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1. INTRODUCTION 

Let L be a finite algebraic extension of a field K and let A be a linite- 
dimensional simple algebra with center L. The theory developed in this 
paper arises from the following question: what are the “minimal” linite- 
dimensional simple algebras with center K in which A is embeddable? 

Before clarifying what we mean by “minimal” in the above context we 
introduce some terminology. We say that A/L is central simple if A is a 
central simple algebra finite-dimensional over its center L; if A is a division 
ring we refer to A as an L-division ring. If A/L is central simple and L/K is 
a finite-dimensional extension of fields, we say that A/L is embeddable in a 
central simple B/K if there exists a K-algebra monomorphism cp from A 
into B such that cp( lA) = 1,; if cp exists we usually identify A with its image 
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in B. e shall show in Section 2 that t re is no loss of generosity in 
assuming that out embeddings preserve entities. That A/L is actuaH!y 
embed~ab~e in some central simple B/K is 
tation, for example, embeds AIL in M,( 

The most natural notions of minimality in our context are t 
degre lity and matrix size minima~~ty. 
Then D), where D is a K-division ring. 

ent of B. The index, ind(B), of 
equals Jm; we 

the matrix size of B. 

EFINITION. Let L/K be a smite-dirn~~sio~a~ extension ef fiel 
be central simple. We define d,(A) by: 

dK(A) = min(deg(B) 1 B/K’ IS a central simple K-~$gc~ra an 

A embeds in B/K}. 

SimiIarly, ins,(A) is defined by: 

ms,(A ) = min ( t 1 A/L embeds in a central sim 

matrix size d 1. 

in a central simple B/K a 
equals ms,(A)), we say that 
e minimal for A/L). 

) = d,(A) (resp. the 
ree rni~~rna~ fir AIL 

It is an easy consequence of the le Centralizer Theorem (see 
Section 2) that the minimum value po 
AM-rough A/L is always embeddable in 
not exist any such 63/K of this minimum possi 
even when K and L are number fields. It is ructive to corn 
situation with some of the results in the literature 

ivision rings. Suppose, for si that A is an kdi 
ber fields. If A is ble in a K-divisio 

e> the minimal possible degree 
rings A which are not embeddab~e in any K-division r‘ 

L-division ring A is embeddable in some K-d-division rin 
dable in a K-division ring of 

deg(d) I CL: K] [3, Theorem 
situation for embeddings in ce 

Throughout this 
ill be central simple. 
(I,), of L by [A]. Th der of [A] in B(L) is denoted exp(A). 
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that L is stable if ind(A) = exp(A) for every central simple A/L. Examples 
of stable fields are the global and local fields of class field theory. (By a 
global field we mean either an algebraic number field or an algebraic 
function field in one variable over a finite constant field.) We let AoP be the 
opposite algebra of A; [A] + [A”“] = [L]. The p-primary component of 
B(L) is denoted B(L), and the maximal divisible subgroup of B(L) is 
denoted DB(L). The restriction map from B(K) to B(L) is denoted Res,,,; 
here Res,,( [B]) = [B OK L]. The relative Brauer group, B(L/K), is the 
kernel of this restriction map. 

If n is a positive integer and p is a prime, we let nP denote the p-part of n; 
n = n,n’, where (YES, n’) = 1. Now suppose G is a group and CI E G has order 
n = R,YE’. Then a is uniquely expressible as a product CI = CX~ . LX’ of two com- 
muting elements of G where aP, the p-component of CC, has order a power of 
p and a’, the p-regular component of a, has order prime to p. If 
1 = ulzP + vn’, then CI, = cP’ and CI’ = rPp. If A/L is central simple, then 
AZ &,AP, where the tensor products are taken over L and over all 
primes p and where deg(A,) is a power of p [4, p. 2561. We have 
[A,] = [A],. We will say that a numerical invariant p of central simple 
L-algebras localizes if PLY = p(Ap). Finally, we point out one easy fact 
that we will use repeatedly in what follows. Suppose cp is a homomorphism 
from a group H to G and tl E q(H). Since both aP and a’ are powers 
of CI, both LX,, and a’~cp(H). In particular, if [A] ER~s~,~(B(K)), then 
[A,1 E Res.,AW)) and CA’1 E ResLIK(BW)). 

