propose
a three-step split-Bregman iteration method for problem (12). This method is summarized in Algorithm 1.

input : observed image g ∈ R
n , set Λ ⊂ Ω := {1, . . . ,n} on which original information of the underlying image is available, vector λ ∈ R

m with
nonnegative components, regularization parameter γ > 0, step size 0 < δ � 1, framelet matrix A ∈ R

m×n

output: image f 	 ∈ R
n

Initialize: k = 0, b0 = 0, u0 = g|Ω/Λ , c = A|Λ g|Λ1

while “uk do not converge” do2
Step 1: dk+1 ← Tλ/γ (Duk + c + bk)3

Step 2: uk+1 ← D�(dk+1 − bk)4

Step 3: bk+1 ← bk + δ(Duk+1 + c − dk+1)5
end6

Write the output of uk of the above loop as u∞ , let f 	|Λ := g|Λ and f 	|Ω/Λ := u∞7

Algorithm 1: Framelet based split-Bregman iteration inpainting algorithm.

In Algorithm 1, the parameters λ, γ , δ are fixed and the pixel values of the solution to problem (12) are the essentially
same as those of g on the set Λ in each iteration. In this sense, Algorithm 1 possesses the advantages of both FCIA and
FBIA. We will see in the next section that the parameter δ will play a critical role in the convergence proof of Algorithm 1.

3. Convergence analysis

In this section, we prove the convergence of Algorithm 1 for the minimization problem (12). To this end, we require that
there is a positive number ρ such that for any f ∈ R

n the framelet matrix A ∈ R
m×n satisfies the inequality

‖A1 f ‖2 � ρ‖ f ‖2, (16)

where A = [A�
0 , A�

1 ]� with A0 ∈ R
m0×n and A1 ∈ R

m1×n formed, respectively, from the low-pass filter and the high-pass
filters of a tight framelet system. We remark that the matrix A derived from a spline tight framelet system with symmet-
ric boundary extension satisfies the inequality (16) (see, e.g., [5,6]). As a result of (16), we can show the existence of a
minimizer to the minimization problem (12). This is stated as follows.

Proposition 3.1. For a framelet matrix A ∈ R
m×n satisfying the inequality (16) and a vector λ ∈ R

m having λi � 0 for i = 1, . . . ,m0
and λi > 0 for i = m0 + 1, . . . ,m, the minimization problem (12) has at least one minimizer.
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Proof. To prove the existence of a solution to problem (12), it suffices to show that ‖diag(λ)(Du + c)‖1 is convex and
coercive with respect to u. The convexity of ‖diag(λ)(Du + c)‖1 is a direct consequence of the triangle inequality. Next, we
show that ‖diag(λ)(Du + c)‖1 is coercive.

Let λmin := min{λi: i = m0 + 1,m0 + 2, . . . ,m}. For any u ∈ R
|Ω\Λ| , we define a vector v ∈ R

n such that v |Ω\Λ := u and
v |Λ := g|Λ . Recall that D = A|Ω\Λ and c = A|Λg|Λ . Then we have that Av = Du + c and

∥∥diag(λ)(Du + c)
∥∥

1 � λmin

( m1∑
i=1

∣∣(Du + c)m0+i
∣∣2

) 1
2

= λmin‖A1 v‖2,

which together with the inequality (16) yields ‖diag(λ)(Du + c)‖1 � ρλmin‖v‖2 � ρλmin‖u‖2. Clearly, if ‖u‖2 → ∞, then
‖diag(λ)(Du + c)‖1 → ∞ which completes the proof. �

Next, we prove the convergence theorem for Algorithm 1.

