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Abstract

Let (%, Ox) be a noetherian formal scheme and consitigf(X) its derived category of sheaves
with quasi-coherent torsion homology. We show that there is a bijection between the set of rigid
(i.e., ®-ideals) localizing subcategories Dfct(X) and subsets X, generalizing previous work
by Neeman. If, moreoverX is separated, the associated localization and acyclization functors
are described in certain cases. Whernc X is a stable for specialization subset, its associated
acyclization isRI"z. WhenX is a scheme, the corresponding localizing subcategories are generated
by perfect complexes and we recover Thomason’s classification of thick subcategories. On the
other hand, ifY C X is generically stable, we show that the associated localization functor is
Hom'x(RFx\YO,%, 9. .
0 2004 Elsevier Inc. All rights reserved.

Introduction

The techniques of localization have a long tradition in several areas of mathematics.
They have the virtue of concentrating our attention on some part of the structure in sight
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allowing us to handle more manageable piegiimformation. One of the clear examples

of this technique is the localization in algebra where one studies a module centering the
attention around a point of the spectrum of the base ring, i.e., a prime ideal. The idea
was transported to topology by Adams and later Bousfield proved that there are plenty
of localizations in stable homotopy. Ingtpast decade it became clear that one could
successfully transpose homotopy techniques to the study of derived categories (over rings
and schemes). In particular, in our previous work, we have shown that for the derived
category of a Grothendieck category we also have plenty of localizations. In that paper,
[4], we applied the result to the existence of unbounded resolutions and we hinted that, in
the case of the derived category of quasi-coherent sheaves over a nice scheme, there should
be a connection between localizations in theast category and the geometric structure

of the underlying space.

The present paper realizes that goal extending the work of Neeman [14, Theorem 3.3],
who classified all Bousfield localizations in the derived category of modules over a
noetherian ringD(R), to the classification of the Bousfield localizations of the derived
category of sheaves with quasi-coherémtsion homology over a noetherian formal
scheme (Theorem 4.12). This category is a basic ingredient in Grothendieck duality [2].
Also, if the formal scheme is just arsualnoetherian scheme, it gives the derived category
of sheaves with quasi-coherent homology. Thus we obtain an analog chthmatic
tower in stable homotopy for these kind of schesnand formal schemes. It is clear that
the monoidal structure of the derived category is an essential part of the cohomological
formalism. In fact, to get the classification, we were forced to considerraitylocalizing
subcategories. This means, roughly speaking, that the localizing subcategory is an ideal in
the monoidal sense (see Section 3). Thisdition is needed in order to have compatibility
with open sets. It holds for all localizing subcategories in the affine case, that is why it was
not considered by Neeman.

The classification theorem is more useful if the localization functor associated to a
subset of the formal scheme can be expr@saegeometrically meaningful terms with
respect to this subset. This can be done for noetherian separated formal schemes under
certain conditions over the subset. The most ciake is the case of stable for specialization
subsets (that recover the classical system of supports). They provide localizations that have
the property of being compatible with the tensor product. They are also characterized
by being associated to a right-derived functor and they correspond to the smashing
localizations of topologists. All of this is contained in Theorem 5.3. These kind of
localizations correspond to Lipman’s notion of idempotent pairs [13]. The associated
localizing subcategory is characterized in terms of homological support (Theorem 5.6).
With this tool at hand we see that our classification of tensor triangulated categories
(or smashing localizations) agree#itwThomason classification of thick-subcategories
of the derived category quasi-coherent sheaves [18], when both make sense, i.e., for a
noetherian separated scheme.

The dual notion oftensor compatiblés that of Hom compatibldocalization. They
correspond to stable for generalization subsets, which are complementary of stable
for specialization subsets. The Hom coniple localizations can be described via a
certain formal duality relation with the tensor compatible localization associated to its
complementary subsets (Theorem 5.14). If skeble for generalization subset is an open
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set, the localization functor agrees with the left-derived of a completion. This relates the
results of [1] to this circle of ideas.

While our work does not exhaust all the possible questions about these topics, we
believe that it can be useful for the current program of extracting information on a space
looking at its derived category.

Now, let us describe briefly the conterda$ the paper. The first section recalls the
concepts and notations used throughout and we give a detailed overview of the symmetric
closed structure in the derived categories we are going to consider. In the next section,
we specify the relationship between cohomology with supports and the algebraic version
defined in terms of ext sheaves. We make a detailed study of the cohomology with respect
to a system of supports in the case of a formal scheme and interpret the classical results in
terms of Bousfield localization. In the third section we discuss the basic propertiglof
localizing subcategorieand give a counterexample of a non-rigid localizing subcategory
generated by a set. In Section 4 we state and prove the classification theorem, the rigid
localizing subcategories in the derived category of quasi-coherent torsion sheaves on a
noetherian formal schem#& are in one-to-one correspondence with the subsets in the
underlying space o¥. The arguments are close in spirit to [14], with the modifications
needed to make them work in the present context. In the last section we give a description
of the acyclization functor associated to abdafor specialization subset as the derived
functor of the sections with support and connect it to smashing localizations and to
Lipman’s idempotent pair. We characterize tbealizing subcategory associated to such a
subset by means of homological support. This result gives us a comparison of Thomason
classification and ours for a noetherian separated scheme. Finally, by adjointness, we obtain
also a description of the localization functssociated to generically stable subsets.

The question of describing localizations for subsets that are neither stable for
specialization nor generically stable remains open for the moment.

1. Basic factsand set-up
1.1. Preliminaries

For formal schemes, we will follow the terminology of [7, Section 10] and of [2]. In
this paper, we will always consider noetherschemes and noetherian formal schemes.
Let (X, Ox) be a noetherian formal scheme andZdie an ideal of definition ok. In
what follows, we will identify an usual (noetherian) scheme with a formal scheme whose
ideal of definition is 0. Denote byl (X) the category of alDx-modules. The powers af
define a torsion class (see [17, pp. 139—-141]) whose associated torsion functor is

I F = lim Homp, (Ox/Z", F)

n>0

for F € A(X). This functor does not depend @rbut on the topology it determines in the
rings of section®x, therefore we will denote it by™;.. Let A;(X) be the full subcategory
of A(X) consisting of sheaves such thatl", 7 = F; it is a plumpsubcategory ofA(X).
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This means it is closed for kernels, cokernels, and extensions (cf. [2, beginning of §1]).
Most important for us is the subcategofy (X) := Ay(X) N Agc(X). It is again a plump
subcategory ofA(X) by [2, Corollary 5.1.3] and it defines a triangulated subcategory of
D(%) := D(A(X)), the derived category afl(X), it is Dgqet(X), the full subcategory of
D(X) formed by complexes whose homology liesdge(X). If X = X is an usual scheme,
thenAy(X) = A(X) and Aget(X) = Age(X).