We begin our discussion of the invariants d,(A) and ms,(A) in Section 2 
by reducing to the case when A is an L-division ring. More precisely, if 
A % M,(A), we show that d,(A) = IZ .d,(A) and ms,(A) = n .ms,(d). The 
next step in our discussion is to reduce to the case when ind(A) is a prime 
power. Since neither d,(A) nor m,(A) localize, we need to introduce some 
additional invariants of A/L. Suppose A/L embeds in a central simple B/K. 
Let Y be the centralizer of A in C,(L), the centralizer of L in B. Then 
deg(B) = deg(A) .deg( Y) . [L: K] and [A] + [Y] E Res.,,(B(K)). Thus 
B/K will be degree minimal for A/L provided deg( Y) is as small as possible. 
Since we may reduce easily to the case when Y is an L-division ring, we are 
led to consider the following invariant of A/L: 

DEFINITION. Let L/K be a finite extension of fields and let A/L be 
central simple. Y.&A) is defined to be the minimum index of an L-division 
ring Y such that [A] + [ Y] E Res,,,( B(K)). 

We show in Section 2 that rK(A) localizes and that d,(A) = [L: K] . 
deg(A) . rK(A); this localizes the computation of d,(A). The localization of 
the computation of ms,(A) is more subtle and will be discussed in 
Section 2. For arbitrary fields K and L we are also able to show that if A/L 



s in a central simple B/K, then d,(A) divi 
the matrix size of B. 

are able to say more in Section 3 wh we assum 
fields. In particular, we show that t 

matrix size minimal and degree minimal for A/L. Thi 
mire precise information regarding the relation 
ms,(A), and rK(A) in this situation. 

ough the invariant r,(A) of A/L succeeds 
utation of cd,(A), it is not a particularly natural i 

Ye is, however, ciosely related to a much more na 
computed invariant of A/L, the order of module the ima 
restriction map; we denote this order by exp,( 
be the maximum index of a K-division ring 

e show in Section 3 that if K and L arc stable an 
e for all primes dividing 
), and ins,(A) = [L: K] 

provide an example which illustrates the corn 
we have introduced and which also 
ms,(A) are not, in general, valid if jp is not divisibrne for some 

ividmg ind(A ). 

In this section we will obtain results about embe 
are valid for arbitrary fields. We will maintain the 

Context. Throughout this section L/ is a finite extension of fields and 
AIL is central simple. 

egin by justifying our assertion that no ge~e~a~~ty is lost by re 
ing that our embeddings preserve identity elements. 

PRopssraroN 1. Let the context be as dlbove and suppose that ir, i.~ G 
K-algebra ~Q~Q~~rphis~ of AJk into B = M,( 
p/e. Suppose q( 1 A ) # 1 B. Theta there exists r < is e~~e~~Q~~e 
in 1. 

Let e=cp(l,). Then e=e,+e,+ +e,, where the (e,) are a 
imitive orthogonal idempotents of 
eBe E M,(D). We note that Y < n si ee#l,.Sinceeist 
CZ, it follows that y, is an ernbedd~~~ o 

ur next result will allow us, when convenient, to restrict our attention 
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PROPOSITION 2. Let the context be as above and suppose that 
A E M,(A), where A/L is central simple. Let AIL be embeddable in M,(D), 
D a K-division ring. Then n 1 m and A is embeddable in M,(D), where 
m=nk. 

