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Abstract

Let (X,OX) be a noetherian formal scheme and considerDqct(X) its derived category of sheave
with quasi-coherent torsion homology. We show that there is a bijection between the set o
(i.e., ⊗-ideals) localizing subcategories ofDqct(X) and subsets inX, generalizing previous wor
by Neeman. If, moreover,X is separated, the associated localization and acyclization fun
are described in certain cases. WhenZ ⊂ X is a stable for specialization subset, its associa
acyclization isRΓZ . WhenX is a scheme, the corresponding localizing subcategories are gen
by perfect complexes and we recover Thomason’s classification of thick subcategories.
other hand, ifY ⊂ X is generically stable, we show that the associated localization funct
Hom·

X
(RΓX\YO′

X
,G).

 2004 Elsevier Inc. All rights reserved.

Introduction

The techniques of localization have a long tradition in several areas of mathem
They have the virtue of concentrating our attention on some part of the structure in
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allowing us to handle more manageable piecesof information. One of the clear exampl
of this technique is the localization in algebra where one studies a module centeri
attention around a point of the spectrum of the base ring, i.e., a prime ideal. Th
was transported to topology by Adams and later Bousfield proved that there are
of localizations in stable homotopy. In the past decade it became clear that one co
successfully transpose homotopy techniques to the study of derived categories (ov
and schemes). In particular, in our previous work, we have shown that for the d
category of a Grothendieck category we also have plenty of localizations. In that
[4], we applied the result to the existence of unbounded resolutions and we hinted t
the case of the derived category of quasi-coherent sheaves over a nice scheme, ther
be a connection between localizations in the derived category and the geometric structu
of the underlying space.

The present paper realizes that goal extending the work of Neeman [14, Theore
who classified all Bousfield localizations in the derived category of modules ov
noetherian ringD(R), to the classification of the Bousfield localizations of the deri
category of sheaves with quasi-coherenttorsion homology over a noetherian form
scheme (Theorem 4.12). This category is a basic ingredient in Grothendieck duali
Also, if the formal scheme is just anusualnoetherian scheme, it gives the derived categ
of sheaves with quasi-coherent homology. Thus we obtain an analog of thechromatic
tower in stable homotopy for these kind of schemes and formal schemes. It is clear th
the monoidal structure of the derived category is an essential part of the cohomo
formalism. In fact, to get the classification, we were forced to consider onlyrigid localizing
subcategories. This means, roughly speaking, that the localizing subcategory is an
the monoidal sense (see Section 3). This condition is needed in order to have compatibil
with open sets. It holds for all localizing subcategories in the affine case, that is why
not considered by Neeman.

The classification theorem is more useful if the localization functor associated
subset of the formal scheme can be expressed in geometrically meaningful terms wit
respect to this subset. This can be done for noetherian separated formal scheme
certain conditions over the subset. The most richcase is the case of stable for specializat
subsets (that recover the classical system of supports). They provide localizations th
the property of being compatible with the tensor product. They are also charact
by being associated to a right-derived functor and they correspond to the sm
localizations of topologists. All of this is contained in Theorem 5.3. These kin
localizations correspond to Lipman’s notion of idempotent pairs [13]. The assoc
localizing subcategory is characterized in terms of homological support (Theorem
With this tool at hand we see that our classification of tensor triangulated cate
(or smashing localizations) agrees with Thomason classification of thick⊗-subcategorie
of the derived category quasi-coherent sheaves [18], when both make sense, i.e
noetherian separated scheme.

The dual notion oftensor compatibleis that of Hom compatiblelocalization. They
correspond to stable for generalization subsets, which are complementary of
for specialization subsets. The Hom compatible localizations can be described via
certain formal duality relation with the tensor compatible localization associated
complementary subsets (Theorem 5.14). If thestable for generalization subset is an op
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set, the localization functor agrees with the left-derived of a completion. This relate
results of [1] to this circle of ideas.

While our work does not exhaust all the possible questions about these topic
believe that it can be useful for the current program of extracting information on a
looking at its derived category.

Now, let us describe briefly the contentsof the paper. The first section recalls t
concepts and notations used throughout and we give a detailed overview of the sym
closed structure in the derived categories we are going to consider. In the next s
we specify the relationship between cohomology with supports and the algebraic v
defined in terms of ext sheaves. We make a detailed study of the cohomology with r
to a system of supports in the case of a formal scheme and interpret the classical re
terms of Bousfield localization. In the third section we discuss the basic properties origid
localizing subcategoriesand give a counterexample of a non-rigid localizing subcate
generated by a set. In Section 4 we state and prove the classification theorem, th
localizing subcategories in the derived category of quasi-coherent torsion sheave
noetherian formal schemeX are in one-to-one correspondence with the subsets in
underlying space ofX. The arguments are close in spirit to [14], with the modificati
needed to make them work in the present context. In the last section we give a desc
of the acyclization functor associated to a stable for specialization subset as the deriv
functor of the sections with support and connect it to smashing localizations a
Lipman’s idempotent pair. We characterize thelocalizing subcategory associated to suc
subset by means of homological support. This result gives us a comparison of Tho
classification and ours for a noetherian separated scheme. Finally, by adjointness, w
also a description of the localization functor associated to generically stable subsets.

The question of describing localizations for subsets that are neither stab
specialization nor generically stable remains open for the moment.

1. Basic facts and set-up

1.1. Preliminaries

For formal schemes, we will follow the terminology of [7, Section 10] and of [2]
this paper, we will always consider noetherian schemes and noetherian formal scheme

Let (X,OX) be a noetherian formal scheme and letI be an ideal of definition ofX. In
what follows, we will identify an usual (noetherian) scheme with a formal scheme w
ideal of definition is 0. Denote byA(X) the category of allOX-modules. The powers ofI
define a torsion class (see [17, pp. 139–141]) whose associated torsion functor is

ΓIF := lim−→
n>0

HomOX

(
OX/In,F

)

for F ∈ A(X). This functor does not depend onI but on the topology it determines in th
rings of sectionsOX, therefore we will denote it byΓ ′

X
. LetAt(X) be the full subcategor

of A(X) consisting of sheavesF such thatΓ ′ F = F ; it is a plumpsubcategory ofA(X).

X
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This means it is closed for kernels, cokernels, and extensions (cf. [2, beginning o
Most important for us is the subcategoryAqct(X) := At(X) ∩Aqc(X). It is again a plump
subcategory ofA(X) by [2, Corollary 5.1.3] and it defines a triangulated subcategor
D(X) := D(A(X)), the derived category ofA(X), it is Dqct(X), the full subcategory o
D(X) formed by complexes whose homology lies inAqct(X). If X = X is an usual scheme
thenAt(X) =A(X) andAqct(X) =Aqc(X).

The inclusion functorAqct(X) → A(X) has a right adjoint denotedQt
X

(see [2,
Corollary 5.1.5]). By the existence of K-injective resolutions ([16, Theorem 4.5] o
Theorem 5.4]) it is possible to get right-derived functors from functors with sour
category of sheaves, as a consequence we have a functorRQt

X
: D(X) → D(Aqct(X)). If

X is either separated or of finite Krull dimension, this functor induces an equiva
betweenDqct(X) andD(Aqct(X)) by [2, Proposition 5.3.1]. In these cases, we will identif
D(Aqct(X)) andDqct(X). To avoid potential confusions, let us point out that all left- a
right-derived functors defined overDqct(X), or over D(Aqct(X)) when this category is
equivalent to the former, are defined using K-flat and K-injective resolutions inK(X).

The categoriesAqct(X) andA(X) are Grothendieck categories so we can apply
machinery developed in [4]. In particular, ifL is the smallest localizing subcategory
D(Aqct(X)) or of D(X) that contains a given set, then there is a localization functor� such
thatL is the full subcategory ofD(Aqct(X)) or of D(X), respectively, whose objects a
sent to 0 by� (see [4, Theorem 5.7]). The categoryDqct(X) is a localizing subcategory o
D(X), therefore ifL is the smallest localizing subcategory ofD(X) that contains a give
set of objects inDqct(X), the localization functor� defined overD(X) lands insideDqct(X),
thereforeL is characterized again as the full subcategory ofDqct(X) whose objects ar
sent to 0 by�. If X is either separated or of finite Krull dimension, the localizations
Dqct(X) are identified with those ofD(Aqct(X)). For the general formalism of Bousfie
localization in triangulated categories the reader may consult [4, §1].