The inclusion functorAy.(¥) — A(X) has a right adjoint denoteq_)‘3€ (see [2,
Corollary 5.1.5]). By the existence of K-injective resolutions ([16, Theorem 4.5] or [4,
Theorem 5.4]) it is possible to get right-derived functors from functors with source a
category of sheaves, as a consequence we have a fLRlQ@QrD(X) — D(Agat(X)). If
X is either separated or of finite Krull dimension, this functor induces an equivalence
betweerDqy(X) andD(Aqt (X)) by [2, Proposition 5.3.1]. In #se cases, we will identify
D(Aqct(X)) andDget(X). To avoid potential confusions, let us point out that all left- and
right-derived functors defined oveér,.(X), or over D(Aq(X)) when this category is
equivalent to the former, are defined using K-flat and K-injective resolutiokgin.

The categoriesdq(¥) and A(X) are Grothendieck categories so we can apply the
machinery developed in [4]. In particular, £ is the smallest localizing subcategory of
D(Aqct(X)) or of D(X) that contains a given set, then there is a localization furicsaich
that £ is the full subcategory ob(Aq (X)) or of D(X), respectively, whose objects are
sent to 0 byt (see [4, Theorem 5.7]). The categdy:(X) is a localizing subcategory of
D(X), therefore ifL is the smallest localizing subcategory®fX) that contains a given
set of objects iy (X), the localization functot defined oveD(X) lands insideD g (%),
thereforeL is characterized again as the full subcategorpgf(X) whose objects are
sent to 0 by¢. If X is either separated or of finite Krull dimension, the localizations of
Dqct(X) are identified with those db(Aq.(X)). For the general formalism of Bousfield
localization in triangulated categories the reader may consult [4, 81].

1.2. Monoidal structures

The categoriesA(X) and Ay (X) aresymmetric closedn the sense of Eilenberg and
Kelly, see [9]. For everyF € K(A(X)) there is a K-flat resolutio® = — F, this follows
from [16, Proposition 5.6]. As a consequence, there exists a derived functor

F ®p, —:D(X) = D(X)

defined byF ®bx G =Pr ®0, G. Also the functorHom'Ox (F, —) has a right-derived
functor defined byRHom‘@x (F,9) = Hon}b36 (F,Jg) whereG — Jg denotes a K-
injective resolution ofG. The usual relations hold providing(X) with the structure of
symmetric closed category. Observe that the unit obje©tis

Given F, G € Dgut(X), the complexF ®bx G has quasi-coherent torsion homology.
Indeed, it is a local question, and for affim@etherian formal schemes, a complex in
Dqct(X) is quasi-isomorphic to a complex made by locally free sheaves so the homology
of F ®bx G is quasi-coherent. Furthermore, for atfy € Dy(X) and £ € D(X), the

complexF ®b £ € D(X). Again, this is a local question so it can be checked using [2,
Proposition 5.5.1(&1)] and the compl&X, in its proof. Therefore, for eaclt € Dy (X),
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the functorF ®b — : Dgat(X) — D(X) takes values Dy (X). So it provides an internal
tensor product. One can see that the cate@geyX) has a symmetric monoidal structure.
The unit object isRI"; Ox where byRI;. we denote the right-derived functor of.. We
will denote this object by’ for convenience.

If furthermoreX is either separated or of finite Krull dimension, the catedmjy(X) =
D(Aqct(X)) possesses the richer structure of symmetric closed category. The internal hom
is defined as

Homy (F, G) :=ROYRHomp, (F,G)

for F, G € Dgt(X). It is also important to note that tl@-hom adjunction is internal, i.e.,
it holds replacing the usual hom-group with the internal hom we have just defined, namely,
we have a canonical isomorphism

Homy (F 8, G, M) = Homy(F, Homy (G, M))

whereF, G, andM € Dy (X).

If the reader is only interested in usual schemes, then it is enough to consider the quasi-
coherence of the derived tensor product. In this case the topology in the sections of the
structural sheaf is discreté&y, is the identity functor and so the unit object . For the
internal hom-sheaf, in the separated or finite Krull dimension case, one uses the derived
“coherator” functoRQ defined in [10, §3] taking

Homy (F, G) := RORHom,, (F,G)

for F andG € D(Aqc(X)).

2. Cohomology with supportson formal schemes
2.1. Algebraic supports

GivenF € Dgt(X) andZ C X a closed subset, for the right-derived functor of sheaf of
sections with support along we have thaRI'zF € Dqt(X) because in the distinguished
triangle

RIZF — F— Rj,j*F 5, 1)

where j: X \ Z — X denotes the canonical open embeddiRg, j*F € Dgut(X) [2,
Proposition 5.2.6 and Corollary 5.2.11]. On the other hand, the closed shhisethe
support of a coherent she@f: /Q where@ is an open coherent ideal #x. The functor

Iy :=Ig = lim Homp, (0x/Q". -)

—
n>0
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of “sections with algebraic support alorig’ does not depend o but only on Z.

The natural mapl", — I’z is an isomorphism when applied to sheavesAg:(X).
Furthermore, the natural morphismiX) obtained by deriving; »:RI'",F — RI'zF

is an isomorphism for alFF € Dyct(X). Indeed, this is a local question, so we can assume
that X is affine with X = Spf(A) where A is a noetherian adic ring. Lat: Spf(A) —
SpecA) be the canonical map. L&t := SpecA). The setZ can be considered as a closed
subset of eitheK or X. We will usel", and I’z for the corresponding pair of endofunctors
in A(%) and. A(X). This will not cause any confusion, because the context will make it
clear in which category we are working. 8, Proposition 5.2.4] it is enough to show that
k07 r is an isomorphism. But thiis true because the diagram

, - Kbz F
kxRI,F —— ke RIzF

.

RIkyF — RIzkF

commutes and all the unlabeled maps are isomorphisms (for the map in the bottom use loc.
cit. and [1, Corollary 3.2.4]).
Givené, F € Dyt (%) there is a bifunctorial map

Vz(E, F):E®p, RIZF — RIZ(E ®p, F)

defined as follows. Assumé€ is K-flat and F is K-injective and choose a quasi-
isomorphismé ®p, F — J with J K-injective. The composed map (of complexes)
E®oy I'zF — £ ®o, F — J has image intd’zJ and we defineyz (€, F) to be the
resulting factorization

8®'bxRszl)é‘@oxszM)sz;RFZ(E@’be]:)'

This map is a quasi-isomorphismif is closed. The question is local so using again [2,
Propositions 5.2.4 and 5.2.8], we restricttie inalogous question for an ordinary scheme
X and a closed subs&tc X. We conclude by [1, Corollary 3.2.5].

