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a b s t r a c t

A Steinhaus matrix is a binary square matrix of size nwhich is symmetric, with a diagonal
of zeros, and whose upper-triangular coefficients satisfy ai,j = ai−1,j−1 + ai−1,j for all
2 6 i < j 6 n. Steinhaus matrices are determined by their first row. A Steinhaus graph
is a simple graph whose adjacency matrix is a Steinhaus matrix. We give a short new
proof of a theorem, due to Dymacek, which states that even Steinhaus graphs, i.e. those
with all vertex degrees even, have doubly-symmetric Steinhausmatrices. In 1979Dymacek
conjectured that the complete graph on two vertices K2 is the only regular Steinhaus graph
of odd degree. Using Dymacek’s theorem, we prove that if (ai,j)16i,j6n is a Steinhaus matrix
associatedwith a regular Steinhaus graph of odd degree then its sub-matrix (ai,j)26i,j6n−1 is
a multi-symmetric matrix, that is a doubly-symmetric matrix where each row of its upper-
triangular part is a symmetric sequence. We prove that the multi-symmetric Steinhaus
matrices of size n whose Steinhaus graphs are regular modulo 4, i.e. where all vertex
degrees are equal modulo 4, only depend on

⌈ n
24

⌉
parameters for all even numbers n, and

on
⌈ n
30

⌉
parameters in the odd case. This result permits us to verify Dymacek’s conjecture

up to 1500 vertices in the odd case.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let s = (a1, a2, . . . , an−1) be a binary sequence of length n − 1 > 1 with entries aj in F2 = {0, 1}. The Steinhaus matrix
associated with s is the square matrixM(s) = (ai,j) of size n, defined as follows:

• ai,i = 0 for all 1 6 i 6 n,
• a1,j = aj−1 for all 2 6 j 6 n,
• ai,j = ai−1,j−1 + ai−1,j for all 2 6 i < j 6 n,
• ai,j = aj,i for all 1 6 i, j 6 n.

By convention M(∅) = (0) is the Steinhaus matrix of size n = 1 associated with the empty sequence. For example, the
following matrixM(s) inM5(F2) is the Steinhaus matrix associated with the binary sequence s = (1, 1, 0, 0) of length 4.

M(s) =


0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 0
0 0 1 0 0

 .

The set of all Steinhaus matrices of size n > 2 will be denoted by SMn(F2). It is clear that, for every positive integer n, the
set SMn(F2) has a cardinality of 2n−1.
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The Steinhaus triangle associated with s is the upper-triangular part of the Steinhaus matrix M(s). It was introduced by
Hugo Steinhaus in 1963 [14], who asked whether there exists a Steinhaus triangle containing as many 0’s as 1’s for each
admissible size. Solutions of this problem appeared in [12,11]. A generalization of this problem to all finite cyclic groups
was posed in [13] and was partially solved in [4].
The Steinhaus graph associated with s is the simple graph G(s) on n vertices whose adjacency matrix is the Steinhaus

matrix M(s). For graph theory terminology we refer to [5]. A vertex of a Steinhaus graph G(s) is usually labelled by its
corresponding row number inM(s) and the ith vertex of G(s)will be denoted by Vi. For instance, the following graph is the
Steinhaus graph G(s) associated with the sequence s = (1, 1, 0, 0).

For every positive integer n, the zero-edge graph on n vertices is the Steinhaus graph associated with the sequence of zeros
of length n− 1.
Steinhaus graphs were introduced by Molluzzo in 1978 [13]. A general problem on Steinhaus graphs is that of

characterizing those satisfying a given graph property. The bipartite Steinhaus graphs were characterized in [3,6,10] and
the planar ones in [9]. In [7], the following conjectures were made:

Conjecture 1. The regular Steinhaus graphs of even degree are the zero-edge graph on n vertices, for all positive integers n, and
the Steinhaus graph G(s) on n = 3m+ 1 vertices generated by the periodic sequence s = (1, 1, 0, . . . , 1, 1, 0) of length 3m, for
all positive integers m.

Conjecture 2. The complete graph on two vertices K2 is the only regular Steinhaus graph of odd degree.