1.2. Monoidal structures

The categoriesA(X) andAqct(X) aresymmetric closed, in the sense of Eilenberg an
Kelly, see [9]. For everyF ∈ K(A(X)) there is a K-flat resolutionPF → F , this follows
from [16, Proposition 5.6]. As a consequence, there exists a derived functor

F ⊗L
OX

− : D(X) → D(X)

defined byF ⊗L
OX

G = PF ⊗OX
G. Also the functorHom·

OX
(F ,−) has a right-derived

functor defined byRHom·
OX

(F ,G) = Hom·
OX

(F ,JG) whereG → JG denotes a K-
injective resolution ofG. The usual relations hold providingD(X) with the structure of
symmetric closed category. Observe that the unit object isOX.

Given F ,G ∈ Dqct(X), the complexF ⊗L
OX

G has quasi-coherent torsion homolo
Indeed, it is a local question, and for affinenoetherian formal schemes, a complex
Dqct(X) is quasi-isomorphic to a complex made by locally free sheaves so the hom
of F ⊗L

OX
G is quasi-coherent. Furthermore, for anyF ∈ Dt(X) and E ∈ D(X), the

complexF ⊗L
OX

E ∈ Dt(X). Again, this is a local question so it can be checked using
Proposition 5.2.1(a)] and the complexK·∞ in its proof. Therefore, for eachF ∈ Dqct(X),
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the functorF ⊗L
OX

− : Dqct(X) → D(X) takes values inDqct(X). So it provides an interna
tensor product. One can see that the categoryDqct(X) has a symmetric monoidal structur
The unit object isRΓ ′

X
OX where byRΓ ′

X
we denote the right-derived functor ofΓ ′

X
. We

will denote this object byO′
X

for convenience.
If furthermoreX is either separated or of finite Krull dimension, the categoryDqct(X) =

D(Aqct(X)) possesses the richer structure of symmetric closed category. The interna
is defined as

Hom·
X(F ,G) := RQt

X
RHom·

OX
(F ,G)

for F ,G ∈ Dqct(X). It is also important to note that the⊗-hom adjunction is internal, i.e
it holds replacing the usual hom-group with the internal hom we have just defined, na
we have a canonical isomorphism

Hom·
X

(
F ⊗L

OX
G,M

) = Hom·
X

(
F ,Hom·

X(G,M)
)

whereF ,G, andM ∈ Dqct(X).
If the reader is only interested in usual schemes, then it is enough to consider the

coherence of the derived tensor product. In this case the topology in the sections
structural sheaf is discrete,Γ ′

X is the identity functor and so the unit object isOX . For the
internal hom-sheaf, in the separated or finite Krull dimension case, one uses the d
“coherator” functorRQ defined in [10, §3] taking

Hom·
X(F ,G) := RQRHom·

OX
(F ,G)

for F andG ∈ D(Aqc(X)).

2. Cohomology with supports on formal schemes

2.1. Algebraic supports

GivenF ∈ Dqct(X) andZ ⊂ X a closed subset, for the right-derived functor of shea
sections with support alongZ we have thatRΓZF ∈ Dqct(X) because in the distinguishe
triangle

RΓZF → F → Rj∗j∗F +−→, (1)

where j :X \ Z ↪→ X denotes the canonical open embedding,Rj∗j∗F ∈ Dqct(X) [2,
Proposition 5.2.6 and Corollary 5.2.11]. On the other hand, the closed subsetZ is the
support of a coherent sheafOX/Q whereQ is an open coherent ideal inOX. The functor

Γ ′
Z := ΓQ = lim−→ HomOX

(
OX/Qn,−)
n>0
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of “sections with algebraic support alongZ” does not depend onQ but only on Z.
The natural mapΓ ′

Z → ΓZ is an isomorphism when applied to sheaves inAqct(X).
Furthermore, the natural morphism inD(X) obtained by derivingθZ,F : RΓ ′

ZF → RΓZF
is an isomorphism for allF ∈ Dqct(X). Indeed, this is a local question, so we can ass
that X is affine with X = Spf(A) whereA is a noetherian adic ring. Letκ : Spf(A) →
Spec(A) be the canonical map. LetX := Spec(A). The setZ can be considered as a clos
subset of eitherX or X. We will useΓ ′

Z andΓZ for the corresponding pair of endofuncto
in A(X) andA(X). This will not cause any confusion, because the context will ma
clear in which category we are working. By[2, Proposition 5.2.4] it is enough to show th
κ∗θZ,F is an isomorphism. But thisis true because the diagram

κ∗RΓ ′
ZF

κ∗θZ,F
κ∗RΓZF

RΓ ′
Zκ∗F RΓZκ∗F

commutes and all the unlabeled maps are isomorphisms (for the map in the bottom u
cit. and [1, Corollary 3.2.4]).

GivenE,F ∈ Dqct(X) there is a bifunctorial map

ψZ(E,F) :E ⊗L
OX

RΓZF → RΓZ

(
E ⊗L

OX
F

)
defined as follows. AssumeE is K-flat and F is K-injective and choose a quas
isomorphismE ⊗OX

F → J with J K-injective. The composed map (of complexe
E ⊗OX

ΓZF → E ⊗OX
F → J has image intoΓZJ and we defineψZ(E,F) to be the

resulting factorization

E ⊗L
OX

RΓZF ∼−→ E ⊗OX
ΓZF ψZ(E,F)−−−−−→ ΓZJ ∼−→ RΓZ

(
E ⊗L

OX
F

)
.

This map is a quasi-isomorphism ifZ is closed. The question is local so using again
Propositions 5.2.4 and 5.2.8], we restrict to the analogous question for an ordinary sche
X and a closed subsetZ ⊂ X. We conclude by [1, Corollary 3.2.5].

2.2. Systems of supports on formal schemes

In general, a subsetZ ⊂ X stable for specializationis a unionZ = ⋃
α∈I Zα of a

directed system of closed subsets{Zα | α ∈ I } of X andΓZ = lim−→α∈I
ΓZα , this correspond

to the classical case of a “system of supports.” WritingΓ ′
Z = lim−→α∈I

Γ ′
Zα

the canonical map
Γ ′

Z → ΓZ induces natural mapsθZ,F : RΓ ′
ZF → RΓZF for all F ∈ D(X). If F → J is a

K-injective resolution, we have that

θZ,F : RΓ ′
ZF = Γ ′

ZJ = lim−→ Γ ′
Zα
J

lim−→α∈I
θZα,F−−−−−−−−→ lim−→ ΓZαJ = RΓZF ,
α∈I α∈I
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therefore, for allF ∈ Dqct(X), θZ,F is a quasi-isomorphism.
Mimicking the case of a closed subset, forE,F ∈ Dqct(X) there is a bifunctorial map

ψZ(E,F) :E ⊗L
OX

RΓZF → RΓZ

(
E ⊗L

OX
F

)
that is a quasi-isomorphism. To check this fact we may assumeE is K-flat andF is K-
injective and choose a quasi-isomorphismE ⊗OX

F →J with J a K-injective resolution
and consider the commutativity of the diagram of complexes

E ⊗L
OX

ΓZF
ψZ(E,F)

ΓZJ

lim−→
α∈I

(
E ⊗L

OX
ΓZαF

) lim−→α∈I
ψZα (E,F)

lim−→
α∈I

ΓZαJ

2.3. Bousfield triangles for systems of supports

Let Z ⊂ X be a subset stable for specialization as in the previous parag
The endofunctorRΓZ: Dqct(X) → Dqct(X) together with the natural transformatio
ρ: RΓZ → id is a Bousfield acyclization functor. Let us see why. We need to check thρ

induces a canonical isomorphismρ(RΓZM) = (RΓZρ)(M), for allM ∈ Dqct(X). Indeed,
it follows from the previous paragraph that it is enough to check this forM ∈ D+

qct(X),
specifically forM =O′

X
. The question is local, so arguing as at the end of Section 2.1

can suppose thatX = X is a noetherian affine scheme andM a bounded-below comple
formed by quasi-coherent injective sheaves. In this caseΓZM is a bounded-belowcomple
formed by quasi-coherent injective sheaves, too (cf. [17, Propositions VI.7.1 and VII.4.5]
But the functorΓZ is idempotent from which it follows that

RΓZRΓZM = ΓZΓZM = ΓZM = RΓZM.