ProoJ: Let cp be an embedding of A into B = M,(D) and let e, = ‘p(eii), 
where e, is the n x n matrix having a 1 in the (i, i) position and O’s 
elsewhere. Since ‘p(l.)=l., l,=e,+e,+ . . . + e,. Since ei is an idem- 
potent in B, e,Be, E M,(D), where ei is a sum of ui primitive orthogonal 
idempotents in B. Since eii and ejj have the same Jordan form in M,(L), 
there is an invertible w E B such that we,w-’ = ej. It follows that 
e,BeigejBej and so ui=uj. Let k=ui. Then m=nk. Also, A~e,,Ae,, and 
cp(e,,Ae,,) ce,Be, gMM,(D). Since e,, is the identity of e,,Ae,, and 
‘p(e,,) = e, is the identity of e, Be,, it follows that A is embeddable in 
M,(D). I 

COROLLARY 3. Let the context be as above and suppose that A z M,(A), 
n a positive integer. Then d,(A) = n . d,(A) and ms,(A) = n . msK( A). 

ProoJ Let A be embeddable in B=M,(D), where deg(B)= d,(A). 
Then ~1. d,(A) < d,(A) by Proposition 2. If A is embeddable in a central 
simple K-algebra B’ with deg(B’) = d,(A), then A is embeddable in M,(B’) 
so dK( A) = n d,(A). Thus n . d,(A) = d,(A) and similarly n . ms,(A ) = 
ms.dA). I 

Recall that we denote the centralizer in B of a subalgebra E by C,(E). 
Our next result collects some standard results about the centralizer of a 
simple subalgebra of B/K. 

PROPOSITION 4. Let the context be as above and suppose that A/L 
embeds in a central simple B/K. Let Y be the centralizer of A in C,(L). 
Then : 

(a) Y/L is central simple such that C,(L) g A Q L Y 
(b) B OK L g M,(C,(L)), where r = [L: K] 
(c) deg(B) = deg(A) .deg( Y) . [L: K] and [A] + [Y] E Res,,,(B(K)) 
(d) deg(A) . [L: K] 6 d,(A) 6 deg(A) .deg( Y) . [L: K]. 

ProoJ: This is immediate from [4, p. 94-961. 1 

Our next result shows that the minimum possible value for d,(A) is 
attained precisely when [A] E Res.,,( B( K). 

PR~PosITI~N 5. Let the context be as above. Then d,(A) = deg(A) . 
[L: K] ifandonly $[A] ERcs~,&B(K). Moreover, if[A] = [D OKL], Da 
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division ring, then there is an integer w such that A/L is embeddab~e iti 
,(D) so that A = G,(L) and &g(B) = deg(A )[kw K] = d&A ). 

Suppose first that dK(A) = [L: K] and let A/L be 
d in B/K, where deg(B) = d,(A osation 4(c); A = GB(L,) 
] E Res,j,(B(K). Conversely, suppose [A] = [D OK L], D a 

ring. Taking matrices over D if necessary, e may assume that L 
ld of E= M,(D). By Proposition 4 (wit A = e), CC,(L)] = 

K([IDl)l= CAl. Thus M,(A)r~,bC,( 
,(I?). Since M,(C,(L)) E C,(L), we have 
with C,(L). Since M,(K) is a K-suba 

be the centralizer of n/r,(K) in F. The 
consists of all a E F whi 
er our identifications, Cs 

ements of M,(K) 
Proposition 4, 

FzM,(K) OKta so 

Recall that in Section 1 we defined rK(A) to be the ~~u~~~~ index of an 
Y such that [A ur next resdt 

basic relationship 

THEQREM 6. Let L/K be afinite extension offields and !et A/L be centrai 
simple. Then d,(A) = [L: K] .deg(d) .rK(A)- 

Let Y be an L-division ring such t at ind(Y) = rK(A) and 
+ CYI E ~es~,~(~(~~~~ 
Kin which A@,Yem 

Qeg(A) .inPI(Y). Thus d,(A) d [L: K] .deg(A) .rK 
d,(A) 3 [L: K] . deg(A) . v,(A), which establis 

e record a consequence of Theorem 6 for future reference. 

CoRQLLARV 7. Let the context be as above and let Y be an L-division 
ring of iizdex rK(A) such that [A] + [Y] = [D O,L], D a K-division ring. 
Let A & Y be embeddable in B = M,,(D) so that A $QL 3’~ C,(L). The?2 

existence of w and B 
roposition 4, (c), (c), 
QWS from Theorem 6. 

osition § applied to 
eg( Y) . i]L: K]. Tkae 

e next show that YJR) localizes. 