These conjectures were verified up to n 6 25 in 1988 by exhaustive search [2]. More recently [1], Augier and Eliahou
extended the verification up to n 6 117 vertices by considering the weaker notion of parity-regular Steinhaus graphs,
i.e. Steinhaus graphs where all vertex degrees have the same parity. They searched regular graphs in the set of parity-
regular Steinhaus graphs. This has enabled them to perform the verification because it is known that Steinhaus matrices
associated with parity-regular Steinhaus graphs on n vertices depend on approximately n/3 parameters [2,1]. This result
is based on a theorem, due to Dymacek, which states that Steinhaus matrices associated with parity-regular Steinhaus
graphs of even type are doubly-symmetric matrices, i.e. where all the entries are symmetric with respect to the diagonal
and the anti-diagonal of the matrices. A short new proof of this theorem is given in Section 2. Using Dymacek’s theorem,
Bailey and Dymacek showed [2] that binary sequences associated with regular Steinhaus graphs of odd degree are of the
form (x1, x2, . . . , xk, xk, . . . , x2, x1, 1). In Section 3, we refine this result and, more precisely, we prove that if (ai,j)16i,j6n is
a Steinhaus matrix associated with a regular Steinhaus graph of odd degree, then its sub-matrix (ai,j)26i,j6n−1 is a multi-
symmetric Steinhaus matrix, i.e. a doubly-symmetric matrix where each row of the upper-triangular part is a symmetric
sequence. A parametrization and a counting of multi-symmetric Steinhaus matrices of size n are also given in Section 3 for
all n > 1. In Section 4, we show that, for a Steinhaus graphwhose Steinhausmatrix ismulti-symmetric, the knowledge of the
vertex degrees modulo 4 leads to a system of binary equations on the entries of its Steinhaus matrix. In Section 5, we study
the special case of multi-symmetric Steinhaus matrices whose Steinhaus graphs are regular modulo 4, i.e. where all vertex
degrees are equal modulo 4. We show that such a matrix of size n only depends on

⌈ n
24

⌉
parameters for all n even, and on⌈ n

30

⌉
parameters in the odd case. Using these parametrizations, we obtain, by computer search, that for all positive integers

n 6 1500, the zero-edge graph on n vertices is the only Steinhaus graph on n vertices with a multi-symmetric matrix and
which is regular modulo 4. This permits us to extend the verification of Conjecture 2 up to 1500 vertices.

2. A new proof of Dymacek’s theorem

Recall that a square matrixM = (ai,j) of size n > 1 is said to be doubly-symmetric if the entries ofM are symmetric with
respect to the diagonal and to the anti-diagonal ofM , that is

ai,j = aj,i = an−j+1,n−i+1, for all 1 6 i, j 6 n.

In [7], Dymacek characterized the parity-regular Steinhaus graphs. These results are based on the following theorem on
parity-regular Steinhaus graphs of even type, where all vertex degrees are even.

Theorem 2.1 (Dymacek’s Theorem). The Steinhaus matrix of a parity-regular Steinhaus graph of even type is doubly-symmetric.
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In this section we give a new easier proof of Dymacek’s theorem. The main idea of our proof is that the anti-diagonal
entries of a Steinhaus matrix are determined by the vertex degrees of its associated Steinhaus graph.

Theorem 2.2. Let G be a Steinhaus graph on n > 2 vertices and M = (ai,j) its associated Steinhaus matrix. Then every anti-
diagonal entry of M can be expressed by means of the vertex degrees of G. If we denote by deg(Vi) the degree of the vertex Vi in
G, then for all 1 6 i 6

⌊ n
2

⌋
, we have

ai,n−i+1 ≡
i−1∑
k=0

(
i− 1
k

)
deg (Vi+k+1) ≡

i−1∑
k=0

(
i− 1
k

)
deg (Vn−i−k) (mod 2).

The proof is based on the following lemmawhich shows that each entry of the upper-triangular part of a Steinhausmatrix
M = (ai,j) can be expressed by means of the entries of the first row {a1,2, . . . , a1,n}, the last column {a1,n, . . . , an−1,n} or the
over-diagonal {a1,2, . . . , an−1,n} ofM .

Lemma 2.3. Let M = (ai,j) be a Steinhaus matrix of size n > 2. Then, for all 1 6 i < j 6 n, we have

ai,j =
i−1∑
k=0

(
i− 1
k

)
a1,j−k =

n−j∑
k=0

(
n− j
k

)
ai+k,n =

j−i−1∑
k=0

(
j− i− 1
k

)
ai+k,i+k+1.

Proof. Easily follows from the relation: ai,j = ai−1,j−1 + ai−1,j for all 2 6 i < j 6 n. �

Proof of Theorem 2.2. We begin by expressing each vertex degree of the Steinhaus graph G by means of the entries of the
first row, the last column and the over-diagonal ofM . Here we view the entries ai,j as 0, 1 integers. For all 2 6 i 6 n− 1, we
obtain

deg(Vi) =
n∑
j=1

ai,j =
i−1∑
j=1

aj,i +
n∑

j=i+1

ai,j

≡

i−1∑
j=1

(aj,i+1 + aj+1,i+1)+
n∑

j=i+1

(ai−1,j−1 + ai−1,j)

≡

i−1∑
j=1

aj,i+1 +
i∑
j=2

aj,i+1 +
n−1∑
j=i

ai−1,j +
n∑

j=i+1

ai−1,j

≡ a1,i+1 + ai,i+1 + ai−1,i + ai−1,n (mod 2).