2.2. Systems of supports on formal schemes

In general, a subsef C X stable for specializationis a unionZ = J,.; Z, of a
directed system of closed subsgfg |« € I} of X andl'z = Iimae[ I'z,, this corresponds
to the classical case of a “system of supports.” WritiTjg= lim,, Féa the canonical map
I, — I'z induces natural mag, r:RI',F — RIzF forall F e D(X). If F — Jis a

K-injective resolution, we have that

/ / : I ”Lnaelez‘)‘*]: H
077 RIGF=T37 =lim Iy J —2L""|im I';,J =R, F,
ael ael
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therefore, for allF € Dyt (%), 07 7 is a quasi-isomorphism.
Mimicking the case of a closed subset, fatF € Dyt (X) there is a bifunctorial map

Vz(E, F):E®p, RI[ZF — RIZ(E ®p, F)

that is a quasi-isomorphism. To check this fact we may asstinseK-flat and F is K-
injective and choose a quasi-isomorphi§m®o,. 7 — J with J a K-injective resolution
and consider the commutativity of the diagram of complexes

Yz(E,F)
A z rzJ
im (& ©b, 17, 7) Daet i 1,7
ael * ael

2.3. Bousfield triangles for systems of supports

Let Z ¢ X be a subset stable for specialization as in the previous paragraph.
The endofunctorRIz: Dyct(X) — Dqut(X) together with the natural transformation
p:RI'z — id is a Bousfield acyclization functor. Let us see why. We need to checlpthat
induces a canonical isomorphignRI"zM) = (RI'zp)(M), for all M € Dy (X). Indeed,
it follows from the previous paragraph that it is enough to check thisMbe D;rct(X),
specifically forM = O’.. The question is local, so arguing as at the end of Section 2.1, we
can suppose that = X is a noetherian affine scheme and a bounded-below complex
formed by quasi-coherentinjective sheaves. In this ¢aset is a bounded-below complex
formed by quasi-coherentinjective sheaves,(cf. [17, Propositions VI.7.1 and VI1.4.5]).

But the functorl™z is idempotent from which it follows that

RIyRITM=T72T'7 M =17 M=RIzM.

Using the notation of Section 2.1 for a closed subBet X, the triangle (1) is a
Bousfield localization triangle for eachk € Dget(X).

In general, leZ C X be a subset stable for specialipatj therefore it can be considered
as the union of a directed systdif, | « € I} of closed subsets ¢t. For everyx € I, let
Uy, := X\ Z, be the complementary open subset gpd/, — X be the canonical open
embedding. LetLz: A(X) — A(X) be the endofunctor defined ds, := IiL)naE[ Jasja-
For everyM e Dyt (%) the triangle

RIyM LMy A RE M >

is the Bousfield localization triangle whose associated acyclization fundgarjs
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For every€ € Dget(X), the commutative diagram

E®p(O%)

£ 8L, RIZOy £ &Y Of
V2(E.0) lz lz
©)
RI,E ’ g

can be completed to an isomorphism of distinguished triangles

+
& ®I(_93€ ero/x — = £ ®I(_93€ O/x — ¢ ®be RLzo/x —_—

T

RIZE £ RLzE

Note that, in particulaRI"z andRLz are endofunctors dbq.:(¥X) that commute with
coproducts, and two Bousfield acyclization or localization functors of this type commute.
If Z, W C X are stable for specialization subsets, thémw = I'zI'w. One can check,
following the same kind of arguments at the beginning of this subsection, that the canonical
mapRIzawF — RIZRIywF is an isomorphism for ever§ € Dgei(X).

2.4. Computing the funct®L x\ x,

Letx € X. Consider the affine formal scherig := Spf(@;) where the adic topology
in the ringOx . is given byZ,. If X = SpfB andp is the prime ideal corresponding to the
pointx, thenOx , = B{p). Denote byi, : X, — X the canonical inclusion map. Consider
the functors

Riys
cht(:{x) % cht(x)v

Iy

which are defined by virtue of [2, Proposition 5.2.6 and Corollary 5.2.11] using the fact
thati, is an adic map.
GivenF1, F» € Dget(X), we have that

HOI’Tb(x) (RFx\xX}—]_, Rix*i:fz) = Honb(xx)(i:RFx\xX}—]_, l':}—z) =0

becauseRI'x\x,F1 = 0. Indeed, writeX \ X, = (J,; Z« a filtered union of closed
subset§Z, | @ € I}, and let71 — J be a K-injective resolution; then

BRMy\x, Fr=iiTn\x,J = l:h_)m I';,J = ”Ln)ijrzajzo.
ael ael
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It follows that for eachF € Dy (X) there is a unique maRL x\ x, F — RiyifF making
the following diagram commutative:

F — RLx\xX]'—

|

F — Rix i F.

Furthermorej is a natural transformation of-functors and it is an isomorphism, i.e.,
hx is a quasi-isomorphism for evet¥ € Dqu(X). Let us show this. First of all, we can
assume thak is affine. Indeed, choose an affine open suldset X such thatx e 4,
then one can descrih® \ X, as a filtered union of closed subsés, | « € I} such
that eachi, := X \ Z, is an affine open subset &f. Let us denote byj: i — X,

Jo ity = X, and i, :X, — 4 the canonical morphisms. Note thgto i, = i,. For
every F € Dga(X) we have an isomorphisrRLx\x, F — Rjsj*RLx\x,F because
RIx\uRLx\x, F = RI'x\yRI'x\x,RLx\x, F =0 (see Section 2.3). Using flat base
change [2, Proposition 7.2], we see that the canonicalRigp;F — Rj.j*Riy«i i F is
also anisomorphism. So, we are left to prove tiidtr is an isomorphism, or, equivalently,
thath ;= r : RLyyx, (j*F) — Ri.,i'"t(j*F) is an isomorphism. Then, let us treat the case
X = SpfA with A a complete noetherian ring. Both endofunctBisy\ x, and Riy.i}
commute with coproducts by 2.3 and [2, Projtios 3.5.2], respectively. To prove that
hr is a quasi-isomorphism for evet§ € D(Aqt(X)) = Dgat(X) it is enough to check it
for F € Aqu(%), because the smallest localizing subcategory contaidigg(X) is all

of D(Aget(X)). In this case the morphismg : U, — X andi, : X, — X are affine.
Therefore, by [2, Lemma 3.4.2], fof € Ay(X) andi > 0,

H'(RLx\x,F) =M H (RjusjiF) =0,  H (Rirsi}F)=0,
ael
and fori =0,

0
HORLx\x, F) = lim jou ji F Z2EE % F = HO(Ri i 2F)

o

is the natural map. Let us show that’(hr) is an isomorphism. Using [2, Proposi-
tion 5.2.4], we are redied to the particular casé= X = Speca is an usual affine scheme,
x corresponds to a prime ideglc A, M is anA-module andF = M. ThenHO(hF) cor-
responds to the canonical isomorphismdemodules

feA\p

Therefore, forX a noetherian formal scheme and evérye Dyt (X) one has a natural
Bousfield triangle

RIMp\x, F — F — RiwiiF 5. (2)
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Recall that the canonical triangle
RIMx\x, 0% = O% — Rii;O% =+
tensored byF provides a triangle
RIx\x, O ®p, F = F = Rii Oy ®p, F -

that is naturally isomorphic to (2) by Section 2.3.