8. Let the context be as above. Then (rK(A)jp = r,T(A,). 
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ProoJ: Let U be an L-division ring such that [A,] + [U] E Res,,,(B(K)) 
and ind( U) = rK(Ap). Then [A,] + [U,] = ([A,] + [U]), E Res,,,(B(K)) 
so U = Up. Thus r,(A,) is a power of p. Now let Y be an L-division ring 
such that ind( Y) = r,&A) and [A] + [Y] E Res,,(B(K)). Since [A,] + 
[ Yp] E Res,,(B(K)) we have (rK(A))p > r,(A,). Since [A’] + [Y’] E 
ResLIK(BW)) and [A,,] + [U] E Res,,,(B(K)), we have [A] + 
[ UOL Y’] E Res,,(B(K)). By definition of r&A) we have rK(A,) 2 
(rK(A))p. Thus h&Wp =rAA,). I 

As mentioned previously, d,(A) does not localize. Since rK(A) localizes, 
however, we are able to obtain a simple relationship between d,(A) and 
the various dK(Ap). 

COROLLARY 9. Let the context be as above. Then: 

d,iA)=[L:K].nm. 
p CL:Kl 

Proof: By Theorem 6 and Proposition 8, 

v $$$=fl &leg(Ap).r,(Ap)=deg(A).r,(A)=E. 1 
P 

We note two further consequences of Proposition 8. 

COROLLARY 10. Let the context be as above and let Y be an L-division 
ring such that [A] + [Y] E Res,,,(B(K)). Then rK(A) divides ind( Y). 

ProoJ: For each prime p, [A,] + [ Yp] E Res,,,(B(K)), and so it follows 
that ind( Y,) 3 rK(Ap) = (rK(A))p. 1 

COROLLARY 11. Let the context be as above. Then rK(A) divides ind(A). 

ProoJ: Let Y be the division ring component of [A”p]. Since 
[A] + [A”] = [L], Corollary 10 implies that r,.JA) divides ind( Y) = 
ind(A). fl 

We finally have enough to prove that the degree of a degree minimal 
central simple algebra for A/L divides the degree of any central simple B/K 
in which AIL is embeddable. 

THEOREM 12. Let L/K be a finite extension of fields and let AIL be 
central simple. If A/L embeds in a central simple B/K, then d,(A) divides 
deg(B). 
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ProoJ Let A embed in 
such that C,(L) E A @L Y. 
[L: K]. The result now follows from Theo 

e turn our attention next to ms,(A). 
result. 

LEMMA $3. Let the context be as above and let p be an arbitrary prime. 
Let p be the r;et o~ratio~a~ numbers d( Yp))/ind(D,) where Yp 
is an L-dihion ri division rip2g of p-power 
index, and [A,] C 

roo$ Suppose Y, is an L-division ring of j2- ower index, D, is a 

by its very definition localizes. 

EFINITION. Let L/K be a finite dimens 1 extension offields and ikt 
AIL be cemd simple. For each prime p let ned as in Lemma 14. 

&Ap) to be the rni~~rn~rn eiem p and we set v,(A) = 

at v,(A,) is not, in 
ind(A). For such j7, the value of uK(AP 
ative Brauer group B(L/K). Since our n 

related to ms,(A) in the same way that rK 
explains why WE,(A) is a subtler invariant t 

THEOREM 14. Let L/K be a finite exten 
central simple. Then ms,(A) = [L: K] . de& 

rooJ: e show first that m,(A) < [L: K] deg(A j. 
each prime p choose YP an L-dhiision ring of 

mpg of p-power index such that [A,] YJ = [D, @,L! 2nd 
(YP)/ind(D,). Let Y= 0, YP and = 0, D,, the tensor 

roducts being taken over L and a%=, respectively. Tken [A 
D @,.LJ so by Proposit’ is an integer 24 