Using the notation of Section 2.1 for a closed subsetZ ⊂ X, the triangle (1) is a
Bousfield localization triangle for eachF ∈ Dqct(X).

In general, letZ ⊂ X be a subset stable for specialization, therefore it can be consider
as the union of a directed system{Zα | α ∈ I } of closed subsets ofX. For everyα ∈ I , let
Uα := X \ Zα be the complementary open subset andjα:Uα → X be the canonical ope
embedding. LetLZ :A(X) → A(X) be the endofunctor defined asLZ := lim−→α∈I

jα ∗j∗
α .

For everyM ∈ Dqct(X) the triangle

RΓZM ρ(M)−−−−→M → RLZM +−→

is the Bousfield localization triangle whose associated acyclization functor isRΓZ .
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For everyE ∈ Dqct(X), the commutative diagram

E ⊗L
OX

RΓZO′
X

E⊗ρ(O′
X

)


ψZ(E,O′
X

)

E ⊗L
OX

O′
X




RΓZE
ρ(E)

E

can be completed to an isomorphism of distinguished triangles

E ⊗L
OX

RΓZO′
X




E ⊗L
OX

O′
X




E ⊗L
OX

RLZO′
X




+

RΓZE E RLZE
+

.

Note that, in particular,RΓZ andRLZ are endofunctors ofDqct(X) that commute with
coproducts, and two Bousfield acyclization or localization functors of this type comm
If Z,W ⊂ X are stable for specialization subsets, thenΓZ∩W = ΓZΓW . One can check
following the same kind of arguments at the beginning of this subsection, that the can
mapRΓZ∩WF → RΓZRΓWF is an isomorphism for everyF ∈ Dqct(X).

2.4. Computing the functorRLX\Xx

Letx ∈ X. Consider the affine formal schemeXx := Spf(ÔX,x) where the adic topolog
in the ringOX,x is given byIx . If X = SpfB andp is the prime ideal corresponding to th
pointx, thenOX,x = B{p}. Denote byix :Xx ↪→ X the canonical inclusion map. Consid
the functors

Dqct(Xx)
Rix∗

Dqct(X),
i∗x

which are defined by virtue of [2, Proposition 5.2.6 and Corollary 5.2.11] using the
thatix is an adic map.

GivenF1,F2 ∈ Dqct(X), we have that

HomD(X)

(
RΓX\XxF1,Rix∗i∗xF2

) ∼= HomD(Xx)

(
i∗x RΓX\XxF1, i

∗
xF2

) = 0

becausei∗x RΓX\XxF1 = 0. Indeed, writeX \ Xx = ⋃
α∈I Zα a filtered union of closed

subsets{Zα | α ∈ I }, and letF1 →J be a K-injective resolution; then

i∗xRΓX\XxF1 = i∗xΓX\XxJ = i∗x lim−→ ΓZαJ = lim−→ i∗xΓZαJ = 0.

α∈I α∈I
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It follows that for eachF ∈ Dqct(X) there is a unique mapRLX\XxF → Rix∗i∗xF making
the following diagram commutative:

F RLX\XxF

hF

F Rix∗i∗xF .

Furthermore,h is a natural transformation of∆-functors and it is an isomorphism, i.e
hF is a quasi-isomorphism for everyF ∈ Dqct(X). Let us show this. First of all, we ca
assume thatX is affine. Indeed, choose an affine open subsetU ⊂ X such thatx ∈ U,
then one can describeX \ Xx as a filtered union of closed subsets{Zα | α ∈ I } such
that eachUα := X \ Zα is an affine open subset ofU. Let us denote byj :U ↪→ X,
jα :Uα ↪→ X, and i ′x :Xx ↪→ U the canonical morphisms. Note thatj ◦ i ′x = ix . For
every F ∈ Dqct(X) we have an isomorphismRLX\XxF ∼−→ Rj∗j∗RLX\XxF because
RΓX\URLX\XxF = RΓX\URΓX\Xx RLX\XxF = 0 (see Section 2.3). Using flat ba
change [2, Proposition 7.2], we see that the canonical mapRix∗i∗xF ∼−→ Rj∗j∗Rix∗i∗xF is
also an isomorphism. So, we are left to prove thatj∗hF is an isomorphism, or, equivalentl
thathj∗F : RLU\Xx (j

∗F) → Ri ′x∗i ′
∗
x(j

∗F) is an isomorphism. Then, let us treat the c
X = SpfA with A a complete noetherian ring. Both endofunctorsRLX\Xx and Rix∗i∗x
commute with coproducts by 2.3 and [2, Proposition 3.5.2], respectively. To prove tha
hF is a quasi-isomorphism for everyF ∈ D(Aqct(X)) = Dqct(X) it is enough to check i
for F ∈ Aqct(X), because the smallest localizing subcategory containingAqct(X) is all
of D(Aqct(X)). In this case the morphismsjα : Uα ↪→ X and ix : Xx ↪→ X are affine.
Therefore, by [2, Lemma 3.4.2], forF ∈ Aqct(X) andi > 0,

Hi (RLX\XxF) = lim−→
α∈I

Hi
(
Rjα∗j∗

αF
) = 0, Hi

(
Rix∗i∗xF

) = 0,

and fori = 0,

H0(RLX\XxF) = lim−→
α

jα ∗j∗
αF

H0(hF )−−−−−→ ix∗i∗xF =H0(Rix∗i∗xF
)

is the natural map. Let us show thatH0(hF ) is an isomorphism. Using [2, Propos
tion 5.2.4], we are reduced to the particular caseX = X = SpecA is an usual affine schem
x corresponds to a prime idealp ⊂ A, M is anA-module andF = M̃ . ThenH0(hF ) cor-
responds to the canonical isomorphism ofA-modules

lim−→
f ∈A\p

Mf
∼−→ Mp.

Therefore, forX a noetherian formal scheme and everyF ∈ Dqct(X) one has a natura
Bousfield triangle

RΓX\XxF →F → Rix∗i∗xF
+−→ . (2)
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Recall that the canonical triangle

RΓX\XxO′
X → O′

X → Rix∗i∗xO′
X

+−→
tensored byF provides a triangle

RΓX\XxO′
X ⊗L

OX
F →F → Rix∗i∗xO′

X ⊗L
OX

F +−→
that is naturally isomorphic to (2) by Section 2.3.

3. Rigid localizing subcategories

Let T be a triangulated category with all coproducts. This is the case forD(X) and
Dqct(X) for a noetherian formal schemeX, and also forD(X) andDqc(X) for an usual
schemeX. A triangulated subcategoryL of T is called localizing if it is stable for
coproducts inT. If T is one of the aforementioned derived categories, it is not ens
thatL ⊂ T is well-behaved with respect to the tensorial structure. It turns out that we
such compatibility in order to localize on open subsets. So let us establish the foll
definition. A localizing subcategoryL ⊂ Dqct(X) is calledrigid if for every F ∈ L and
G ∈ Dqct(X), we have thatF⊗L

OX
G ∈ L. This condition has been independently conside

by Thomason for thick subcategories by the same reason (see [18, Definition 3.9],
they are called⊗-subcategories). Our route to find this condition came from a paper
one of the authors where localizations are considered in the abelian context, see [1

Proposition 3.1. Suppose thatX is furthermore either separated or of finite Kru
dimension. LetL be a localizing subcategory ofD(Aqct(X)). If L is rigid, then, for every
F ,G ∈ D(Aqct(X)) such thatG is L-local (i.e.,G ∈ L⊥), thenHom·

X
(F ,G) is L-local. If

moreover⊥(L⊥) = L, the converse is true.