3. Rigid localizing subcategories

Let T be a triangulated category with all coproducts. This is the cas®(&) and
Dqct(X) for a noetherian formal schen®, and also forD(X) andDg(X) for an usual
schemeX. A triangulated subcategorg of T is calledlocalizing if it is stable for
coproducts inT. If T is one of the aforementioned derived categories, it is not ensured
that £ C T is well-behaved with respect to the tensorial structure. It turns out that we need
such compatibility in order to localize on open subsets. So let us establish the following
definition. A localizing subcategorg C Dqt(X) is calledrigid if for every 7 € £ and
G € Dget(X), we have tha.li-"<§§>bj€ G € L. This condition has been independently considered
by Thomason for thick subcategories by the same reason (see [18, Definition 3.9], where
they are calleds-subcategories Our route to find this condition came from a paper by
one of the authors where localizations are considered in the abelian context, see [11, 2.3].

Proposition 3.1. Suppose thatt is furthermore either separated or of finite Krull
dimension. Lel be a localizing subcategory @f(Aqc(X)). If £ is rigid, then, for every
F,G € D(Agt (X)) such thatG is L-local (i.e.,G € L), thenHom:. (F, G) is L-local. If
moreover-(£1) = £, the converse is true.

Proof. LetH € L, then
Homp(x) (H, Homy (F, §)) = Hompx) (H ®p,. F,G) =0, (3)

becausej € £+ and H ®bx F e L. Conversely, if (3) holds for everg € £+, then
H®p, Fe (LH=L O

Remark. The condition(£1) = £ holds if £ is the localizing subcategory of objects
whose image is 0 by a Bousfield localization (see [4, Proposition 1.6]). We will see later
(Corollary 4.14) that every rigid localizing subcategorybgfdq. (X)) arises in this way.
Proposition 3.2. If X is affine, every localizing subcategorymf Ay (X)) is rigid.

Proof. TakeX = SpfA where A is a noetherian adic ring. Every quasi-coherent torsion
sheaf comes from aA-module and therefore it has a free resolution. ketSpfA —
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SpecA the canonical morphism ankl := SpecA. Let £ be a localizing subcategory of
D(Aqct(X)). The full subcategory of D(Aqc (X)) defined by

T={N €D(Age(X)) | K*N ®p, M€ L, VM€ L]

is triangulated and stable for coproducts. It is clear dyate T, thereforel = D(Aqc(X)).
Now, giveng € D(Aqct(X)), G = k™G, andk,.G € D(Aqc(X)) =T [2, Proposition 5.1.2],
thereforeg ®bx MeL, foreveryMe L. O

Example. Not all localizing subcategories are rigid. Let us show an example of a non-rigid
localizing subcategory. Our example is based in Thomason’s example [18, Example 3.13]
of a thick subcategory that it is not@&-subcategory. Consider the projective line over
a field together with its canonical map: P} — Spect. Denote byD(Pi), the full
subcategory of D(ch(P,})) formed by perfect complexes (i.e., quasi-isomorphic to a
bounded complex of locally free finite-type sheaves). llethe smallest localizing
subcategory OD(AqC(P,})) generated by := Lz*k. Note that€ € D(P,})Cp and that is

the smallest localizing subcategory that contains the thick subcategeryF D(P,})Cp |

L *RmF = F}, which is a thick subcategory cbtf(P,})cp, constructed by Thomason in
loc. cit. Every objectM € L is such that.z*Rmz,M = M because botlhz* andRm,
commute with coproducts and the equality holds forObserve thatC is the essential
image of D(Aq:(Spedk)) by the functorLz*. The localizing categoryC is not rigid.
Indeed, takeM € £, M # 0, we will show thatM @ O(-1) ¢ L. Let F := R, M,

then

R (M ® O(=1)) = Ry (L *(F) ® O(-1)) [12,(3.9.4)]
~FQRm,0O(—1) [8,2.12.16]
~0.

We conclude thatM ® O(—1) is not an object inL becauseM ® O(—1) # 0 =
L7 *Re (M @ O(-1)).

Remark. The rigidity condition may seem strange but, in fact, these are the localizations
that behave well when restricted to open stband “are detected” by ample sheaves when
they exist. We suggest the interested readadapt [18, Proposition 3.11] and its corollary

to our situation. We will not get into these details because we do not need them.

4. Localizing subcategories and subsets

We keep denoting by a noetherian formal scheme afidts ideal of definition. Let

x € X, we denote by, : X, — X the canonical inclusion map whefg, = Spf(@g:)
(completion with respect t@, ).

2 Denoted a® (P}) part in [18].
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We will denote byk (x) the residue field of the local rin@\,x, or, equivalently, of
Ox.x, by Ky the quasi-coherent torsion sheaf over (Sﬁ:) associated to thé@:-
modulex (x) and KC(x) := Ri,«(K,). Observe thatl(x) = RI"{7}IC(x) = Riyi FIC(x). If
X = X is an usual scheme andis a closed point{C(x) has been denote@, in recent
literature, but we will not use this notation to avoid potential confusions.

Let Z be any subset of the underlying spacetofe define the subcategofly; as the
smallest localizing subcategory Df(X) that contains the set of quasi-coherent torsion
sheaves§/C(x) | x € Z}. If Z = {x}, we will denoteL  simply by £,. Note that ifx € Z,
thenl, C L.

Lemma 4.1. If F € Dg(X) andx € X, then RFm(Rix*i;"]-') belongs to the localizing
subcategonly.

Proof. Let Qg be a sheaf of coherent ideals @ such that Sup@x/Qo) = {x} and
denoteQ :=i¥Qo. Recall, by [2, §5.4],

RI (Rivsi} F) = holimHomo, (0 /Qp. ixs])

n>0

= holimRiys Homp,, (Ox,/Q". J).

n>0

wherei}F — J is a K-injective resolution.
LetG:=lim _,Homp, (Ox,/Q",J) and letus consider the filtration

0=GoCcGi1CGaC---CG,

whereg, :=Homp, (Ox,/Q",J), i.e., the subcomplex aff annihilated byQ". The
successive quotiengs, /G, —1 are complexes of quasi-coherdfit-modules and, therefore,
isomorphic inD(Aqct(Xy)) to a direct sum of shifts of,. The functorRi,. preserves
coproducts, therefore eveRi,.(G,/G,—1) iS an object ofL,. We deduce by induction,
using the distinguished triangles

Rixs«Gn—1 = RixsGn = Rix+(Gn/Gn-1) =+
that evenRi, .G, is in L, for everyn € N. But we have

RF{7}(Rix*i;‘]-') = holimRi «G,

n>0

and the result follows from the fact that a localizing subcategory is stable for homotopy
direct limits [4, Lemma 3.5 and its proof].C

Let E, be an injective hull of th&)x -modulek (x), thenE, is aZ,-torsion @g\x
module. Let therf, be the sheaf itdqc(X,) determined by (X,, £;) = Ex.

Corollary 4.2. The object (x) := Ri,+&, belongstal,.
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Proof. Use the previous lemma and the fact that) = RF{7}(Rix*i;‘5(x)). O

Lemma 4.3. Let M € Dyut(X) and £ the smallest localizing subcategory Dfc:(X) that
containsM. If G € Dyet(X) is such thatM ®bx G =0, thenF ®bx G =0, for every
FelL.