A OL Y= G,(L), where B= Propositron 4(c); 26 

df%(A 1’ p v&4,). Thus 
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Now let t = ms,(A) and suppose E is a K-division ring such that A/L is 
embeddable in B = M,(E). Let A 0 L X = C,(L). Suppose X r M,( U). Then 
A 0 L Xg M,(A OL U). By Proposition 2, ms,(A) = kr and A 0 L U is 
embeddable in M,(E). But then A/L is embeddable in M,(E) and so r = 1 
by the minimality of ms,(A). By Proposition 4(c), we have 

[L: K] .deg(A) .n ind(X,)/ind(E,)) = ms,(A) 
P 

d [L: K] .deg(A) .n v,(A,). 
P 

But [A,] + [TX,] = [E, OKL] so (ind(X,)/ind(E,)) 2 u,(A,) for each 
prime p. It follows that (ind(X,)/ind(E,)) = uK(Ap) for each prime p and so 
ms,(A) = [L: K] .deg(A) .uK(A). 1 

Suppose B/K is matrix size minimal for A/L, where [B] = [E], E a 
K-division ring. Let A @= X= C,(L). For future reference we note that the 
above proof shows that X is an L-division ring and (ind(X,)/ind(E,)) = 
v,(A,) for every prime p. In particular, ind(X) = ind(E) . uK(A). 

Using Theorem 14 we obtain the analog of Corollary 9 for ms,(A). 

COROLLARY 15. Let the context be as above. Then: 

ms,(A) = [L: K] .n msK(Ap). 
p CL:KI 

Proof By Theorem 14, 

rI p “;“11’$,)= n deg(A,).v,(A,) =deg(A).v,(A) =H. 1 
P 

We next prove the analog of Theorem 12 for ms,(A). 

THEOREM 16. Let the context be as above. If AIL embeds in a central 
simple B/K, then ms,(A) divides the matrix size of B. 

Proof. Let C,(L) E A OL Y, where Y/L is central simple. Let 
B g M,(D), where w is the matrix size of B. To show that ms,(A) divides w 
it is sufficient to show that ms,(A) divides w/k for some divisor k of w; thus 
by Proposition 2 we may assume that Y is an L-division ring. By 
Proposition 4, w = [L: K] .deg(A) .n,(ind( Y,))/ind(D,)). Since [A,] + 
[Y,] = [D, OK L], uK(Ap) < (ind( Y,)/ind(D,)). It follows that w/ms,(A) = 
np ((ind( Y,)/ind(D,)) . (uK(Ap)-’ is an integer. 1 
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3. STABLE FIELDS 

Yin this section we will refine the re 
ass~~~t~o~ that K and L are stable fields. 
stable if exp(A) = ind(A ) for every central si e A/k and that gklbal and 
lscal fields are stable. e will adhere to the: 

text. Throughout this section L/M is a finite extension of stable 
and A/L is central simple. 

main results for stable fields will follow by showing that there exists 
which is both matrix size minimal and degree minimal for A/L. The 

at this minimum ex 
has bounded exponent. 

%EMMA 87. Let a, /I, pEf$ with 
exp(&. Then: m,(B’) 3 min(m,(b), 
p(p - 2) 8’) ). In particular, there exis 
exp(y) < exp(/?‘) such that m,(P’) 3 m,(y). 

Proof Let 6, 6’E 6, with 

note thatp .exp(j -kp;i(/I’ --J?)) 
< ewp(/‘). Suppose first that p . (e 

y, suppose that p (exp(q) < exp(6’). Then 
). An easy computation shows that 

(p-l)*p-p(p-2)/Y. Then, 
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THEOREM 18. Let L/K be a finite extension of stable fields, and let A/L 
be central simple. Then there exists a central simple B/K such that: 

(a) B/K is degree minimal for AIL, 
(b) B/K is matrix size minimal for A/L, and 
(c) C,(L) = A OL X, where X is an L-division ring of index rK(A). 