By Lemma 2.3, it follows that

i−1∑
k=0

(
i− 1
k

)
deg (Vi+k+1) ≡

i−1∑
k=0

(
i− 1
k

)
(a1,i+k+2 + ai+k+1,i+k+2 + ai+k,i+k+1 + ai+k,n)

≡

i−1∑
k=0

(
i− 1
k

)
a1,2i−k+1 +

i−1∑
k=0

(
i− 1
k

)
ai+k+1,i+k+2

+

i−1∑
k=0

(
i− 1
k

)
ai+k,i+k+1 +

i−1∑
k=0

(
i− 1
k

)
ai+k,n

≡ ai,2i+1 + ai+1,2i+1 + ai,2i + ai,n−i+1 ≡ ai,n−i+1 (mod 2),

for all 1 6 i 6
⌊ n
2

⌋
. The second congruence can be treated in the same way. �

Remark. We deduce from Theorem 2.2 a necessary condition on the vertex degrees of a given labelled graph to be a
Steinhaus graph. Indeed, vertex degrees of a Steinhaus graph on n vertices must satisfy the following binary equations:

i−1∑
k=0

(
i− 1
k

)
deg (Vi+k+1) ≡

i−1∑
k=0

(
i− 1
k

)
deg (Vn−i−k) (mod 2), for all 1 6 i 6

⌊n
2

⌋
.

More generally, an open problem, corresponding to Question 3 in [8], is to determine if an arbitrary graph, not necessary
labelled, is isomorphic to a Steinhaus graph.

Now, we characterize doubly-symmetric Steinhaus matrices.
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Proposition 2.4. Let M = (ai,j) be a Steinhaus matrix of size n > 3. Then the following assertions are equivalent:
(i) the matrix M is doubly-symmetric,
(ii) the over-diagonal of M is a symmetric sequence,
(iii) the entries ai,n−i+1 of the anti-diagonal of M vanish for all 1 6 i 6

⌊ n−1
2

⌋
.

Proof. (i) H⇒ (ii): Trivial.
(ii) H⇒ (iii): Suppose that the over-diagonal ofM is a symmetric sequence, that is

ai,i+1 = an−i,n−i+1,

for all 1 6 i 6 n− 1. If n is odd, then we have

ai,n−i+1 =
n−2i∑
k=0

(
n− 2i
k

)
ai+k,i+k+1 =

n−2i+1
2∑
k=0

(
n− 2i
k

)
(ai+k,i+k+1 + an−i−k,n−i−k+1) = 0,

for all 1 6 i 6
⌊ n−1
2

⌋
. Otherwise, if n is even, then we obtain

ai,n−i+1 =

n
2−i−1∑
k=0

(
n− 2i
k

)
(ai+k,i+k+1 + an−i−k,n−i−k+1)+ 2

(
n− 2i− 1
n
2 − i

)
a n
2 , n2+1

= 0,

for all 1 6 i 6
⌊ n−1
2

⌋
.

(iii) H⇒ (i): By induction on n. Consider the sub-matrix N = (ai,j)26i,j6n−1 that is a Steinhaus matrix of size n − 2. By
induction hypothesis, the matrix N is doubly-symmetric. Then it remains to prove that a1,j = an−j+1,n for all 2 6 j 6 n. First,
since a1,n = 0, it follows that a1,n−1 = a1,n + a2,n = a2,n and for all 2 6 j 6 n− 2, we have

a1,j =
n−1∑
k=j+1

a2,k + a1,n−1 =
n−j∑
k=2

ak,n−1 + a2,n = an−j+1,n. �

We are now ready to prove Dymacek’s theorem.
Proof of Theorem 2.1. Let G be a parity-regular Steinhaus graph of even type on n vertices and M = (ai,j) its Steinhaus
matrix. If n = 1, thenM = (0)which is trivially doubly-symmetric. Otherwise, for n > 2, Theorem 2.2 implies that

ai,n−i+1 ≡
i−1∑
k=0

(
i− 1
k

)
deg (Vi+k+1) ≡ 0 (mod 2),

for all 1 6 i 6
⌊ n
2

⌋
. Finally, the matrixM is doubly-symmetric by Proposition 2.4. �

3. Multi-symmetric Steinhaus matrices

In this section, we will study in detail the structure of Steinhaus matrices associated with regular Steinhaus graphs of
odd degree.
Let G be a Steinhaus graph on n > 1 vertices. Then, for every integer 1 6 i 6 n, we denote by G \ {Vi} the graph obtained

from G by deleting its ith vertex Vi and its incident edges in G. Since the adjacencymatrix of the graph G\{V1} (resp. G\{Vn})
is the Steinhaus matrix obtained by removing the first row (resp. the last column) in the adjacency matrix of G, it follows
that the graph G \ {V1} (resp. G \ {Vn}) is a Steinhaus graph on n− 1 vertices.
Bailey and Dymacek studied the regular Steinhaus graphs of odd degree in [2], where the following theorem is stated,

using Dymacek’s theorem.