Proof. The A-functor — ®bx G preserves coproducts and therefore the full subcategory

whose objects are thosE € £ such thatF ®bx G =0 is localizing, but it containg\1,
thereforeitisC. O

Proposition 4.4. The smallest localizing subcategofyof Dqc:(X) that contains/C(x) for
everyx € X is the wholeDge (X).

Proof. Let F € Dyt (X) andC denote the family of subseisC X stable for specialization
suchthaRI'y F € L. If {Wy}qer is achaininC, then

RFUWaf:”L)nFWaj’

ael

for a K-injective resolutio” — 7. By [4, Theorems 2.2, 3.1R 1w, F = I yw,J € L,
because eadRI'y, F = I'w,J € L, solJ W, €C.
The sefC is stable for filtered unions, therefore, there is a maximal elemeahivhich
we will denote byW. We will see that¥ = X from which it follows thatF = RI'x F € L.
Indeed, otherwise suppode\ W # @. As X is noetherian, the family of closed subsets

C'={{z}|zeXand{z} N (X \ W) # 0}

has a minimal subsép}. If x € {y} N (X \ W), then{x} € C/, but{y} is minimal, sox = y

and W U {y} = W U {y}. Consider now the inclusiof : X, — X and the distinguished
triangle inDgct (%)

RIwF — RTwu(p) F — R (Riy«i s F) -
obtained applyin@RI'wuiy, to the canonical triangle
RFx\x},J’T—) F - Riy*i;ffi> .

We deduce thaRI'wu(,)F € L, becauséV € C and RF@(Riy*i;f]-‘) e L, C LbylLem-
ma 4.1, contradicting the maximality &f. O

Corollary 4.5. LetG € Dget(%). We have thag = 0if and only ifHompx) (K (x)[n], G) =0
forall x €e X andn € Z.

Proof. Immediate from Proposition 4.4.0

Corollary 4.6. LetG € Dqct(X) be such thatC(x) ®bx G = 0for everyx € X, thenGg = 0.
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Proof. Itis a consequence of Proposition 4.4 and Lemma 4(3.
Lemma4.7. If x # y, thenkC(x) ®bx K(y)=0.
Proof. There exist an affine open subset X such that it only contains one of the points,

for instance assume thate 4l andy ¢ 4. Denote by;j : 4 < X the canonical inclusion
map. Now, using Section 2.4,

K(x) ®p, KO ZRjiuj* K(x) ®p, KO ZRjij*O% ®p, LX) 8p, ()
= K(x) ®p, Rjxj*K(y) =0,
becausg*/C(y)=0. O
Corollary 4.8. For every subseZ C X, the localizing subcategorg is rigid.
Proof. The full subcategon$ C Dqc(X) defined by
S ={N €Dgu(X) | N ®p, M €Lz, YMe Ly}

is a localizing subcategory dbqc(X). Forx € X, K(x) = RF{T}RiHi;‘IC(x), SO using
Sections 2.3 and 2.4, we have that

K(x) ®p, M =RIRiwi FL(x) ©p, M = RIRiwi; (Kx) ®p, M).

Therefore ifx € Z, then K (x) ®bx Me L, C Lz by Lemma 4.1, and fox ¢ Z, by

Lemmas 4.7 and 4.3C(x) ®bx M =0 itis also inLz. NecessarilyS = Dgct(X) by
Proposition 4.4. O

Corollary 4.9. If Z andY are subsets ok such thatZ NY = ¢, thenF ®bx G =0 for
everyF e Lz andG € Ly.

Proof. This follows from the previous lemma and Lemma 4.31
Corollary 4.10. Givenx € X and F € L, we have that

F=0 & F®p Kx) =0
Proof. By Lemmas 4.7 and 4.3, giveftr € L,, for all y € X, with y # x we have
that 7 ®, K(y) =0, therefore if alsaF ®bx K(x) = 0, it follows that F = 0 by
Corollary 46 O

Corollary 4.11. Let £ be a localizing subcategory dbge(X) and F € Dgct(X). If
K(x) ®bx F e L foreveryx € X, thenF e L.
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Proof. Let £ = {G € Dqu(X) | G ®bx F € L£}. The subcategory’ is a localizing
subcategory 0bq.:(X) such thatC(x) € £’ for all x € X. By Proposition 4.4, we deduce
that £’ = Dgct(X), in particularO’, ®bx F=Fel. O

Remark. If the localizing subcategory is rigid, thenC(x) ®bx F e Lforall x € X if,
and only if, F € L.

Theorem 4.12. For a noetherian formal schenséthere is a bijection between the class of
rigid localizing subcategories diy:(X) and the set of all subsets &t

Proof. Denote byLoc(Dgct(X)) the class of rigid localizing subcategoriesif;(X) and
by P(X) the set of all subsets &f. Let us define a couple of maps:

14
Loc(Dget(X)) ? P(X)

and check that they are mutual inverses. DefineAar X, ¢ (Z) := Lz which is rigid
by Corollary 4.8, and for a rigid localizing subcategatyof Dgci(X), ¥ (L) 1= {x € X |
3G € L with K(x) ®b G #0}.

Let us check first fhayf o¢p=id. LetZ Cc X andx € Z, by definition(x) € Lz and
clearly K(x) ®p  K(x) # 0 by Corollary 4.6 and Lemma 4.7, therefores ¥ (¢(2)),
S0 Z C ¥ (¢(Z)). Conversely let € ¥ (¢(Z)), by definition there igj € Lz such that
K(x) ®bx G #0, by Corollary 4.9x € Z.

Now we have to prove thap o v = id. Let £ be a rigid localizing subcategory of
Dgct(X). We will see first thatly, ) C £ and for this it will be enough to check that
K(x) € L foreveryx € ¥ (L). So letx € ¥ (L), there is & € L such thafC(x) ®bx G #0.

On the other hand¢ (x) ®bx G belongs tal because is rigid. We have that

Kx) ®p, 6= @D Fa,

ael
whereJ is a set of indices ané, = K(x)[s,] wWith s, € Z. Indeed, it is enough to take a
free resolutionM — 3G of the complex of quasi-coherent torsiéh, -modules ;G and
to consider the chain of natural isomorphisms
K(x) ®p, G = Riwiy (Kx) ®p, 9)
= Rixe(Kx ®p, i79) [12,(3.2.4)]
= Rix(Kr ®p, M)

and use the fact that both functdts ®bx — andRi,, commute with coproducts. But

L is localizing, so stable for coproducts and, as a consequence, for direct summands
(see [5] or [4, footnote, p. 227]). From thi&p,, . ; F» € £ impliesC(x) € £, as required.
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Finally, let us see thaf C Ly (). Let F € L, by Corollary 4.11 to see thak € Ly 1)
it is enough to prove that(x) ®bx F € Ly for everyx e X. Suppose that the non-

trivial situation/C(x) ®%, F # 0 holds. In this case; € ¥ (£), therefore we conclude that
Ox

K(x) ®bx F e Ly C Ly using Corollary 4.8 that tells us thAt(x) ®bx F belongs to
the localizing subcategory generatediogc). 0O

Remark. In view of Proposition 3.2, the previous result is a generalization of [14,
Theorem 2.8] from noetheriaaffineschemes to the bigger category of noetherian formal
schemes.