Proof. Let H ∈ L, then

HomD(X)

(
H,Hom·

X(F ,G)
) = HomD(X)

(
H⊗L

OX
F ,G

) = 0, (3)

becauseG ∈ L⊥ andH ⊗L
OX

F ∈ L. Conversely, if (3) holds for everyG ∈ L⊥, then

H⊗L
OX

F ∈ ⊥(L⊥) = L. �
Remark. The condition⊥(L⊥) = L holds if L is the localizing subcategory of objec
whose image is 0 by a Bousfield localization (see [4, Proposition 1.6]). We will see
(Corollary 4.14) that every rigid localizing subcategory ofD(Aqct(X)) arises in this way.

Proposition 3.2. If X is affine, every localizing subcategory ofD(Aqct(X)) is rigid.

Proof. TakeX = SpfA whereA is a noetherian adic ring. Every quasi-coherent tors
sheaf comes from anA-module and therefore it has a free resolution. Letκ : SpfA →



L. Alonso Tarrío et al. / Journal of Algebra 278 (2004) 585–610 595

f

,

-rigid
3.13]

ver

o a

in

l

tions
hen
ry
SpecA the canonical morphism andX := SpecA. Let L be a localizing subcategory o
D(Aqct(X)). The full subcategoryT of D(Aqc(X)) defined by

T = {
N ∈ D

(
Aqc(X)

) ∣∣ κ∗N ⊗L
OX

M ∈L, ∀M ∈ L
}

is triangulated and stable for coproducts. It is clear thatOX ∈ T, thereforeT = D(Aqc(X)).
Now, givenG ∈ D(Aqct(X)), G = κ∗κ∗G, andκ∗G ∈ D(Aqc(X)) = T [2, Proposition 5.1.2]
thereforeG ⊗L

OX
M ∈ L, for everyM ∈ L. �

Example. Not all localizing subcategories are rigid. Let us show an example of a non
localizing subcategory. Our example is based in Thomason’s example [18, Example
of a thick subcategory that it is not a⊗-subcategory. Consider the projective line o
a field together with its canonical mapπ : P1

k → Speck. Denote byD(P1
k)cp the full

subcategory2 of D(Aqc(P1
k)) formed by perfect complexes (i.e., quasi-isomorphic t

bounded complex of locally free finite-type sheaves). LetL the smallest localizing
subcategory ofD(Aqc(P1

k)) generated byE := Lπ∗k̃. Note thatE ∈ D(P1
k)cp and thatL is

the smallest localizing subcategory that contains the thick subcategoryA= {F ∈ D(P1
k)cp |

Lπ∗Rπ∗F = F}, which is a thick subcategory ofD(P1
k)cp, constructed by Thomason

loc. cit. Every objectM ∈ L is such thatLπ∗Rπ∗M = M because bothLπ∗ andRπ∗
commute with coproducts and the equality holds forE . Observe thatL is the essentia
image of D(Aqc(Speck)) by the functorLπ∗. The localizing categoryL is not rigid.
Indeed, takeM ∈ L, M �= 0, we will show thatM ⊗ O(−1) /∈ L. Let F := Rπ∗M,
then

Rπ∗
(
M⊗O(−1)

) = Rπ∗
(
Lπ∗(F) ⊗O(−1)

)
[12, (3.9.4)]

�F ⊗ Rπ∗O(−1) [8, 2.12.16]

� 0.

We conclude thatM ⊗ O(−1) is not an object inL becauseM ⊗ O(−1) �= 0 =
Lπ∗Rπ∗(M⊗O(−1)).

Remark. The rigidity condition may seem strange but, in fact, these are the localiza
that behave well when restricted to open subsets and “are detected” by ample sheaves w
they exist. We suggest the interested readerto adapt [18, Proposition 3.11] and its corolla
to our situation. We will not get into these details because we do not need them.

4. Localizing subcategories and subsets

We keep denoting byX a noetherian formal scheme andI its ideal of definition. Let
x ∈ X, we denote byix :Xx ↪→ X the canonical inclusion map whereXx = Spf(ÔX,x)

(completion with respect toIx ).

2 Denoted asD(P1)parf in [18].

k
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We will denote byκ(x) the residue field of the local rinĝOX,x , or, equivalently, of

OX,x , by Kx the quasi-coherent torsion sheaf over Spf(ÔX,x) associated to thêOX,x -
moduleκ(x) andK(x) := Rix∗(Kx). Observe thatK(x) = RΓ{x}K(x) = Rix∗i∗xK(x). If
X = X is an usual scheme andx is a closed point,K(x) has been denotedOx in recent
literature, but we will not use this notation to avoid potential confusions.

Let Z be any subset of the underlying space ofX. We define the subcategoryLZ as the
smallest localizing subcategory ofDqct(X) that contains the set of quasi-coherent tors
sheaves{K(x) | x ∈ Z}. If Z = {x}, we will denoteLZ simply byLx . Note that ifx ∈ Z,
thenLx ⊂ LZ .

Lemma 4.1. If F ∈ Dqct(X) and x ∈ X, thenRΓ{x}(Rix∗i∗xF) belongs to the localizing
subcategoryLx .

Proof. Let Q0 be a sheaf of coherent ideals inOX such that Supp(OX/Q0) = {x} and
denoteQ := i∗xQ0. Recall, by [2, §5.4],

RΓ{x}
(
Rix∗i∗xF

) = holim−→
n>0

HomOX

(
OX/Qn

0, ix∗J
)

∼= holim−→
n>0

Rix∗HomOXx

(
OXx /Qn,J

)
,

wherei∗xF → J is a K-injective resolution.
Let G := lim−→n>0HomOXx

(OXx /Qn,J ) and let us consider the filtration

0= G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ G,

whereGn := HomOXx
(OXx /Qn,J ), i.e., the subcomplex ofJ annihilated byQn. The

successive quotientsGn/Gn−1 are complexes of quasi-coherentKx -modules and, therefore
isomorphic inD(Aqct(Xx)) to a direct sum of shifts ofKx . The functorRix∗ preserves
coproducts, therefore everyRix∗(Gn/Gn−1) is an object ofLx . We deduce by induction
using the distinguished triangles

Rix∗Gn−1 → Rix∗Gn → Rix∗(Gn/Gn−1)
+−→

that everyRix∗Gn is in Lx for everyn ∈ N. But we have

RΓ{x}
(
Rix∗i∗xF

) ∼= holim−→
n>0

Rix∗Gn,

and the result follows from the fact that a localizing subcategory is stable for hom
direct limits [4, Lemma 3.5 and its proof].�

Let Ex be an injective hull of theOX,x -moduleκ(x), thenEx is a Ix -torsionÔX,x -
module. Let thenEx be the sheaf inAqct(Xx) determined by�(Xx,Ex) = Ex .

Corollary 4.2. The objectE(x) := Rix∗Ex belongs toLx .



L. Alonso Tarrío et al. / Journal of Algebra 278 (2004) 585–610 597

gory

ts

d

Proof. Use the previous lemma and the fact thatE(x) = RΓ{x}(Rix∗i∗xE(x)). �
Lemma 4.3. Let M ∈ Dqct(X) andL the smallest localizing subcategory ofDqct(X) that
containsM. If G ∈ Dqct(X) is such thatM ⊗L

OX
G = 0, thenF ⊗L

OX
G = 0, for every

F ∈ L.

Proof. The∆-functor− ⊗L
OX

G preserves coproducts and therefore the full subcate

whose objects are thoseF ∈ L such thatF ⊗L
OX

G = 0 is localizing, but it containsM,
therefore it isL. �
Proposition 4.4. The smallest localizing subcategoryL of Dqct(X) that containsK(x) for
everyx ∈ X is the wholeDqct(X).

Proof. LetF ∈ Dqct(X) andC denote the family of subsetsY ⊂ X stable for specialization
such thatRΓYF ∈L. If {Wα}α∈I is a chain inC, then

RΓ⋃
Wα

F = lim−→
α∈I

ΓWαJ ,

for a K-injective resolutionF →J . By [4, Theorems 2.2, 3.1],RΓ⋃
Wα

F = Γ⋃
Wα

J ∈ L,
because eachRΓWαF = ΓWαJ ∈L, so

⋃
Wα ∈ C.