Theorem 3.1 ([2]). Let G be a regular Steinhaus graph of odd degree d on 2n > 4 vertices. Then d = n, the Steinhaus graph
G \ {V1, V2n} is regular of even degree n− 1, and a1,j = a1,2n−j+1 for all 2 6 j 6 2n− 1.

Remark. In every simple graph, there are an even number of vertices of odd degree. Therefore parity-regular Steinhaus
graphs of odd type and thus regular Steinhaus graphs of odd degree have an even number of vertices.

In their theorem, the authors studied the formof the sequence associatedwithG.We aremore interested in the Steinhaus
matrix of G \ {V1, V2n} in what follows.
Recall that a square matrix of size n > 1 is said to be multi-symmetric if M is doubly-symmetric and each row of the

upper-triangular part ofM is a symmetric sequence, that is

ai,j = ai,n−j+i+1, for all 1 6 i < j 6 n.
First, it is easy to see that each column of the upper-triangular part of a multi-symmetric matrix is also a symmetric

sequence.
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Proposition 3.2. Let M = (ai,j) be a multi-symmetric matrix of size n. Then, each column of the upper-triangular part of M is a
symmetric sequence, that is ai,j = aj−i,j for all 1 6 i < j 6 n.

Proof. Easily follows from the relation: ai,j = ai,n−j+i+1 = aj−i,n−i+1 = aj−i,j for all 1 6 i < j 6 n. �

As for doubly-symmetric Steinhaus matrices, multi-symmetric Steinhaus matrices can be characterized as follows.

Proposition 3.3. Let M = (ai,j) be a Steinhaus matrix of size n > 3. Then the following assertions are equivalent:

(i) the matrix M is multi-symmetric,
(ii) the first row, the last column and the over-diagonal of M are symmetric sequences,
(iii) the entries ai,n−i+1, an−2i+1,n−i+1 and ai,2i vanish for all 1 6 i 6

⌊ n−1
2

⌋
.

Proof. Similar to the proof of Proposition 2.4 and by using Lemma 2.3 and Proposition 3.2. �

We now refine Theorem 3.1.

Theorem 3.4. Let G be a regular Steinhaus graph of odd degree n on 2n > 4 vertices. Then G \ {V1, V2n} is a regular Steinhaus
graph of even degree n− 1 whose associated Steinhaus matrix is multi-symmetric.

Proof. LetM = (ai,j) be the Steinhaus matrix associated with G. Theorem 3.1 implies that the Steinhaus graph G \ {V1, V2n}
is regular of even degree n− 1 and that we have

a1,j = a1,2n−j+1,

for all 2 6 j 6 2n− 1. Therefore, for all 3 6 j 6 2n− 1, we have

a2,j + a2,2n−j+2 = (a1,j−1 + a1,j)+ (a1,2n−j+1 + a1,2n−j+2) = (a1,j−1 + a1,2n−j+2)+ (a1,j + a1,2n−j+1) = 0.

Then the first row of the matrix B = (ai,j)26i,j62n−1, the Steinhaus matrix of the graph G \ {V1, V2n}, is a symmetric sequence.
Moreover, by Dymacek’s theorem, the matrix B is doubly-symmetric. Finally, by Proposition 3.3, the matrix B is multi-
symmetric. �

Remark. By Theorem 3.4, it is easy to show that Conjecture 1 implies Conjecture 2. Indeed, if Conjecture 1 is true, then the
zero-edge graph on n vertices is the only regular Steinhaus graph of even degreewhose Steinhausmatrix ismulti-symmetric.
It follows, by Theorem 3.4, that if G(s) is a regular Steinhaus graph of odd degree on n+ 2 vertices then s = (0, . . . , 0, 1) or
s = (1, . . . , 1). Therefore the Steinhaus graph G(s) is the star graph on n+2 vertices which is not a regular Steinhaus graph.

In the rest of this section we will study in detail the multi-symmetric Steinhaus matrices. First, in order to determine a
parametrization of these matrices, we introduce the following operator

T : SMn(F2) −→ SMn−3(F2),

which assigns to each matrix M = (ai,j) in SMn(F2) the Steinhaus matrix T (M) = (bi,j) in SMn−3(F2) defined by
bi,j = ai−1,j−2, for all 1 6 i < j 6 n− 3. As depicted in the following matrix, the upper-triangular part ofM is an extension
of the upper-triangular part of T (M).

0 a1,2 a1,3 a1,4 a1,5 a1,6 · · · · · · a1,n−4 a1,n−3 a1,n−2 a1,n−1 a1,n
0 a2,3 b1,2 b1,3 b1,4 · · · · · · · · · b1,n−5 b1,n−4 b1,n−3 a2,n

0 a3,4 b2,3 b2,4 b2,n−4 b2,n−3 a3,n
0 a4,5 b3,4 b3,n−3 a4,n

0 a5,6
. . .

... a5,n

0
. . .

. . .
...