Coroallary 4.13. For a noetherian schemk there is a bijection between the class of rigid
localizing subcategories @y (X) and the set of all subsets &f.

Corollary 4.14. Every rigid localizing subcategory @, (X) has associated a localiza-
tion functor.

Proof. Theorem 4.12 says that a rigid localizing subcategdty Dqct(X) is the smallest
localizing subcategory that contains the $&t(x) | x € ¥(£)}. It follows from [4,
Theorem 5.7] that there is an as&ded localization functor fo€. O

The following consequences of the previous discussion will be used in the next section.

Lemma 4.15. Let £ be a rigid localizing subcategory @fqc:(X) andz € X. If z ¢ ¢(L),
thenK(z) is a L-local object.

Proof. Let NV € Dgci(X) consider the natural map
Hompx) (', K(2)) 2> Hompx) (N ®p,, K(2), K(2) ®p, K(2)),
and the map
Homp () (N ®5 . K(2), K(2) ®5 K(2)) £ Hompx) (W, K(2)
induced by the canonical maps
Ox - K@) and K(z) ®p, K(z) > K().

It is clear that8 o « = id. By Corollary 4.9, we have that ®bx G=0foral N e L and
G € L, and necessarily,

Homx (N, K(z)) =0,

thereforeC(z) is L-local. O
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Lemma 4.16. Suppose thakt is either separated or of finite Krull dimension and I&be
a rigid localizing subcategory db(Aqt(X)) andz € X. If z ¢ ¥(£), thenHom (G, F)
is a L-local objects for every € D(Aqa(X)) andg € L;.
Proof. By Corollary 4.9, we have that

Hompx) (A, Homy (G, F)) = Homp(x) (N ®p, G, F) =0

for everyN € L, from which it follows thatHom,.(G, F) is L-local. O

5. Compatibility of localization with the monoidal structure

In this sectionX will denote a noetherian scheme that is either separated or
of finite Krull dimension. LetL be a localizing subcategory db(Aqc(X)) with
associated Bousfield localization functoror everyF € D(Aqc (X)) there is a canonical
distinguished triangle

yF—>F>tF5 (4)
such thaty F € £ and¢F e £ (in other words{.F is £-local). The functory is called
the acyclization or colocalization associated’tand was denoteél’ in [4]. Here we have
changed the notation for clarity. The endofunctprand¢ are idempotent in a functorial

sense as explained in Section 1 of loc. cit. Forall € D(Aqc(X)) we have the following
canonical isomorphisms:

Homp(x)(y F, yG) = Homp(x) (v F, §),
Homp(x) (¢ F, £G) = Homp(x) (F, £G)

induced byy G — G andF — ¢.F, respectively.
Lemma 5.1. With the previous notation, the following are equivalent

() The localizing subcategow is rigid.
(i) The natural transformatiorG — G induces isomorphisms

Homy (v F,yG) = Homy(y F,G)

for everyF, G € D(Agat(X)).
(i) The natural transformatiotF — ¢F induces isomorphisms

Hom’y (CF, £G) = Homy (F, £G)

for everyF, G € D(Agat(X)).
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Proof. Let us show (i)= (ii). Let /' € D(Aqut(X)), we have the following chain of
isomorphisms:

Homp(x) (N, Homy (v F, ¥§)) = Homp(x) (N ®p), v F. v9)
a
= Homp(x) (N ®|(‘,)x yF, Q)
= HOI’Tb(x) (N, ’Hom'x(y]-', Q)),

whereq is an isomorphism becaugsis rigid and therefora\/@bx yF= V(N®bx yF).
Having an isomorphism for even)” € D(Aq(X)) forces the target complexes to be
isomorphic.

We will see now (ii)= (iii). From (4), we have a distinguished triangle

Homy (EF, £G) — Homy (F, £G) — Homy (y F, £G) >

but its third pointis null, considering

(i)
Homy (y F, £G) = Homy (yF, y£G) =0,

because ¢G = 0.
Finally, let us see that (iii)=> (i). Take 7 € £ and N € D(Aqct(X)). To see that
N@k936 F e L itis enough to check that Hagpy) (N ®bx F,G) =0 for everyG e L+

becausée-(£1) = £. But this is true:
Hombx) (N ®p, F. G) = Hompx) (N, Hom'y (F, G))
b
= Homp(x) (N, Hom (¢F, £G))
=0,

whereb is an isomorphism, as follows from (iii) and the fact tat= ¢G, and the last
equality holds becausg € £ and sotF=0. O

Example. Let Z be a closed subset &f, or more generally, a set stable for specializafion.
Recall the functor sections with suppdr : Agei(X) — Aqct(¥). From Section 2.3, we
see thatRl"z : D(Aqet (X)) = D(Aqat(X)), its derived functor, together with the natural
transformatiorRI"z — id posses the formal properties of an acyclization such that the
associated localizing subcategory

L={M eD(Aq(X)) | R[Z(M) = M}

is rigid.

3 See Section 2.2.
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The functorR Iz has the following property:

0 ifx ¢ Z,

RIZ (k) = {IC(x) if x € Z.

Indeed, ifx ¢ Z by Lemma 4.15RI"z(K(x)) = 0. On the contrary, ifx € Z, then
Kx) e Ly, C Lz, SORIZ(K(x)) = K(x). It follows that £ has to agree withCz by
Theorem 4.12 and, consequent®/z is yz, the acyclization functor associated to the
localizing subcategory z. This acyclization functor satisfies a special property, namely,
vz(F ®bx G) andF ®bx yzG are canonically isomorphic, see Section 2.2.

5.2. Let £ be a rigid localizing subcategory @i(Aqt(X)) and F, G € D(Aqet(X)).
The morphismF ®bx yG — F ®bx G induced byyG — G factors naturally through

v (F ®p, 9 giving a natural morphism

11 F ®p, 79— 7(F®p, G)-
Let us denote by

PiF Qp, £G — L(F ®p, G)

a morphism such that the diagram

F&b v — F®% §— Fo%h (G — -

lf P

is a morphism of distinguished triangles. In fact, the triangle is functorial in the sense
that the mapp is uniquely determined by due to the fact that [Homx)(F ®bx vG,
UF ®p, DI-1]) =0].

We say that the localizatiofis ®-compatible(or that£ is ®-compatible or thay is
®-compatible) if the canonical morphismor equivalentlyp, is an isomorphism.

We remind the reader our convention tiit denoteRI™Ox.