Proof: Let t = ms,(A) and let Cr M,(E) be matrix size minimal for 
A/L, where E is a K-division ring. Let C,-(L) = A OL V. It follows from the 
remark following Theorem 14 that V is an L-division ring and for each 
prime p, v,(A,) = ind(V,)/ind(E,). Let p be an arbitrary prime. Let 
G= B(K), H= B(L), and let @ = Res,,,. If [D] E ker(@), D a K-division 
ring, then L splits D, so exp(D) divides [L : K]. Thus ker(@) has bounded 
exponent and so Lemma 17 applies in this situation. Suppose 
ind( V,) > rK(Ap). Let CI = [A,], p’ = [V,], and let /3 = [Y,], where Y is as 
in Corollary 7. Since K and L are stable, we have ind( V,) = exp( V,). By 
Lemma 17 there is a K-division ring W, ofp-power index and an L-division 
ring X, of p-power index with exp(X,) < exp( V,) such that [A,] + [X,] = 
@([ W,]) and vK(A,) 3 exp(X,)/exp( Wp). By definition of vK(A,) we must 
have v,(A,) = exp(X,)/exp( W,). We also have r,(A,) < exp(X,) < exp( V,). 
By repeated application of Lemma 17 we may assume that exp(X,) = 
r,(A,). Let W (resp. X) be the K-division ring (resp. L-division ring) having 
p-primary component W, (resp. X,) for each primep. Since 
[A,] + [X,] = @([I Wp]) for each prime p, [A] + [X] = @([ W]). By 
Proposition 8, ind(X) = rK(A). Let A OL X be embeddable in B = M,(W) 
so that A OL X2 C,(L). By Corollary 7, B/K is degree minimal for A/L. By 
Theorem 14, ms,(A) = [L : K] .deg(A) . vK(A). But 

vK(A) = n vAA,) = fl exp(XJ/exp( W,) = WW-k( W 
P P 

and so ms,(A) . deg( W) = [L : K] deg(A) deg(X). It follows from 
Proposition 4(c), that ms,(A) . deg( W) = deg(B) = w. deg(W). Thus 
w = ms,(A) and so B/K is both degree minimal and matrix size minimal 
for A/L. m 

It is not true, in general, that if B/K is degree minimal (resp. matrix size 
minimal) for A/L, then B/K is also matrix size minimal (resp. degree 
minimal) for A/L. Assume, for example, that p and q are distinct primes, 
K is a global field, and [L : K] = q. Let D, be a K-division ring of index 
p. By [ 1, Corollary 41 B(L/K) is infinite. Let D, be a K-division ring such 
that [Dz] E B( L/K). Let A = D, OK L. Then A is an L-division ring of 
index p. By Theorem 6, d,(A) =pq. Let B = M&D,). By Proposition 5, B/K 
is degree minimal for A. B/K is, however, not matrix size minimal for A, 
since Proposition 5 also shows that A embeds in the K-division ring 
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I Ox D2. If Y is a prime distinct from p and q an 
index P, then A embeds in the K-divisiora ring 

2@KD3 is matrix size minimaE for A 

Using Theorem 18 we can read OR the relationshi between the main 
invariants of A/L that we have been considering. 

CORQLLARY 19. Let L/K be a finite extension ~~~~~b~~~~eld~ and let A/L 
be central simple. Then d,(A). vK(A) = ms,(A) ‘r,(A). 

ProojY Let B/K be as in the statement of Theorem 18 and let 
X. Let E be the skew he 

ith notation as in Theorem 18, we note that v,(A,) = r,(A 
a& prime p. Let us define m,(A,) to be the maximum 

~-d~vi§~~n ring A, of p-power index such that 
with md( VP) = YJ we have [A,] + [VP 
define m,(A) to be m,(A,), then m,(A) 
we have ms,(A) =d,(A)/m,(A). m,(A) is an answer to th 
problem: it is the maximal degree 
[A]+[Y]=[D@KE] and Yis an L 

owever, nst be concerned with I-IZ~( 
invariants r,(A) and uK(A) of A/L are useful for 

putatron of d,(A) and ms,(A) for arbitrary fields k a 
) and U&A) suffer from th 
g central simple Y/L such 
ir computation diffkult. 

invariants of AIL, exp,(A) and k, 
natural and more readily computab 
exact relationship to d,(A) and m.sK 
are able to obtain simple expressio 
expK(A) and k,(A) in many important cases. 