The setC is stable for filtered unions, therefore, there is a maximal element inC which
we will denote byW . We will see thatW = X from which it follows thatF ∼= RΓXF ∈ L.

Indeed, otherwise supposeX \ W �= ∅. As X is noetherian, the family of closed subse

C ′ = {{z} ∣∣ z ∈ X and{z} ∩ (X \ W) �= ∅}
has a minimal subset{y}. If x ∈ {y} ∩ (X \ W), then{x} ∈ C ′, but {y} is minimal, sox = y

andW ∪ {y} = W ∪ {y}. Consider now the inclusioniy :Xy → X and the distinguishe
triangle inDqct(X)

RΓWF → RΓW∪{y}F → RΓ{y}(Riy ∗i∗yF)
+−→

obtained applyingRΓW∪{y} to the canonical triangle

RΓX\XyF → F → Riy ∗i∗yF
+−→ .

We deduce thatRΓW∪{y}F ∈ L, becauseW ∈ C andRΓ{y}(Riy ∗i∗yF) ∈ Ly ⊂ L by Lem-
ma 4.1, contradicting the maximality ofW . �
Corollary 4.5. LetG ∈Dqct(X). We have thatG=0 if and only ifHomD(X)(K(x)[n],G)=0
for all x ∈ X andn ∈ Z.

Proof. Immediate from Proposition 4.4.�
Corollary 4.6. LetG ∈ Dqct(X) be such thatK(x) ⊗L G = 0 for everyx ∈ X, thenG = 0.
OX
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Proof. It is a consequence of Proposition 4.4 and Lemma 4.3.�
Lemma 4.7. If x �= y, thenK(x) ⊗L

OX
K(y) = 0.

Proof. There exist an affine open subsetU ⊂ X such that it only contains one of the poin
for instance assume thatx ∈ U andy /∈ U. Denote byj : U ↪→ X the canonical inclusion
map. Now, using Section 2.4,

K(x) ⊗L
OX

K(y) ∼= Rj∗j∗K(x) ⊗L
OX

K(y) ∼= Rj∗j∗O′
X ⊗L

OX
K(x) ⊗L

OX
K(y)

∼=K(x) ⊗L
OX

Rj∗j∗K(y) = 0,

becausej∗K(y) = 0. �
Corollary 4.8. For every subsetZ ⊂ X, the localizing subcategoryLZ is rigid.

Proof. The full subcategoryS ⊂ Dqct(X) defined by

S = {
N ∈ Dqct(X)

∣∣ N ⊗L
OX

M ∈LZ, ∀M ∈LZ

}
is a localizing subcategory ofDqct(X). For x ∈ X, K(x) ∼= RΓ{x}Rix∗i∗xK(x), so using
Sections 2.3 and 2.4, we have that

K(x) ⊗L
OX

M ∼= RΓ{x}Rix∗i∗xK(x) ⊗L
OX

M ∼= RΓ{x}Rix∗i∗x
(
K(x) ⊗L

OX
M

)
.

Therefore ifx ∈ Z, thenK(x) ⊗L
OX

M ∈ Lx ⊂ LZ by Lemma 4.1, and forx /∈ Z, by

Lemmas 4.7 and 4.3,K(x) ⊗L
OX

M = 0 it is also inLZ . NecessarilyS = Dqct(X) by
Proposition 4.4. �
Corollary 4.9. If Z andY are subsets ofX such thatZ ∩ Y = ∅, thenF ⊗L

OX
G = 0 for

everyF ∈ LZ andG ∈LY .

Proof. This follows from the previous lemma and Lemma 4.3.�
Corollary 4.10. Givenx ∈ X andF ∈Lx we have that

F = 0 ⇔ F ⊗L
OX

K(x) = 0.

Proof. By Lemmas 4.7 and 4.3, givenF ∈ Lx , for all y ∈ X, with y �= x we have
that F ⊗L

OX
K(y) = 0, therefore if alsoF ⊗L

OX
K(x) = 0, it follows thatF = 0 by

Corollary 4.6. �
Corollary 4.11. Let L be a localizing subcategory ofDqct(X) and F ∈ Dqct(X). If
K(x) ⊗L F ∈L for everyx ∈ X, thenF ∈L.
OX
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Proof. Let L′ = {G ∈ Dqct(X) | G ⊗L
OX

F ∈ L}. The subcategoryL′ is a localizing
subcategory ofDqct(X) such thatK(x) ∈ L′ for all x ∈ X. By Proposition 4.4, we deduc
thatL′ = Dqct(X), in particularO′

X
⊗L
OX

F =F ∈L. �
Remark. If the localizing subcategoryL is rigid, thenK(x) ⊗L

OX
F ∈ L for all x ∈ X if,

and only if,F ∈ L.

Theorem 4.12. For a noetherian formal schemeX there is a bijection between the class
rigid localizing subcategories ofDqct(X) and the set of all subsets ofX.

Proof. Denote byLoc(Dqct(X)) the class of rigid localizing subcategories ofDqct(X) and
by P(X) the set of all subsets ofX. Let us define a couple of maps:

Loc
(
Dqct(X)

) ψ

P(X)
φ

and check that they are mutual inverses. Define forZ ⊂ X, φ(Z) := LZ which is rigid
by Corollary 4.8, and for a rigid localizing subcategoryL of Dqct(X), ψ(L) := {x ∈ X |
∃G ∈L with K(x) ⊗L

OX
G �= 0}.

Let us check first thatψ ◦ φ = id. Let Z ⊂ X andx ∈ Z, by definitionK(x) ∈ LZ and
clearly K(x) ⊗L

OX
K(x) �= 0 by Corollary 4.6 and Lemma 4.7, thereforex ∈ ψ(φ(Z)),

so Z ⊂ ψ(φ(Z)). Conversely letx ∈ ψ(φ(Z)), by definition there isG ∈ LZ such that
K(x) ⊗L

OX
G �= 0, by Corollary 4.9,x ∈ Z.

Now we have to prove thatφ ◦ ψ = id. Let L be a rigid localizing subcategory o
Dqct(X). We will see first thatLψ(L) ⊂ L and for this it will be enough to check th
K(x) ∈ L for everyx ∈ ψ(L). So letx ∈ ψ(L), there is aG ∈L such thatK(x)⊗L

OX
G �= 0.

On the other hand,K(x) ⊗L
OX

G belongs toL becauseL is rigid. We have that

K(x) ⊗L
OX

G ∼=
⊕
α∈J

Fα,

whereJ is a set of indices andFα = K(x)[sα] with sα ∈ Z. Indeed, it is enough to take
free resolutionM → i∗xG of the complex of quasi-coherent torsionOXx -modulesi∗xG and
to consider the chain of natural isomorphisms

K(x) ⊗L
OX

G ∼= Rix∗i∗x
(
K(x) ⊗L

OX
G
)

∼= Rix∗
(
Kx ⊗L

OXx
i∗xG

)
[12, (3.2.4)]

∼= Rix∗
(
Kx ⊗L

OXx
M

)
,

and use the fact that both functorsKx ⊗L
OXx

− andRix∗ commute with coproducts. Bu
L is localizing, so stable for coproducts and, as a consequence, for direct sum
(see [5] or [4, footnote, p. 227]). From this,

⊕
α∈J Fα ∈ L impliesK(x) ∈ L, as required
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Finally, let us see thatL ⊂ Lψ(L). Let F ∈ L, by Corollary 4.11 to see thatF ∈ Lψ(L)

it is enough to prove thatK(x) ⊗L
OX

F ∈ Lψ(L) for everyx ∈ X. Suppose that the non

trivial situationK(x)⊗L
OX

F �= 0 holds. In this case,x ∈ ψ(L), therefore we conclude tha

K(x) ⊗L
OX

F ∈ Lx ⊂ Lψ(L) using Corollary 4.8 that tells us thatK(x) ⊗L
OX

F belongs to
the localizing subcategory generated byK(x). �
Remark. In view of Proposition 3.2, the previous result is a generalization of
Theorem 2.8] from noetherianaffineschemes to the bigger category of noetherian for
schemes.

Corollary 4.13. For a noetherian schemeX there is a bijection between the class of rig
localizing subcategories ofDqc(X) and the set of all subsets ofX.