Theorem 5.3. In the previous hypothesis we have the following equivalent statements

(i) The localization associated i is ®-compatible.
(i) Forevery€ e £+ andF € D(Aqu(X)) we have thatF ®bx Ee Lt
(i) The functor? preserves coproducts.
(iv) A coproduct ofZ-local objects isC-local.
(v) The setZ := /(L) is stable for specialization and its associated acyclization functor
is y =RI7.
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Proof. Let us begin proving the non-trivial part of (8 (ii). Indeed, suppose that (ii)
holds and fotF, G € D(Aqet (X)) consider the triangle

F®p, 9= F®p, G F ®p, G5

we have thatF ®bx vG e L becausel is rigid, on the other handfF ®bx G e Lt
becauség € L. The fact that the natural maps

F®p, v v(F®p,0) and F®p LG5 L(F g, 9)

are isomorphisms follows from [4, Proposition 1.6, () (i)].
Let us see now that (B (iii). If the localization associated tg is ®-compatible we
have that, fotF € D(Agat (X)),

LF = F ®p, L0k

from which is clear that preserves coproducts.

The implication (i) = (iv) is obvious becausér = F if, and only if, 7 € £. To
see that (iv)= (v), we will use an argument similar to the one in the affine case [14,
Lemma 3.7]. Assume thdt preserves coproducts. Lete Z andz € {x}. If z ¢ Z, then
K(z) € £+ (Lemma 4.15) and’, ¢ £ because by (iv)C' is localizing, and it follows
by Corollary 4.2 that als&(z) € £+. But £(x) € £ which contradicts the existence on
a non-zero maig (x) — £(z) because e {x}. ThereforeZz, is stable for specialization
and y = RI'z by the example following Lemma 5.1. The same example shows that
V)=(@{. o

Remark. In the category of stable homotopypSp, the localizations for which condition
(i) holds are calledmashingThis can be characterized hycondition analogous to (i) in
terms of its monoidal structure via the smash productSo, the previous result classifies
smashing localizations iR (Aqet(X)).

Corollary 5.4. There is a bijection between the class@fcompatible localizations of
D(Aqct(X)) and the set of subsets stable for specializatiof{ of

In [13, 81.4], Lipman defines aidempotent paiffor a closed category. In the case in
which the closed category B(Aqu(X)), it is a pair (£, ) where€ € D(Aq(X)) and
;x :2‘:‘ — O is such that ig ®bxa anda ®bx idg are equal isomorphisms froﬁ@bx £
0€.

Corollary 5.5. There is a bijective correspondence betwegitompatible localizations
and idempotent pairs i (Aqet(X)).

Proof. A ®-compatible localization associated to the stable for specialization sdbset
gives an idempotent paiR1z(0%), t) with ¢ :RI"z(O%.) — O’ the canonical map. The
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condition that i@bxt andz ®b id are equal isomorphisms is simply the fact tRdt,
is an acyclization functor associated t@acompatible localization.

Given an idempotent pai(€, @), define the endofunctoy by y(F) := F ®bx &
and analogously for morphisms. The idempotence dbllows from the condition of
idempotent pair, which also ensures that itgscompatible. These constructions are
mutually inverse because # C X is the stable for specialization subset associated to
v, thenRIZ(0) =y (0y) =0y ®p E=E. O

For a complexF € D(Aqu(X)) we define itshomological suppor@s the union of
the supports of its homologies, i.e., Supbh= |, SuppH! (F). Note that SupptF
is always a subset of stable for specialization. In fadt can be characterized in terms of
cohomology with supports, as the following result shows.

Theorem 5.6. Let Z C X be a stable for specialization subset, 6re D(Aqu (X)), we
have the following equivalent conditians

() RIZF~F.
(i) FeLyz.
(iii) SupphF c Z.

Proof. The equivalence (i} (ii) follows from the fact thatC; is a localizing subcategory
with associated Bousfield acyclizatiati'; as is explained in the example following
Lemma 5.1. The implication (i}= (iii) is clear because Suppty'zF C Z, asRIzF is
computed by a complex formed by sheaves already supportéd in

Let us show then that (iii}= (ii). By Corollary 4.11, it is enough to check that
K(x) ®, F €Lz, forallx e X. If x € Z, thenK(x) ®p F € L« C Lz. Forx ¢ Z,
Xy N Z =y because is stable for specialization. Let us consider the chain of isomor-
phisms:

.. (2.4) ..
K(x) ®be F > Rixi }K(x) ®be F ~ Kx) ®I(_9x Riyxiy F.

Note thatRi,.«ifF = 0 because Supph C Z C X \ X,, therefore we conclude that
K(x) ®p, F=0. O

This last result allows us to compare our classificatior®edompatible localizations
with Thomason’s localization. It says [18, Theorem 3.15] that there is a bijection between
the set of subsets stable for specializattd a quasi-compact quasi-separated sch&me
and the set of thick triangulatee-subcategories 0D(Aqc(X))ep. We recall that a
triangulated subcategoy/C D(Aqc(X))cp is calledthickif it is stable for direct summands
and is called by Thomasong-subcategories if it is ®-ideal, i.e., the same condition that
we use to define rigid localizing subcategoriesXlfis noetherian and separated we are
able to compare this classification with ours, which is expressed in Corollary 5.4. We have
the following proposition.
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Proposition 5.7. Let X be a noetherian separated scheme. There is a bijection between
the set of®-compatible localizing subcategories 0f(.Aq:(X)) and the set of thick
triangulated ®-subcategories oD(Aq(X))cp. This bijection is compatible with the
classification of both sets in terms of stable for specialization subséts of

Proof. Denote byLocg (D(Aqc(X))) the set of®-compatible localizing subcategories of
D(Aqct(X)) and by Theg (D(Aqc(X))ep) the set of thick triangulate®-subcategories of
D(Aqc(X))cp- Let us define a couple of maps:

f
Locg (D(Age(X))) ? Thg (D(ch(X))Cp),

and check that they are mutual inverses. Fap-aompatible localizing subcategory
we definef (£) := £ N D(Aq(X))ep Which is clearly a thick triangulate@-subcategory.
For such a subcategofy we defineg(B) as the smallest localizing subcategdl¢3) of
D(Aqc(X)) that containg3. Let us show thaf(B) is ®-compatible. FON € D(Agc(X))cp,
defineLo = {M € L(B) | M ®bx N € L(B)}. Note thatlg is a localizing subcategory of
D(Aqc(X)) and thatB € Lo C L(B), so Lo = L(B). Therefore L := {N € D(Agc(X)) |
M ®bx N e L(B),VM € L(B)} is a localizing subcategory @f(Aq (X)) that contains
D(Agc(X))cp- Applying [15, Proposition 2.5], we conclude thet= D(Aqc (X)), therefore
L(B) is rigid. The coproduct of(B)-local objects is agaiL (B)-local becaus& () is
generated by perfect complexes. ThE3) is ®-compatible by Theorem 5.3.