QEFTWITIQN. Let L/K be a finite dimensional extension of fief& and &et 
A/L be central simple. We define exp,(A) to be the order of 

(K)) in B(L)/Res,,,(B(K)) an (A) to be the maxi 
index of a K-division ring D snch that 

e note that k,(A) does not, in general, localize 
existence of primes p not dividing ind(A) such tha 

4X1/133:2-12 
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LEMMA 20. Let the context be as above. Then: 

(a) for each prime p, Ic~(A~)~ = k,(A), 
(b) exp,(A) divides rK(A) 

ProoJ (a) Let The a K-division ring ofindex k,(A) with Res,,,( [r]) = 
exp,(A)[A]. Then [r, O,L] = exp,(A)[A,]. Let exp,(A) = v .exp,(A,) 
and let rv = 1 mod exp(A,). Since r[rp OK L] = exp,(A,)[A,] and r[I’r] 
has exponent k,(A),, it follows that kK(A),6k,(A,),. Now let 0 be a 
K-division ring of index kK(Ap) such that [O @,L] =exp,(A,)[A,]. 
Then [O, O,Ll =expK(Ap)CApl so I(@, OK nyzp r,) O,Ll= 
expK(A)[A]. It follows that k,(A,), < k,(A),, proving (a). Now let B/L be 
as in the statement of Theorem 18 and let C,(L) E A OL X. Then X is an 
L-division ring of index rK(A) such that [A] + [X] E Res,,,(B(K)). Thus 
rK(A)[A] = rK(A)[A] + rK(A)[ Y] E Res,,(B(K) so exp,(A) divides 
r&f). I 

In order to obtain the desired expressions for d,(A) and ms,(A) in terms 
of exp,(A) and k,(A) it will be necessary at a crucial point in the 
argument to take an appropriate root of an element of B(K). Since B(K) is 
not always divisible, this will not always be possible. It is, however, well 
known that if K is a global field then 2B(K) is always divisible; this follows 
easily, for example, from [4, (32.13)]. This motivates the somewhat 
technical condition in the next lemma. 

LEMMA 21. Let the context be as above. Let p be a prime and let rr, be a 
K-division ring of index k,(A), such that Res& [r,]) = exp,(A,)[A,]. 
Let n be minimal such that there exists [A] E B(K), satisfying 
p” . exp,(A), [A] =p”[r]. Then there are integers u, r with 0 <u, r < n with 

d,(A,)=p”. [L: K] .deg(A),.exp,(A), 

ms,(A,)=p” [L: K] .deg(A),/lz,(A),. 

ProoJ: In view of Theorems 6 and 14 we need to show that there are 
integers U, r with 0 < U, r <n such that r,(A), = pU .exp,(A), and v,(A), = 
p’/k,(A),. Let V be the L-division ring such that [ V] = [A @ Ic L] - [A,]. 
Since 

P” . exp,(A )p C VI = P” . exp,(A), [IA 0 K Ll -P” . exp,(A )p CA,1 

and 

p”~w&), CA O,Ll =p”([TP, OKLl =~*.exp&)~ [IA,], 

it follows that exp( V) divides p” . exp,(A),. But [A,] + [ V] E Res,,,(B(K) 
so r,(A), divides exp( I’) by Corollary 10. Thus exp( V) =pY .expK(A), for 



some v 6n and so by Lemma 20( ) Pf&qp = p” expK(A )p for some 
u<v<n. 

roposition 5 there is an integer w such that A, @I~ V 
A) so that w.exp(d)= [L: K] .deg(A,).exp(V). Si 
);k,(A), we have w=p’. [L: Kj .deg(~~)/k~~(A)~. 

divides w by Theorem 16, so [L: K] .deg(A,) v,(A 
aeg(A~~/k~(A~~. Thus I&(A)~. vrc(A), < p’. It re 

the statement of Theorem Let D be 
and let C,(e) 2 A Or. IT ~~e~rern 

exp(D,) = rK(Ap),/vK(Ap). 

skew fieki 
Y is an 
have 

(R),, H= B(L),, and let @= 
P’ = evAA), C Y,l. 

ave exp(p’) =p”> 1. I 
Wes,,,(exp,(A), ID,] 

kAA L k,(A lp 3 exp(ew,(A lp Co, = l/v&4jp. Thus 
and so we may assume that u 3 1. 