Corollary 4.14. Every rigid localizing subcategory ofDqct(X) has associated a localiza
tion functor.

Proof. Theorem 4.12 says that a rigid localizing subcategoryL ⊂ Dqct(X) is the smalles
localizing subcategory that contains the set{K(x) | x ∈ ψ(L)}. It follows from [4,
Theorem 5.7] that there is an associated localization functor forL. �

The following consequences of the previous discussion will be used in the next se

Lemma 4.15. LetL be a rigid localizing subcategory ofDqct(X) andz ∈ X. If z /∈ ψ(L),
thenK(z) is aL-local object.

Proof. Let N ∈ Dqct(X) consider the natural map

HomD(X)

(
N ,K(z)

)
α−→ HomD(X)

(
N ⊗L

OX
K(z),K(z) ⊗L

OX
K(z)

)
,

and the map

HomD(X)

(
N ⊗L

OX
K(z),K(z) ⊗L

OX
K(z)

) β−→ HomD(X)

(
N ,K(z)

)
induced by the canonical maps

OX → K(z) and K(z) ⊗L
OX

K(z) → K(z).

It is clear thatβ ◦ α = id. By Corollary 4.9, we have thatN ⊗L
OX

G = 0 for all N ∈ L and
G ∈Lz, and necessarily,

HomX

(
N ,K(z)

) = 0,

therefore,K(z) is L-local. �
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Lemma 4.16. Suppose thatX is either separated or of finite Krull dimension and letL be
a rigid localizing subcategory ofD(Aqct(X)) andz ∈ X. If z /∈ ψ(L), thenHom·

X
(G,F)

is aL-local objects for everyF ∈ D(Aqct(X)) andG ∈ Lz.

Proof. By Corollary 4.9, we have that

HomD(X)

(
N ,Hom·

X(G,F)
) ∼= HomD(X)

(
N ⊗L

OX
G,F

) = 0

for everyN ∈L, from which it follows thatHom·
X

(G,F) is L-local. �

5. Compatibility of localization with the monoidal structure

In this section X will denote a noetherian scheme that is either separate
of finite Krull dimension. LetL be a localizing subcategory ofD(Aqct(X)) with
associated Bousfield localization functor�. For everyF ∈ D(Aqct(X)) there is a canonica
distinguished triangle

γF → F → �F +−→ (4)

such thatγF ∈ L and�F ∈ L⊥ (in other words,�F is L-local). The functorγ is called
the acyclization or colocalization associated toL and was denoted�a in [4]. Here we have
changed the notation for clarity. The endofunctorsγ and� are idempotent in a functoria
sense as explained in Section 1 of loc. cit. For allF ,G ∈ D(Aqct(X)) we have the following
canonical isomorphisms:

HomD(X)(γF , γG) ∼−→ HomD(X)(γF ,G),

HomD(X)(�F , �G) ∼−→ HomD(X)(F , �G)

induced byγG → G andF → �F , respectively.

Lemma 5.1. With the previous notation, the following are equivalent:

(i) The localizing subcategoryL is rigid.
(ii) The natural transformationγG → G induces isomorphisms

Hom·
X(γF , γG) ∼= Hom·

X(γF ,G)

for everyF ,G ∈ D(Aqct(X)).
(iii) The natural transformationF → �F induces isomorphisms

Hom·
X(�F , �G) ∼= Hom·

X(F , �G)

for everyF ,G ∈ D(Aqct(X)).
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Proof. Let us show (i)⇒ (ii). Let N ∈ D(Aqct(X)), we have the following chain o
isomorphisms:

HomD(X)

(
N ,Hom·

X(γF , γG)
) ∼= HomD(X)

(
N ⊗L

OX
γF , γG

)
a∼= HomD(X)

(
N ⊗L

OX
γF ,G

)
∼= HomD(X)

(
N ,Hom·

X(γF ,G)
)
,

wherea is an isomorphism becauseL is rigid and thereforeN ⊗L
OX

γF = γ (N ⊗L
OX

γF).
Having an isomorphism for everyN ∈ D(Aqct(X)) forces the target complexes to
isomorphic.

We will see now (ii)⇒ (iii). From (4), we have a distinguished triangle

Hom·
X(�F , �G) → Hom·

X(F , �G) → Hom·
X(γF , �G)

+−→
but its third point is null, considering

Hom·
X(γF , �G)

(ii )∼= Hom·
X(γF , γ �G) = 0,

becauseγ �G = 0.
Finally, let us see that (iii)⇒ (i). Take F ∈ L and N ∈ D(Aqct(X)). To see tha

N ⊗L
OX

F ∈ L it is enough to check that HomD(X)(N ⊗L
OX

F ,G) = 0 for everyG ∈ L⊥

because⊥(L⊥) = L. But this is true:

HomD(X)

(
N ⊗L

OX
F ,G

) ∼= HomD(X)

(
N ,Hom·

X(F ,G)
)

b∼= HomD(X)

(
N ,Hom·

X(�F , �G)
)

= 0,

whereb is an isomorphism, as follows from (iii) and the fact thatG = �G, and the last
equality holds becauseF ∈ L and so�F = 0. �
Example. Let Z be a closed subset ofX, or more generally, a set stable for specializatio3

Recall the functor sections with supportΓZ :Aqct(X) → Aqct(X). From Section 2.3, we
see thatRΓZ : D(Aqct(X)) → D(Aqct(X)), its derived functor, together with the natur
transformationRΓZ → id posses the formal properties of an acyclization such tha
associated localizing subcategory

L= {
M ∈ D

(
Aqct(X)

) ∣∣ RΓZ(M) =M
}

is rigid.

3 See Section 2.2.
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The functorRΓZ has the following property:

RΓZ

(
K(x)

) =
{

0 if x /∈ Z,

K(x) if x ∈ Z.

Indeed, if x /∈ Z by Lemma 4.15,RΓZ(K(x)) = 0. On the contrary, ifx ∈ Z, then
K(x) ∈ Lx ⊂ LZ , so RΓZ(K(x)) = K(x). It follows that L has to agree withLZ by
Theorem 4.12 and, consequently,RΓZ is γZ , the acyclization functor associated to t
localizing subcategoryLZ . This acyclization functor satisfies a special property, nam
γZ(F ⊗L

OX
G) andF ⊗L

OX
γZG are canonically isomorphic, see Section 2.2.

5.2. Let L be a rigid localizing subcategory ofD(Aqct(X)) andF ,G ∈ D(Aqct(X)).
The morphismF ⊗L

OX
γG → F ⊗L

OX
G induced byγG → G factors naturally through

γ (F ⊗L
OX

G) giving a natural morphism

t :F ⊗L
OX

γG → γ
(
F ⊗L

OX
G
)
.

Let us denote by

p :F ⊗L
OX

�G → �
(
F ⊗L

OX
G
)

a morphism such that the diagram

F ⊗L
OX

γG

t

F ⊗L
OX

G F ⊗L
OX

�G +

p

γ
(
F ⊗L

OX
G
)

F ⊗L
OX

G �
(
F ⊗L

OX
G
) +

is a morphism of distinguished triangles. In fact, the triangle is functorial in the s
that the mapp is uniquely determined byt due to the fact that [HomD(X)(F ⊗L

OX
γG,

�(F ⊗L
OX

G)[−1]) = 0].
We say that the localization� is ⊗-compatible(or thatL is ⊗-compatible or thatγ is

⊗-compatible) if the canonical morphismt , or equivalentlyp, is an isomorphism.
We remind the reader our convention thatO′

X
denotesRΓ ′

X
OX.

Theorem 5.3. In the previous hypothesis we have the following equivalent statement:

(i) The localization associated toL is ⊗-compatible.
(ii) For everyE ∈ L⊥ andF ∈ D(Aqct(X)) we have thatF ⊗L

OX
E ∈ L⊥.