First, let us see thaft (¢g(B)) = B. By the cited Thomason’s result there is a stable
for specialization subseZ of X such that5 is the class of all perfect complex with
homological support contained iA. It follows that the smallest localizing subcategory
that containg3, £(B), is contained inz because all of is complexes are supported in
Z by Theorem 5.6. NowZ(B) is ®-compatible, so there is a stable for specialization
subsetZ’ ¢ Z of X such thatl(B) = L. But Z’ has to agree wittx, otherwise by [18,
Lemma 3.4] we could find a perfect complexfhwith homological support outsidg’,

a contradiction. So, necessarilyB3) = Lz andL(3) N D(Agc(X))ep = B.

Take now a®-compatible localizing subcategoyy C D(Aqc(X)). By Corollary 5.4,
there is a subsef C X stable for specialization such thdt= £ which means that the
objects inB := L N D(Aq(X))cp are perfect complexes whose homological support is
contained inZ. The localizing subcategoy/ := g(f(£)) is the smallest one that contains
the objects of3, so L' ¢ £. The localizing subcategorg’ is ®-compatible, then there
is a stable for specialization subsét c Z of X such thatl’ = £;/. But observe that
Z' has to agree witl¥ arguing as before with the perfect complexes in the tkgekub-
categoryf(£). O

Corollary 5.8. In the previous situation, ag-compatible localizing subcategory of
D(Aqc (X)) is generated by perfect complexes.
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5.9. Let £ be a rigid localizing subcategory @f(Aq (X)) and F, G € D(Aqu(X)).
The morphismHom:,.(F,G) — Homy(F, £G) induced byG — £G factors through
£ Hom' (F, G) by Proposition 3.1. So, it gives a natural morphism

q L Homy(F,G) — Hom (F, £G).
Let us denote by

h:y Homy(F, G) — Homy (F,yG)

the morphism such that the diagram

Homy (F, yG) — = Homy(F.,G) — = Homy(F.G) — =

k -

Yy Hom (F,G) —— Hom(F,G) —— L Hom(F,G) ——

is a morphism of distinguished triangles. Againrandg determine each other.

With the notation of the previous remark, we say that the localizatias Hom-
compatible(or that £ is Hom-compatible or thay is Hom-compatible) if the canonical
morphismyg, or equivalently, is an isomorphism.

5.10. Let £z be ag-compatible localizing subcategorybf.Aq. (X)) whose associated
(stable for specialization) subset4sc X. Let us apply the functoiom’,. (—, F), where
F € D(Aqget(X)), to the canonical triangle
yz0% — O% — £70% +

associated t@ 7. We have added the associated subsets as subindices for clarity. We obtain:

Homy (020, F) — F — Homy (yz0%, F) . (5)
Proposition 5.11. The canonical natural transformations

id— Homk(yzo/%, —) and HOm'%(Ezo/x, —) — Id,

correspond to aHom-compatible localization andts corresponding acyclization in
D(Aqc(X)), respectively. Its associated subsefat X \ Z.

Proof. Note that (5) is a Bousfield talization triangle becausg; is ®-compatible. The
associated localizing subcategory

L ={M e D(Aget(X)) | Homy (yzO%, M) =0}

satisfies that (L) = £ [4, Proposition 1.6]. Furthermore, the canonical isomorphisms



608 L. Alonso Tarrio et al. / Journal of Algebra 278 (2004) 585-610
Homy (F, Homy (yz0%, G)) = Homy (F ®p, v20%. 9)
= Homy (yzO%, Homy(F, G))
show that( is rigid (Proposition 3.1) an@i{om-compatible.
Letus checkthaf = Lx\z. Letz € X, we will consider two possibilities depending on

the point being or not irZ. First, if z € X \ Z, it follows thatXC(z) E% by Lemma 4.15
and therefore we have that

’Hom'x(yzO/x, IC(z)) < ’Hom‘x(yzo/x, yZIC(Z)) =0,
then
Hom} (¢20%, K(2)) = K(2).

Forz € Z we will show thatHom). (£20’,., K(z)) = 0. By Proposition 4.4, it is enough
to prove that

Hompx) (K(), Homy (€20%,K(2))) =0, VyeX,
equivalently that
Hompx) (K(y) ®p, £20%, K(x)) =0, VyeX.

The localization functof; is ®-compatible soC(y) ®bx Lz0% = £zK(y) will be zero
if y € Z. On the other hand, if € X \ Z we conclude becaugé(y) ®bx €z0% € Ly and
K(z) € Ly (Lemma 4.15). O

5.12. Note that the following adjunction is completely formal:
Homy(yzF,G) = Homy (F, £x\z9).
Indeed, it is the composition of the following natural isomorphisms:
Hom (vzF, G) = Hom (yzO% ®bx F.,G) = Homy (F, Homy (yz0%. §))
= Hom (. Lx\29).
Example. Let nowZ be a closed subset af which we assume it is an ordinary (noetherian
separated) scheme. amdz :D(Aq (X)) — D(A(X)) the left-derived functor of the
completion along the closed subgetwhich exist because it can be computed using quasi-
coherent flat resolutions, as proved in [1]). In loc. cit. it is also shown there is a natural

isomorphism

Homy (RI'zO0x, G) —> ROLAz(G).
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This result together with the previous adjunction is often referred tGragnlees—May
duality because it generalizes a result from [6] in the affine case.

5.13. In general, ifZ € X is a stable for specialization subset®fwe will define for
everyg € D(Aga(X)):

Az(G) :=Homy(RIZO%,G).

Theorem 5.14. For a rigid localizing subcategoryC C D(Aq(X)), the following are
equivalent

(i) The localization associated 0 is Hom-compatible.
(i) ForeveryN e £ andF € D(Aq(X)) we have thatom:. (F, V) € L.
(iii) The setr := (L) is generically stabléand its associated localization functoras;
with Z =%\ Y.

Proof. Let us see first that (ii}= (iii). Let z € Y andx € X such that; € {x}. With the
notation of Corollary 4.2, ik ¢ Y, then by Lemma4.18{omy (£(x), £(z)) € £+ By (i),

Hom’,. (£(x), £(z)) belongstal becaus€(z) € L. ThereforeHomy (£(x), £(z)) =0and
we have

Hompx,) (E(x), 5(2)) =Homp(x) (0/36’ 'Hom'x(é‘(x), E(Z))) =0,

a contradiction. Necessarily, the st X \ Y is stable for specialization arfgq = A ;.

The implication (iii) = (i) follows from the previous remarks and the bijective
correspondence established in Theorem 4.12.

To finish, (i)= (i) is straightforward because for evefy € £, we have that

0]
Hom'x(}",N’)=’Hom'3€(}",yj\f)éy7'tom'x(}",N)e[l. O

Corollary 5.15. The functory associated to &om-compatible localization iD(Agc (X))
commutes witlproducts in particular, the corresponding localizing clagsis closed for
products.

Proof. It is an immediate consequence of Theorem 5.14(iii) and that every complex
in K(Aget(X)) admits a K-flat resolution by [3, Bposition 2.1.3] and a K-injective
resolution. O

Corollary 5.16. For a noetherian separated formal schefg¢here is a bijection between
the class offom-compatible localizations @f(Ay (X)) and the set of generically stable
subsets of.

4le., an arbitrary intersection of open subsets.
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