Theorem 3.2. Let A ∈ R
m×n be a tight framelet matrix satisfying the inequality (16) and λ ∈ R

m a vector having λi � 0 for i =
1, . . . ,m0 and λi > 0 for i = m0 + 1, . . . ,m. Let u	 be a solution to problem (12). For γ > 0 and 0 < δ � 1, then the sequence {uk}
generated by Algorithm 1 satisfies

lim
k→∞

∥∥diag(λ)
(

Duk + c
)∥∥

1 = ∥∥diag(λ)
(

Du	 + c
)∥∥

1. (17)

Furthermore, when u	 is the unique solution of problem (12), then

lim
k→∞

∥∥uk − u	
∥∥

2 = 0. (18)

Proof. For the given vector λ ∈ R
m , we define E : R

m → R for any d ∈ R
m as

E(d) := ∥∥diag(λ)d
∥∥

1.

With this notation, the minimization problem (12) becomes minu{E(Du + c): u ∈ R
|Ω\Λ|} whose solutions form a nonempty

set by Proposition 3.1.
Let the sequences uk , dk , and bk , k = 0,1, . . . , be generated by Algorithm 1. The three steps in Algorithm 1 can be

rewritten as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dk+1 = arg min
d

{
γ

2

∥∥Duk + c − d + bk
∥∥2

2 + E(d): d ∈ R
m
}
,

uk+1 = arg min
u

{
γ

2

∥∥Du + c − dk+1 + bk
∥∥2

2: u ∈ R
|Ω\Λ|

}
,

bk+1 = bk + δ
(

Duk+1 + c − dk+1
)
.

(19)

Applying the first order optimality condition for the first two equations in (19) leads to{
0 = pk+1 + γ

(
dk+1 − (

Duk + c + bk
))

,

0 = γ D�(
Duk+1 + c − dk+1 + bk

) (20)

with some pk+1 ∈ ∂ E(dk+1).
Let u	 denote an arbitrary solution of the model minu{E(Du + c): u ∈ R

|Ω\Λ|}. Define d	 := Du	 + c. By the first order
optimality condition in convex analysis, there exists a vector p	 ∈ ∂ E(d	) such that

0 = D�p	. (21)

Due to E(Duk + c) � E(Duk + c − dk+1) + E(dk+1) by the triangle inequality and 0 = 〈uk − u	, D� p	〉 = 〈Duk − Du	, p	〉 =
〈Duk + c − dk+1, p	〉 + 〈dk+1 − d	, p	〉 by (21), we obtain

E
(

Duk + c
) − E

(
Du	 + c

)
� E

(
Duk + c − dk+1) + 〈

Duk + c − dk+1, p	
〉 + B p	

E

(
dk+1,d	

)
. (22)

Hence, to prove (17), it suffices to show that

lim
k→∞

B p	

E

(
dk,d	

) = 0 and lim
k→∞

∥∥Duk + c − dk+1
∥∥

2 = 0, (23)

which will be verified in the following.
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Denote b	 := 1
γ p	 . Since d	 = Du	 + c, it can be directly checked that⎧⎪⎨

⎪⎩
0 = p	 + γ

[
d	 − (

Du	 + c + b	
)]

,

0 = γ D�(
Du	 + c − d	 + b	

)
,

b	 = b	 + δ
(

Du	 + c − d	
)
.

(24)

Let us define

uk
e := uk − u	, dk

e := dk − d	, bk
e := bk − b	, pk

e := pk − p	.

Subtracting the first equation of (20) from that of (24) leads to

pk+1
e + γ

(
dk+1

e − Duk
e − bk

e

) = 0.

Therefore,〈
pk+1

e ,dk+1
e

〉 + γ
(∥∥dk+1

e

∥∥2
2 − 〈

Duk
e,dk+1

e

〉 − 〈
bk

e,dk+1
e

〉) = 0. (25)

Likewise, the second equations of (20) and (24) yield

γ
(∥∥Duk+1

e

∥∥2
2 − 〈

D�dk+1
e , uk+1

e

〉 + 〈
D�bk

e, uk+1
e

〉) = 0. (26)

By adding (26) and (25) together, we have that

0 = 〈
pk+1

e ,dk+1
e

〉 + γ
(∥∥Duk+1

e

∥∥2
2 + ∥∥dk+1

e

∥∥2
2 − 〈

D�dk+1
e , uk

e + uk+1
e

〉 + 〈
bk

e, Duk+1
e − dk+1

e

〉)
. (27)