...

. . .
. . .

. . .
...

...
0 an−5,n−4 bn−6,n−5 bn−6,n−4 bn−6,n−3 an−5,n

0 an−4,n−3 bn−5,n−4 bn−5,n−3 an−4,n
0 an−3,n−2 bn−4,n−3 an−3,n

0 an−2,n−1 an−2,n
0 an−1,n

0



.

Proposition 3.5. Let M = (ai,j) be a Steinhaus matrix of size n > 4. Then the extension M of T (M) only depends on the
parameters a1,2, a1,j0 and a1,n, with j0 in {3, . . . , n− 1}.
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Proof. Let 3 6 j0 6 n−1. Each entry a1,j, for 3 6 j 6 n−1, can be expressed bymeans of a1,j0 and the entries of T (M) = (bi,j).
Indeed, we have

a1,j = a1,j0 +
j0−2∑
k=j−1

b1,k, for all 3 6 j < j0,

a1,j = a1,j0 +
j−2∑

k=j0−1

b1,k, for all j0 < j 6 n− 1.

Then the entries a1,2, a1,j0 and a1,n determine the extensionM of T (M). �

Therefore, for every Steinhaus matrix N of size n − 3, there exist 8 distinct Steinhaus matrices M of size n such that
T (M) = N . We can also use this operator to determine parametrizations of multi-symmetric Steinhaus matrices.

Proposition 3.6. Let M = (ai,j) be amulti-symmetric Steinhausmatrix of size n. Let ji be an element of the set {2i+1, . . . , n− i}
for all 1 6 i 6

⌊ n−1
3

⌋
. Then the matrix M depends on the following parameters:

• a1,j1 and
{
a2i,j2i | 1 6 i 6

⌈ n
6

⌉
− 1

}
, for n even,

•
{
a2i+1,j2i+1 | 0 6 i 6

⌈ n−3
6

⌉
− 1

}
, for n odd.

Proof. Let M = (ai,j) be a multi-symmetric matrix of size n. We consider the sub-matrices T (M), T 2(M) =

T (T (M)), T 3(M), T 4(M), . . .. By successive application of Proposition 3.5 on the extension T i−1(M) of T i(M) and since
the entries ai,n−i+1, an−2i+1,n−i+1 and ai,2i vanish for all 1 6 i 6

⌊ n−1
2

⌋
by Proposition 3.3, the parametrizations of the

multi-symmetric matrixM follow. �

For all positive integers n, the number of multi-symmetric Steinhaus matrices of size n immediately follows.

Theorem 3.7. Let n be a positive integer. If we denote by MS(n) the number of multi-symmetric Steinhaus matrices of size n,
then we have

MS(n) =

{
2d

n
6e, for n even,

2
⌈
n−3
6

⌉
, for n odd.

4. Vertex degrees of Steinhaus graphs associated with multi-symmetric Steinhaus matrices

In this section, we analyse the vertex degrees of a Steinhaus graph associated with a multi-symmetric Steinhaus matrix
of size n. We begin with the case of doubly-symmetric Steinhaus matrices.

Proposition 4.1. Let n be a positive integer andG be a Steinhaus graph on n verticeswhose Steinhausmatrix is doubly-symmetric.
Then, for all 1 6 i 6 n, we have

deg(Vi) = deg(Vn−i+1).

Proof. If we denote byM = (ai,j) the Steinhaus matrix associated with the graph G, then, for all 1 6 i 6 n, we have

deg(Vi) =
n∑
j=1

ai,j =
n∑
j=1

an−j+1,n−i+1 =
n∑
j=1

aj,n−i+1 = deg(Vn−i+1). �

We shall now see that, for a Steinhaus graph associated with a multi-symmetric Steinhaus matrix, the knowledge of the
vertex degrees modulo 4 imposes strong conditions on the entries of its Steinhaus matrix. In order to prove this result, we
distinguish different cases depending on the parity of n.

Proposition 4.2. Let n be an even number and G be a Steinhaus graph on n vertices whose Steinhaus matrix M = (ai,j) is
multi-symmetric. Then, we have

deg(V1) = deg(Vn) ≡ a1, n2+1 (mod 2),

deg(V2) = deg(Vn−1) ≡ 2a1, n2+1 (mod 4),

deg(V3) = deg(Vn−2) ≡ 2a2, n2+1 (mod 4),

deg(V2i) = deg(Vn−2i+1) ≡ 2a2,2i+1 + 2ai,2i+1 (mod 4), for all 2 6 i 6
n
2
− 2.
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Proof. First, Proposition 3.3 implies that the entries ai,2i and a2i+1, n2+i+1 vanish for all 1 6 i 6
n
2 − 1. This leads to