(iii) The functor� preserves coproducts.
(iv) A coproduct ofL-local objects isL-local.
(v) The setZ := ψ(L) is stable for specialization and its associated acyclization fun

is γ = RΓZ .
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Proof. Let us begin proving the non-trivial part of (i)⇔ (ii). Indeed, suppose that (i
holds and forF , G ∈ D(Aqct(X)) consider the triangle

F ⊗L
OX

γG → F ⊗L
OX

G →F ⊗L
OX

�G +−→;

we have thatF ⊗L
OX

γG ∈ L becauseL is rigid, on the other hand,F ⊗L
OX

�G ∈ L⊥

because�G ∈L⊥. The fact that the natural maps

F ⊗L
OX

γG t−→ γ
(
F ⊗L

OX
G
)

and F ⊗L
OX

�G p−→ �
(
F ⊗L

OX
G
)

are isomorphisms follows from [4, Proposition 1.6, (vi)⇒ (i)].
Let us see now that (i)⇒ (iii). If the localization associated toL is ⊗-compatible we

have that, forF ∈ D(Aqct(X)),

�F ∼=F ⊗L
OX

�O′
X

from which is clear that� preserves coproducts.
The implication (iii) ⇒ (iv) is obvious because�F ∼= F if, and only if, F ∈ L⊥. To

see that (iv)⇒ (v), we will use an argument similar to the one in the affine case
Lemma 3.7]. Assume that� preserves coproducts. Letx ∈ Z andz ∈ {x}. If z /∈ Z, then
K(z) ∈ L⊥ (Lemma 4.15) andLz ⊂ L⊥ because by (iv)L⊥ is localizing, and it follows
by Corollary 4.2 that alsoE(z) ∈ L⊥. But E(x) ∈ L which contradicts the existence o
a non-zero mapE(x) → E(z) becausez ∈ {x}. ThereforeZ, is stable for specializatio
and γ ∼= RΓZ by the example following Lemma 5.1. The same example shows
(v) ⇒ (i). �
Remark. In the category of stable homotopy,HoSp, the localizations for which conditio
(iii) holds are calledsmashing. This can be characterized bya condition analogous to (i) i
terms of its monoidal structure via the smash product,∧. So, the previous result classifi
smashing localizations inD(Aqct(X)).

Corollary 5.4. There is a bijection between the class of⊗-compatible localizations o
D(Aqct(X)) and the set of subsets stable for specialization ofX.

In [13, §1.4], Lipman defines anidempotent pairfor a closed category. In the case
which the closed category isD(Aqct(X)), it is a pair (E, α) whereE ∈ D(Aqct(X)) and
α :E → O′

X
is such that idE ⊗L

OX
α andα ⊗L

OX
idE are equal isomorphisms fromE ⊗L

OX
E

to E .

Corollary 5.5. There is a bijective correspondence between⊗-compatible localizations
and idempotent pairs inD(Aqct(X)).

Proof. A ⊗-compatible localization associated to the stable for specialization subZ

gives an idempotent pair(RΓZ(O′ ), t) with t : RΓZ(O′ ) → O′ the canonical map. Th

X X X
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condition that id⊗L
OX

t andt ⊗L
OX

id are equal isomorphisms is simply the fact thatRΓZ

is an acyclization functor associated to a⊗-compatible localization.
Given an idempotent pair(E, α), define the endofunctorγ by γ (F) := F ⊗L

OX
E

and analogously for morphisms. The idempotence ofγ follows from the condition of
idempotent pair, which also ensures that it is⊗-compatible. These constructions a
mutually inverse because ifZ ⊂ X is the stable for specialization subset associate
γ , thenRΓZ(O′

X
) = γ (O′

X
) =O′

X
⊗L
OX

E = E . �
For a complexF ∈ D(Aqct(X)) we define itshomological supportas the union of

the supports of its homologies, i.e., SupphF := ⋃
i∈Z

SuppHi (F). Note that SupphF
is always a subset ofX stable for specialization. In fact, it can be characterized in terms
cohomology with supports, as the following result shows.

Theorem 5.6. Let Z ⊂ X be a stable for specialization subset, forF ∈ D(Aqct(X)), we
have the following equivalent conditions:

(i) RΓZF �F .
(ii) F ∈ LZ .
(iii) SupphF ⊂ Z.

Proof. The equivalence (i)⇔ (ii) follows from the fact thatLZ is a localizing subcategor
with associated Bousfield acyclizationRΓZ as is explained in the example followin
Lemma 5.1. The implication (i)⇒ (iii) is clear because SupphRΓZF ⊂ Z, asRΓZF is
computed by a complex formed by sheaves already supported inZ.

Let us show then that (iii)⇒ (ii). By Corollary 4.11, it is enough to check th
K(x) ⊗L

OX
F ∈ LZ , for all x ∈ X. If x ∈ Z, thenK(x) ⊗L

OX
F ∈ Lx ⊂ LZ . For x /∈ Z,

Xx ∩ Z = ∅ becauseZ is stable for specialization. Let us consider the chain of isom
phisms:

K(x) ⊗L
OX

F � Rix∗i∗xK(x) ⊗L
OX

F
(2.4)� K(x) ⊗L

OX
Rix∗i∗xF .

Note thatRix∗i∗xF = 0 because SupphF ⊂ Z ⊂ X \ Xx , therefore we conclude tha
K(x) ⊗L

OX
F = 0. �

This last result allows us to compare our classification of⊗-compatible localizations
with Thomason’s localization. It says [18, Theorem 3.15] that there is a bijection bet
the set of subsets stable for specialization of a quasi-compact quasi-separated schemX

and the set of thick triangulated⊗-subcategories ofD(Aqc(X))cp. We recall that a
triangulated subcategoryB ⊂ D(Aqc(X))cp is calledthick if it is stable for direct summand
and is called by Thomason a⊗-subcategories if it is a⊗-ideal, i.e., the same condition th
we use to define rigid localizing subcategories. IfX is noetherian and separated we
able to compare this classification with ours, which is expressed in Corollary 5.4. We
the following proposition.
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Proposition 5.7. Let X be a noetherian separated scheme. There is a bijection bet
the set of⊗-compatible localizing subcategories ofD(Aqc(X)) and the set of thick
triangulated ⊗-subcategories ofD(Aqc(X))cp. This bijection is compatible with th
classification of both sets in terms of stable for specialization subsets ofX.

Proof. Denote byLoc⊗(D(Aqc(X))) the set of⊗-compatible localizing subcategories
D(Aqct(X)) and byTh⊗(D(Aqc(X))cp) the set of thick triangulated⊗-subcategories o
D(Aqc(X))cp. Let us define a couple of maps:

Loc⊗
(
D
(
Aqc(X)

)) f

Th⊗
(
D
(
Aqc(X)

)
cp

)
,

g

and check that they are mutual inverses. For a⊗-compatible localizing subcategoryL
we definef (L) := L ∩ D(Aqc(X))cp which is clearly a thick triangulated⊗-subcategory
For such a subcategoryB we defineg(B) as the smallest localizing subcategoryL(B) of
D(Aqc(X)) that containsB. Let us show thatL(B) is⊗-compatible. ForN ∈ D(Aqc(X))cp,
defineL0 = {M ∈ L(B) |M⊗L

OX
N ∈L(B)}. Note thatL0 is a localizing subcategory o

D(Aqc(X)) and thatB ⊂ L0 ⊂ L(B), soL0 = L(B). Therefore,L′ := {N ∈ D(Aqc(X)) |
M ⊗L

OX
N ∈ L(B), ∀M ∈ L(B)} is a localizing subcategory ofD(Aqc(X)) that contains

D(Aqc(X))cp. Applying [15, Proposition 2.5], we conclude thatL′ = D(Aqc(X)), therefore
L(B) is rigid. The coproduct ofL(B)-local objects is againL(B)-local becauseL(B) is
generated by perfect complexes. Then,L(B) is ⊗-compatible by Theorem 5.3.

First, let us see thatf (g(B)) = B. By the cited Thomason’s result there is a sta
for specialization subsetZ of X such thatB is the class of all perfect complex wit
homological support contained inZ. It follows that the smallest localizing subcatego
that containsB, L(B), is contained inLZ because all of is complexes are supported
Z by Theorem 5.6. NowL(B) is ⊗-compatible, so there is a stable for specializat
subsetZ′ ⊂ Z of X such thatL(B) = LZ′ . But Z′ has to agree withZ, otherwise by [18,
Lemma 3.4] we could find a perfect complex inB with homological support outsideZ′,
a contradiction. So, necessarilyL(B) = LZ andL(B) ∩ D(Aqc(X))cp = B.