Furthermore, subtracting the third equation of (20) from that of (24) yields bk+1
e = bk

e + δ(Duk+1
e − dk+1

e ). Thus, ‖bk+1
e ‖2

2 =
‖bk

e + δ(Duk+1
e − dk+1

e )‖2
2. For this equation, by expanding out the term on right-hand side, we have that〈

bk
e, Duk+1

e − dk+1
e

〉 = 1

2δ

(∥∥bk+1
e

∥∥2
2 − ∥∥bk

e

∥∥2
2

) − δ

2

∥∥Duk+1
e − dk+1

e

∥∥2
2. (28)

We further know that∥∥Duk+1
e

∥∥2
2 + ∥∥dk+1

e

∥∥2
2 − 〈

D�dk+1
e , uk

e + uk+1
e

〉
= 1

2

(∥∥Duk+1
e

∥∥2
2 − ∥∥Duk

e

∥∥2
2 + ∥∥Duk+1

e − dk+1
e

∥∥2
2 − ∥∥Duk

e − dk+1
e

∥∥2
2

)
. (29)

Substituting 〈bk
e, Duk+1

e −dk+1
e 〉 and ‖Duk+1

e ‖2
2 +‖dk+1

e ‖2
2 −〈D�dk+1

e , uk
e + uk+1

e 〉 in (27) by the expressions on the right-hand
sides of (28) and (29), respectively, and summing the resulting equation for k from 0 to K , lead to

γ

2δ

(∥∥b0
e

∥∥2
2 − ∥∥bK+1

e

∥∥2
2

)
=

K∑
k=0

〈
pk+1

e ,dk+1
e

〉 + γ

2

K∑
k=0

(
(1 − δ)

∥∥Duk+1
e − dk+1

e

∥∥2
2 + ∥∥Duk

e − dk+1
e

∥∥2
2

) + γ

2

(∥∥DuK+1
e

∥∥2
2 − ∥∥Du0

e

∥∥2
2

)
.

Because of 0 < δ � 1, we have that

γ

2δ

∥∥b0
e

∥∥2
2 + γ

2

∥∥Du0
e

∥∥2
2 �

K∑
k=0

〈
pk+1

e ,dk+1
e

〉 + γ

2

K∑
k=0

∥∥Duk+1
e − dk

e

∥∥2
2. (30)

Since the Bregman distance is nonnegative and 〈pk+1
e ,dk+1

e 〉 = B pk+1

E (d	,dk+1) + B p	

E (dk+1,d	), where pk+1 ∈ ∂ E(dk+1) and
p∗ ∈ ∂ E(d	), then

∑∞
k=0〈pk+1

e ,dk+1
e 〉 is a series with nonnegative terms and hence is convergent by (30). The convergence

of the series implies that limk→∞〈pk
e,dk

e〉 = 0. Therefore, limk→∞ B p	

E (dk,d	) = 0 which is the first equation in (23).
Eq. (30) also asserts that

∑∞
k=0 ‖Duk

e − dk+1
e ‖2

2 < ∞. Hence, limk→∞ ‖Duk
e − dk+1

e ‖2 = 0. By Du	 + c = d	 , we have that
Duk + c − dk+1 = Duk

e − dk+1
e . Thus, limk→∞ ‖Duk + c − dk+1‖2 = 0 which is the second equation in (23). Hence, Eq. (17)

holds.
Next, we show that (18) holds when u	 is the unique solution to (12). In fact, Eq. (17) implies that the sequence {uk} is

bounded due to the coerciveness of the function E(D · +c). Therefore, the uniqueness of the solution u	 to (12) leads to a
fact that any convergent subsequence of {uk} must converge to u	 . Hence, (18) holds. �

In summary, by Proposition 3.1, the optimization problem (12) has at least one solution. By Theorem 3.2, for a se-
quence {uk} generated by Algorithm 1 the sequence of values ‖diag(λ)(Duk + c)‖1 converges to the minimum value of
‖diag(λ)(Du + c)‖1 on R

|Ω\Λ| . Furthermore, if the solution to problem (12) is unique, the sequence {uk} converges to this
unique solution. We remark that the proof of Theorem 3.2 was motivated by the work in [9,17].
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Fig. 1. Performance of the FIA, the FBIA, and Algorithm 1 on the images of “House”, “Cameraman”, “Lena” corrupted with different level of salt–pepper
noise. Column 1: The PSNR-values against noise levels; Column 2: CPU-times against noise levels.