deg(V1) =
n∑
j=2

a1,j =

n
2∑
j=2

(a1,j + a1,n−j+2)+ a1, n2+1 ≡ a1, n2+1 (mod 2),

deg(V2) = a1,2 +

n
2+1∑
j=3

(a2,j + a2,n−j+3) = 2

n
2+1∑
j=3

a2,j ≡ 2a1,2 + 2a1, n2+1 ≡ 2a1, n2+1 (mod 4),

deg(V3) = (a1,3 + a2,3)+

n
2+1∑
j=4

(a3,j + a3,n−j+4)+ a3, n2+2 = 2a2,3 + 2

n
2+1∑
j=4

a3,j ≡ 2a2, n2+1 (mod 4),

and, for all 2 6 i 6 n
2 − 2, we have

deg(V2i) =
2i−1∑
j=i+1

(aj,2i + a2i−j,2i)+ ai,2i +

n
2+i∑
j=2i+1

(a2i,j + a2i,n−j+2i+1)

= 2
2i−1∑
j=i+1

aj,2i + 2

n
2+i∑
j=2i+1

a2i,j

≡ 2
2i−1∑
j=i+1

aj,2i+1 + 2
2i∑

j=i+2

aj,2i+1 + 2

n
2+i−1∑
j=2i

a2i−1,j + 2

n
2+i∑
j=2i+1

a2i−1,j

≡ 2ai+1,2i+1 + 2a2i,2i+1 + 2a2i−1,2i + 2a2i−1, n2+i
≡ 2ai+1,2i+1 + 2a2i−1,2i+1 ≡ 2a2,2i+1 + 2ai,2i+1 (mod 4).

Finally, we complete the proof by Proposition 4.1. �

Remark. Let n be an even number. In every Steinhaus graph on n vertices whose Steinhaus matrix is multi-symmetric the
fourth vertex V4 has a degree divisible by 4.

Proposition 4.3. Let n be an odd number and G be a Steinhaus graph on n vertices whose Steinhaus matrix M = (ai,j) is multi-
symmetric. Then, we have

deg(V1) = deg(Vn) ≡ 0 (mod 2),
deg(V2) = deg(Vn−1) ≡ 2a1, n+12 (mod 4),

deg(V2i) ≡ 2ai+1,2i+1 + 2a2i−1,2i+1 + 2a2i−1, n−12 +i (mod 4), for all 2 6 i 6
n− 3
2

,

deg(V2i+1) ≡ 2a2,2i+2 (mod 4), for all 1 6 i 6
n− 3
2

.

Proof. Proposition 3.3 implies that the entries ai,2i and a2i,(n+1)/2+i vanish for all 1 6 i 6 n−3
2 . Since each row and each

column of the upper-triangular part ofM is symmetric, we can use the relation
m∑
k=1

ai,j+k ≡ ai−1,j + ai−1,j+m (mod 2), for all 2 6 i < j 6 n−m+ 1

as in the proof of Proposition 4.2, and the results follow. �

Remark. Let n be an odd number. In every Steinhaus graph on n vertices whose Steinhaus matrix is multi-symmetric the
third vertex V3 has a degree divisible by 4.

5. Multi-symmetric Steinhaus matrices of Steinhaus graphs with regularity modulo 4

In this section, we consider the multi-symmetric Steinhaus matrices associated with Steinhaus graphs which are regular
modulo 4, i.e. where all vertex degrees are equal modulo 4. First, we determine an upper bound of the number of these
matrices. Two cases are distinguished, according to the parity of n.

Theorem 5.1. For all odd numbers n, there are at most 2d
n
30e multi-symmetric Steinhaus matrices of size n whose associated

Steinhaus graphs are regular modulo 4.
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Proof. Let n be an odd number andM = (ai,j) a multi-symmetric Steinhaus matrix of size n. By Proposition 3.6, the matrix
M depends on the parameters a2i+1, n+12 +i for 0 6 i 6

⌈ n−3
6

⌉
− 1. If the Steinhaus graph associated withM is regular modulo

4, then Proposition 4.3 implies that a2,2j = 0 for all 2 6 j 6 n−1
2 and thus

a2i,2j =
i−1∑
k=0

a2,2j−2k = 0,

for all 1 6 i < j 6 n−1
2 .

If n ≡ 1 (mod 4), then n+12 is odd and

a4i+1, n+12 +2i = a4i, n−12 +2i + a4i, n+12 +2i = 0,

for all 0 6 i 6
⌊ ⌈ n−3

6

⌉
−1

2

⌋
. Therefore the matrixM can be parametrized by{

a4i+3, n+32 +2i | 0 6 i 6 m− 1
}

,

with

m =

⌈⌈ n−3
6

⌉
− 1
2

⌉
.

Suppose that we know the p parameters in

P =
{
a4i+3, n+32 +2i | m− p 6 i 6 m− 1

}
.