Take now a⊗-compatible localizing subcategoryL ⊂ D(Aqc(X)). By Corollary 5.4,
there is a subsetZ ⊂ X stable for specialization such thatL = LZ which means that th
objects inB := L ∩ D(Aqc(X))cp are perfect complexes whose homological suppo
contained inZ. The localizing subcategoryL′ := g(f (L)) is the smallest one that contai
the objects ofB, soL′ ⊂ L. The localizing subcategoryL′ is ⊗-compatible, then ther
is a stable for specialization subsetZ′ ⊂ Z of X such thatL′ = LZ′ . But observe tha
Z′ has to agree withZ arguing as before with the perfect complexes in the thick⊗-sub-
categoryf (L). �
Corollary 5.8. In the previous situation, a⊗-compatible localizing subcategory
D(Aqc(X)) is generated by perfect complexes.
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5.9. Let L be a rigid localizing subcategory ofD(Aqct(X)) andF ,G ∈ D(Aqct(X)).
The morphismHom·

X
(F ,G) → Hom·

X
(F , �G) induced byG → �G factors through

�Hom·
X

(F ,G) by Proposition 3.1. So, it gives a natural morphism

q : �Hom·
X(F ,G) → Hom·

X(F , �G).

Let us denote by

h :γ Hom·
X(F ,G) → Hom·

X(F , γG)

the morphism such that the diagram

Hom·
X

(F , γG) Hom·
X

(F ,G) Hom·
X

(F , �G)
+

γ Hom·
X

(F ,G)

h

Hom·
X

(F ,G) �Hom·
X

(F ,G)

q

+

is a morphism of distinguished triangles. Again,h andq determine each other.
With the notation of the previous remark, we say that the localization� is Hom-

compatible(or thatL is Hom-compatible or thatγ is Hom-compatible) if the canonica
morphismq , or equivalentlyh, is an isomorphism.

5.10. LetLZ be a⊗-compatible localizing subcategory ofD(Aqct(X)) whose associate
(stable for specialization) subset isZ ⊂ X. Let us apply the functorHom·

X
(−,F), where

F ∈ D(Aqct(X)), to the canonical triangle

γZO′
X → O′

X → �ZO′
X

+−→
associated toLZ . We have added the associated subsets as subindices for clarity. We

Hom·
X

(
�ZO′

X,F
) →F → Hom·

X

(
γZO′

X,F
) +−→ . (5)

Proposition 5.11. The canonical natural transformations

id → Hom·
X

(
γZO′

X,−)
and Hom·

X

(
�ZO′

X,−) → id,

correspond to aHom-compatible localization andits corresponding acyclization i
D(Aqct(X)), respectively. Its associated subset ofX is X \ Z.

Proof. Note that (5) is a Bousfield localization triangle becauseLZ is ⊗-compatible. The
associated localizing subcategory

L = {
M ∈ D

(
Aqct(X)

) ∣∣ Hom·
X

(
γZO′

X,M
) = 0

}
satisfies that⊥(L⊥) = L [4, Proposition 1.6]. Furthermore, the canonical isomorphism
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n

h

ian

asi-
tural
Hom·
X

(
F ,Hom·

X

(
γZO′

X,G
)) ∼= Hom·

X

(
F ⊗L

OX
γZO′

X,G
)

∼= Hom·
X

(
γZO′

X,Hom·
X(F ,G)

)
show thatL is rigid (Proposition 3.1) andHom-compatible.

Let us check thatL= LX\Z . Let z ∈ X, we will consider two possibilities depending o
the point being or not inZ. First, if z ∈ X \ Z, it follows thatK(z) ∈ L⊥

Z by Lemma 4.15
and therefore we have that

Hom·
X

(
γZO′

X,K(z)
) ∼←− Hom·

X

(
γZO′

X, γZK(z)
) = 0,

then

Hom·
X

(
�ZO′

X,K(z)
) ∼−→K(z).

Forz ∈ Z we will show thatHom·
X

(�ZO′
X

,K(z)) = 0. By Proposition 4.4, it is enoug
to prove that

HomD(X)

(
K(y),Hom·

X

(
�ZO′

X,K(z)
)) = 0, ∀y ∈ X,

equivalently that

HomD(X)

(
K(y) ⊗L

OX
�ZO′

X,K(z)
) = 0, ∀y ∈ X.

The localization functor�Z is ⊗-compatible soK(y) ⊗L
OX

�ZO′
X

∼= �ZK(y) will be zero

if y ∈ Z. On the other hand, ify ∈ X \Z we conclude becauseK(y) ⊗L
OX

�ZO′
X

∈Ly and

K(z) ∈ L⊥
y (Lemma 4.15). �

5.12. Note that the following adjunction is completely formal:

Hom·
X(γZF ,G) ∼−→ Hom·

X(F , �X\ZG).

Indeed, it is the composition of the following natural isomorphisms:

Hom·
X(γZF ,G) ∼= Hom·

X

(
γZO′

X ⊗L
OX

F ,G
) ∼= Hom·

X

(
F ,Hom·

X(γZO′
X,G)

)
∼= Hom·

X(F , �X\ZG).

Example. Let nowZ be a closed subset ofX which we assume it is an ordinary (noether
separated) scheme. andLΛZ : D(Aqc(X)) → D(A(X)) the left-derived functor of the
completion along the closed subsetZ (which exist because it can be computed using qu
coherent flat resolutions, as proved in [1]). In loc. cit. it is also shown there is a na
isomorphism

Hom·
X(RΓZOX,G) ∼−→ RQLΛZ(G).
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This result together with the previous adjunction is often referred to asGreenlees–May
dualitybecause it generalizes a result from [6] in the affine case.

5.13. In general, ifZ ∈ X is a stable for specialization subset ofX, we will define for
everyG ∈ D(Aqct(X)):

�Z(G) := Hom·
X

(
RΓZO′

X,G
)
.

Theorem 5.14. For a rigid localizing subcategoryL ⊂ D(Aqct(X)), the following are
equivalent:

(i) The localization associated toL is Hom-compatible.
(ii) For everyN ∈ L andF ∈ D(Aqct(X)) we have thatHom·

X
(F ,N ) ∈ L.

(iii) The setY := ψ(L) is generically stable4 and its associated localization functor is�Z

with Z = X \ Y .

Proof. Let us see first that (ii)⇒ (iii). Let z ∈ Y andx ∈ X such thatz ∈ {x}. With the
notation of Corollary 4.2, ifx /∈ Y , then by Lemma 4.16,Hom·

X
(E(x),E(z)) ∈ L⊥. By (ii),

Hom·
X

(E(x),E(z)) belongs toL becauseE(z) ∈L. ThereforeHom·
X

(E(x),E(z)) = 0 and
we have

HomD(X)

(
E(x),E(z)

) ∼= HomD(X)

(
O′

X,Hom·
X

(
E(x),E(z)

)) = 0,

a contradiction. Necessarily, the setZ = X \ Y is stable for specialization and�Y = �Z .
The implication (iii) ⇒ (i) follows from the previous remarks and the bijecti

correspondence established in Theorem 4.12.
To finish, (i)⇒ (ii) is straightforward because for everyN ∈L, we have that

Hom·
X(F ,N ) = Hom·

X(F , γN )
(i)∼= γ Hom·

X(F ,N ) ∈ L. �
Corollary 5.15. The functorγ associated to aHom-compatible localization inD(Aqct(X))

commutes withproducts, in particular, the corresponding localizing classL is closed for
products.

Proof. It is an immediate consequence of Theorem 5.14(iii) and that every com
in K(Aqct(X)) admits a K-flat resolution by [3, Proposition 2.1.3] and a K-injectiv
resolution. �
Corollary 5.16. For a noetherian separated formal schemeX there is a bijection betwee
the class ofHom-compatible localizations ofD(Aqct(X)) and the set of generically stab
subsets ofX.

4 I.e., an arbitrary intersection of open subsets.
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