4. Numerical experiments

In this section, we present numerical results of our proposed algorithm. Specially, we will compare the computational
performance of the proposed Algorithm 1 with that of FIA and FBIA. All the experiments are performed under Windows 7
and MATLAB R2010a running on a PC equipped with an Intel Core 2 Quad CPU at 3.00 GHz and 2G RAM memory.

We use the “House”, “Cameraman”, and “Lena” images of size 256 × 256 as original images in our numerical tests. The
objective quality of the restored images is evaluated quantitatively by the peak signal-to-noise ratio (PSNR) which is defined
as follows:

PSNR = 20 log10
255

√
n
	

,
‖ f − f ‖2
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Table 1
Restoration results of the FIA, the FBIA, and Algorithm 1 with noise level r = 10%, 30%, 50%, 70%, and 90%.

Level Method House Cameraman Lena

PSNR (dB) Time (s) PSNR (dB) Time (s) PSNR (dB) Time (s)

10% FIA 39.70 68.67 32.29 56.37 33.64 39.75
FBIA 40.81 35.02 32.44 35.15 33.69 32.62
Algorithm 1 41.07 14.90 32.45 18.83 33.78 16.01

30% FIA 38.39 66.63 30.68 66.13 32.21 52.37
FBIA 39.20 39.13 30.85 37.91 32.22 38.39
Algorithm 1 39.39 20.71 30.96 25.09 32.38 23.00

50% FIA 35.57 82.91 28.18 88.92 30.00 70.11
FBIA 36.24 48.81 28.35 52.58 30.04 51.23
Algorithm 1 36.46 28.05 28.40 33.70 30.14 31.39

70% FIA 31.66 117.65 25.33 124.55 27.58 108.54
FBIA 32.19 71.55 25.45 72.57 27.67 73.34
Algorithm 1 32.37 40.29 25.46 45.47 27.72 44.49

90% FIA 25.64 223.50 21.76 256.81 24.01 236.58
FBIA 26.09 135.24 21.82 125.66 24.16 124.84
Algorithm 1 26.07 71.09 21.81 83.80 24.17 74.29

Fig. 2. PSNR history of Algorithm 1, the FIA, and the FBIA for the test image “House” corrupted with different salt–pepper noise level: (top-left) 20%
salt–pepper noise, (top-right) 40% salt–pepper noise, (bottom-left) 60% salt–pepper noise, (bottom-right) 80% salt–pepper noise.

with f being the original image, f 	 the restored image, and n the number of pixels in f .
In all numerical experiments, Algorithm 1 with the inpainting parameters γ = 0.2 and δ = 0.5 is stopped when the

relative error between the successive iterates of the restored images satisfies

‖uk+1 − uk‖2

‖uk+1‖2
� 0.001,

where uk is the denoised image at the k-th iteration. For the FIA and the FBIA, the parameters are determined experimen-
tally for the restored image to achieve the best possible PSNR-value.
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Fig. 3. The inpainted images for the image “Cameraman” superposed by texts.

In our first experiment, the framelet matrix A we used is from the piecewise cubic tight framelet system with decom-
position level L. The filters associated with the piecewise cubic tight framelet system (see [19]) are h0 = 1