Then, by Proposition 3.6 again, the multi-symmetric matrix T 4(m−p)−1(M) can be parametrized by P . Therefore the entries{
ai,2i+1 | 4(m− p) 6 i 6

n− 1
2
− 2(m− p)

}
in T 4(m−p)−1(M) depend on the parameters in P . Moreover, if the Steinhaus graph associated with M is regular modulo 4,
then Proposition 4.3 implies that

a2,2i+1 = a2i−1,2i+1 ≡ ai+1,2i+1 + a2i−1, n−12 +i ≡ ai+1,2i+1 + a
(
n+1
2 −i

)
+1,2

(
n+1
2 −i

)
+1

(mod 2),

for all 1 6 i 6 n−1
2 . If the inequality

n+ 1
2
− 4(m− p) > 4(m− p)

holds, then the entries a2,2i+1 depend on the parameters in P for all 4(m− p) 6 i 6 n+1
2 − 4(m− p). Since we have a2,2i = 0

for all 4(m− p) 6 i 6 n+3
2 − 4(m− p), it follows that the entries{

ai,j |
2 6 i 6 n+ 5− 16(m− p)

8(m− p)+ i− 1 6 j 6 n+ 3− 8(m− p)

}
depend on the parameters in P . Suppose now that p is a solution of the following inequality

n+ 5− 16(m− p) > 4(m− p)− 1.

Therefore the extensionM of T (4(m−p)−1)(M) depends on the entries ai,n+3−8(m−p) for 2 6 i 6 4(m− p)−1 and a1, n+12 which
vanishes by Proposition 4.3. Thus, all the entries of the matrixM depend on the p parameters in P . Finally, a solution of this
inequality can be obtained when

p =
⌈ n
30

⌉
>

⌈⌈ n−3
6

⌉
− 1
2

⌉
−
n+ 6
20

.

If n ≡ 3 (mod 4), then n+12 is even and

a4i+3, n+32 +2i = a4i+2, n+12 +2i + a4i+2, n+32 +2i = 0,

for all 0 6 i 6
⌈ ⌈ n−3

6

⌉
−1

2

⌉
− 1. Therefore the matrixM can be parametrized by
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a4i+1, n+12 +2i | 0 6 i 6 m

}
with

m =

⌊⌈ n−3
6

⌉
− 1
2

⌋
.

As above, in the case n ≡ 1 (mod 4), we can prove that all the entries of the matrixM depend on the p parameters in{
a4i+1, n+12 +2i | m− p+ 1 6 i 6 m

}
if p is a solution of the following inequality

n− 16(m− p)− 4 > 4(m− p)+ 1.

A solution is obtained when

p =
⌈ n
30

⌉
>

⌊⌈ n−3
6

⌉
− 1
2

⌋
−
n− 5
20

. �

Theorem 5.2. For all even numbers n, there are at most 2d
n
24e multi-symmetric Steinhaus matrices of size n whose associated

Steinhaus graphs are regular modulo 4.

Sketch of proof. Similar to the proof of Theorem 5.1. Let M = (ai,j) be a multi-symmetric Steinhaus matrix of even size
n. First, by Proposition 3.6, for all positive integers p < m − 1 with m =

⌈ n
6

⌉
, the multi-symmetric Steinhaus matrix

T 2(m−p−1)(M) can be parametrized by the p entries in

P =
{
a2i,4i+1 | m− p 6 i 6 m− 1

}
.

Moreover, if the Steinhaus graph associated with M is regular modulo 4, then Proposition 4.2 implies that a1, n2+1 = 0 and
a2,2i+1 = ai,2i+1 for all 2 6 i 6 n

2 − 1. It follows that the entries a2i,n−2(m−p)+1 also depend on the parameters in P for all
1 6 i 6 n

2 − 3(m− p)+ 2. Finally, we can see that, if p is a solution of the following inequality

n
2
− 3(m− p)+ 2 > m− p− 1,

then, as in the proof of Proposition 3.6, the extension M of T 2(m−p−1)(M) depends on the entries a2i,n−2(m−p)+1 for 1 6 i 6
m − p − 1 and thus all the entries of the matrix M can be expressed by means of the p parameters in P . We conclude the
proof by observing that the inequality is obtained when

p =
⌈ n
24

⌉
>
⌈n
6

⌉
−
n+ 6
8

. �

Using these explicit parametrizations of the multi-symmetric Steinhaus matrices whose Steinhaus graphs are regular
modulo 4, we obtain the following result by computer search:

Computational result. For all positive integers n 6 1500, the zero-edge graph on n vertices is the only Steinhaus graph on n
vertices with a multi-symmetric Steinhaus matrix and which is regular modulo 4.

This result can be easily proved for all odd numbers in the special case of regular Steinhaus graphs on n vertices whose
Steinhaus matrices are multi-symmetric.

Theorem 5.3. For all odd numbers n, there is no regular Steinhaus graph on n verticeswhose Steinhausmatrix ismulti-symmetric,
except the zero-edge graph on n vertices.