16 [1,4,6,4,1],
h1 = 1

8 [1,2,0,−2,−1], h2 =
√

6
16 [−1,0,2,0,−1], h3 = 1

8 [−1,2,0,−2,1], and h4 = 1
16 [1,−4,6,−4,1], where h0 is the low-

pass filter and hk , 1 � k � 4, are the high-pass filters. The detail on how to formulate A from the tight framelet filters can
be found in [5,6]. In this case, A is a m × n matrix with m = n(1 + 24L). The thresholding vector λ ∈ R

m is chosen as

λ = (
0, . . . ,0︸ ︷︷ ︸

n

,2−L/2, . . . ,2−L/2︸ ︷︷ ︸
24n

, . . . ,2−l/2, . . . ,2−l/2︸ ︷︷ ︸
24n

, . . . ,2−1/2, . . . ,2−1/2︸ ︷︷ ︸
24n

)�
, (31)

as suggested in [7]. Hence the low-pass tight frame coefficients are not thresholded in our Algorithm 1, which is a standard
practice in image denoising.

The inpainting problem in the first experiment is to recover images corrupted by salt–pepper noise. In our simulation,
the test images were corrupted with “pepper” (pixel value 0) and “salt” (pixel value 255) noise with noise levels varying
from 10% to 90%. The decomposition level L is chosen to be 1. In order to use Algorithm 1, the FIA, and the FBIA, the
adaptive median filter (AMF) [16] is employed to detect and label the noisy pixels, therefore, generating the inpainting area
Ω \ Λ. The numerical results of noise level 10%, 30%, 50%, 70%, and 90% are listed in Table 1. We found that almost all the
PSNR-values of the restored images by Algorithm 1 are higher than those of the FIA and the FBIA. Table 1 also contains
the CPU-time consumed by these three algorithms. It is clearly that Algorithm 1 uses much less CPU-time than the FIA and
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the FBIA. To better visualize the performance of the three algorithms, the results of the noise level varying from 10% to 90%
are plotted in Fig. 1.

To further investigate the convergence properties of the FIA, the FBIA, and Algorithm 1, in Fig. 2 we plot the PSNR-values
against iteration numbers of these three algorithms when restoring the test image “House” contaminated by different levels
of salt–pepper noise. We observe that PSNR history of the FIA has severe stalling effect. Each time the parameter λ of the
FIA decreases, the PSNR-value jumps up quickly for the first several iteration, but soon tends to be stable. As a result, it
takes more number of iterations for the FIA to produce the same PSNR-value with the FBIA and Algorithm 1. For the FBIA,
when the noise level is below 50%, the PSNR-value has several oscillations; when the noise level is above 50%, the PSNR
history of the FBIA is similar to that of Algorithm 1. At all the noise levels, the PSNR-value of Algorithm 1 gets to a stable
value much more quickly than the FBIA.

In our second experiment, the considered inpainting problem is to restore images overlying with texts. In Fig. 3(a), the
locations of the words beginning with “The” serve as the set Ω \ Λ. The framelet matrix A in this experiment is from
the piecewise linear tight framelet system with the decomposition level L. The corresponding filters are h0 = 1

4 [1,2,1],
h1 =

√
2

4 [1,0,−1], and h2 = 1
4 [−1,2,−1]. In this case, A is an m × n matrix with m = n(1 + 8L). The thresholding vector

λ ∈ R
m is chosen as

λ = (
0, . . . ,0︸ ︷︷ ︸

n

,2−L/2, . . . ,2−L/2︸ ︷︷ ︸
8n

, . . . ,2−l/2, . . . ,2−l/2︸ ︷︷ ︸
8n

, . . . ,2−1/2, . . . ,2−1/2︸ ︷︷ ︸
8n

)�
. (32)

The results produced by the FIA, the FBIA, Algorithm 1 with the decomposition level L being 1 are shown in Figs. 3(b)–(d),
respectively. One can see that all algorithms can efficiently remove the superposed words. However, Algorithm 1 uses
relatively less CPU-time than the FIA and FBIA.

5. Conclusion

In this paper, we propose a new framelet based iterative inpainting algorithm which is derived by using the split-
Bregman method. The convergence of this algorithm is given. Numerical comparisons with the framelet based inpainting
algorithms FIA and FBIA are given to illustrate the advantages of our algorithm. Numerical results presented in this paper
confirm that the proposed algorithm perform favorably and takes much less CPU-time than that of the FIA and the FBIA.
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