Proof. Let n be an odd number. Let G be a regular Steinhaus graph on n vertices and M = (ai,j) its Steinhaus matrix. Then
Proposition 4.3 implies that

deg(Vi) ≡ 0 (mod 4),

for all 1 6 i 6 n and

a2,2i+2 = 0,
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for all 1 6 i 6 n−3
2 . If we denote by⊕ the addition in F2 and by+ the addition in the integers, then we obtain

deg(V3) = a1,3 + a2,3 +
n∑
j=4

a3,j = (a1,2 ⊕ a2,3 + a2,3)+

n−3
2∑
j=2

(a3,2j+1 + a3,2j+2)+ 2a3,n

= 2a2,3 +

n−3
2∑
j=2

(a2,2j ⊕ a2,2j+1 + a2,2j+1 ⊕ a2,2j+2)+ 2(a2,n−1 ⊕ a2,n)

= 2

n−1
2∑
j=1

a2,2j+1 = 2(a1,2 +
n∑
j=3

a2,j) = 2× deg(V2).

This leads to deg(Vi) = 0 for all 1 6 i 6 n and thus G is the zero-edge graph on n vertices. �

Finally, the above computational result permits us to extend the verification of Conjecture 2 up to n 6 1500 vertices.
Indeed, as proved in the remark following Theorem 3.4, for a Steinhaus graphG on 2n vertices, ifG\{V1, V2n} is the zero-edge
graph on 2n− 2 vertices, then G is the star graph on 2n vertices which is not a regular graph. Therefore, by Theorem 3.4, we
obtain the following theorem.

Theorem 5.4. There is no regular Steinhaus graph of odd degree on 2 < n 6 1500 vertices.

Acknowledgment

The authorwould like to thank Shalom Eliahou for introducing him to the subject and for his help in preparing this paper.

References

[1] Maxime Augier, Shalom Eliahou, Parity-regular Steinhaus graphs, Mathematics of Computation 77 (2008) 1831–1839.
[2] Craig Bailey,WayneM. Dymacek, Regular Steinhaus graphs, in: Proc. 19th southeast. Conf. Combinatorics, Graph Theory and Computing, Baton Rouge
1988, in: Congr. Numerantium, vol. 66, 1988, pp. 45–47.

[3] Gerard J. Chang, Bhaskar DasGupta, Wayne M. Dymacek, Martin Fürer, Matthew Koerlin, Yueh-Shin Lee, Tom Whaley, Characterizations of bipartite
Steinhaus graphs, Discrete Mathematics 199 (1–3) (1999) 11–25.

[4] Jonathan Chappelon, On a problem of Molluzzo concerning Steinhaus triangles in finite cyclic groups, INTEGERS : Electronic Journal of Combinatorial
Number Theory 8 (1) (2008) #A37.

[5] Reinhard Diestel, Graph Theory, third ed., Springer, 2006.
[6] Wayne M. Dymacek, Bipartite Steinhaus graphs, Discrete Mathematics 59 (1–2) (1986) 9–20.
[7] Wayne M. Dymacek, Steinhaus graphs, in: Proc. of the 10th Southeast. Conf. Combinatorics, Graph Theory and Computing, Boca Raton 1979, Vol. I,
in: Congr. Numerantium, vol. 23, 1979, pp. 399–412.

[8] Wayne M. Dymacek, Matthew Koerlin, Tom Whaley, A survey of Steinhaus graphs, in: Proc. 8th Quadrennial International Conf. on Graph Theory,
Combinatorics, Algorithms and Application, Kalamazoo, Mich. 1996, Vol. I, 1996, pp. 313–323.

[9] Wayne M. Dymacek, Jean-Guy Speton, TomWhaley, Planar Steinhaus Graphs, in: Congressus Numerantium, vol. 144, 2000, pp. 193–206.
[10] Wayne M. Dymacek, TomWhaley, Generating strings for bipartite Steinhaus graphs, Discrete Mathematics 141 (1995) 95–107.
[11] Shalom Eliahou, Delphine Hachez, On a problem of Steinhaus concerning binary sequences, Experimental Mathematics 13 (2) (2004) 215–229.
[12] Heiko Harborth, Solution of Steinhaus’s problem with plus and minus signs, Journal of Combinatorial Theory. Series A 12 (1972) 253–259.
[13] John C. Molluzzo, Steinhaus graphs, in: Theory and Applications of Graphs, in: Lecture Notes in Mathematics, vol. 642, 1978, pp. 394–402.
[14] Hugo Steinhaus, One Hundred Problems in Elementary Mathematics, Pergamond, Elinsford, New York, 1963, pp. 47–48.


	Regular Steinhaus graphs of odd degree
	Introduction
	A new proof of Dymacek's theorem
	Multi-symmetric Steinhaus matrices
	Vertex degrees of Steinhaus graphs associated with multi-symmetric Steinhaus matrices
	Multi-symmetric Steinhaus matrices of Steinhaus graphs with regularity modulo 4
	Acknowledgment
	References