(2) 

Now exp(p’) > exp(B) so Lemma 17 applies for (1) a. 
in (2) we have m,(p)= l/k,(A,), and the chai 
value minimal. Using (I), we have m,(,b’) = vK 
m&3’) 3 m,(u), where u has order stric 
conchsion reduces us to the case u = 0. 

m,(O). Thus Vet 3 l/k,(A),, so again, u,(A), k,(A), 3 1, as 

e record some consequent 
varmus p-Sylow components of 
hold over global fields for all odd p. 
Lemma 21. 

special case when 
esd conditions will 

roofs are all immediate from 

COROLLARY 22. Let L, K, A satisfy the ~y~~t~e~e~ of this section, i.e., 
we are ~~s~~i~g that K and L are stable. Iffor some prime p dividing exp(A ) 

(K), is divisible, th (K), is ~~vi~~b~2 J& 
all primeaes p dividing exp(A) then 

(11 r,dA)=ew,(Al 
(2) dK(A) = CL: K] .deg(A) .exp,(A) 
(3) m,(A) = [L: K] .degfA)/k,(A). 
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In case B(K), is not divisible but png(K& is divisible, the conclusion of 
Lemma 21 is that the estimates of (2) and (3) of Corollary 22 are “off by at 
most p”” for that local component. 

We are finally able to give our main result relating d,(A) to exp,(A) and 
ms,(A) to k,(A) when L/K is a finite extension of global fields. We will 
freely use the classification theory of central simple algebras over global 
fields by means of Hasse invariants; we refer the reader to [4, Section 321 
for the relevant theory assumed. We denote the Hasse invariant of [A] at a 
prime rc of K by inv,[A]. Let inv,[A] = s/m E Q/Z, where (s, m) = 1. Then 
m is called the local index of A at 71 and denoted by l.i.,[A]; l.i..[A] = 
exp(A OK K,), where K, denotes the completion of K at rr. We let cc denote 
the infinite prime of Q. 

THEOREM 23. Let L/K be a finite extension of globalfields and let A/L 
be central simple. Then d,(A) = [L: K] .deg(A) .exp,(A) and “s,(A) = 
[L: K] . deg(A)/k,(A) if any of the following conditions are satisfied: 

(1) K has positive characteristic 
(2) ind(A) is odd 
(3) [L: K] is odd 
(4) K has no real embeddings 
(5) L is totally real 
(6) exp,(A) is odd 
(7) B(L/K), is infinite. 

In any case, d,(A) = 2”. [L: K] .deg(A) .exp,(A) and ms,(A) = 
2’. [L: K] .deg(A)/k,(A), where 0 <u, r d 1. 

Proof: Suppose r, is a K-division ring of index k,(A), such that 
Res,,,([I’,,])=exp,(A,)[A,]. The crux of the matter in Lemma21 is 
whether [r,]. is in DB(K). By [4, (32.12)], [r,] EDB(K) unless p= 2 
and K has a real infinite prime rr such that inv,[r,,] = +. In particular, 
if p # 2 or if p = 2 and one of (l), (2), (4), or (6) hold, then by Lemma 21 
we have dK(Ap) = [L: K] .deg(A),.exp,(A), and ms,(A,) = [L: K] . 
deg(A),/k,(A),. Since d,(A) = [L: K] .nI, (d,(A,)/[L: K]) and ms,(A) = 
CL: Kl .I& (msK(A,YCL: Kl), we may assume that p = 2, A has index a 
power of 2, and none of conditions (l), (2), (4), or (6) hold. We set r= r,. 
By the criterion mentioned above for [r] to be in DB(K), we may assume 
that K has a real infinite prime rc such that inv,[r] = 1. Since exp,(A) is 
even, inv,(exp,(A)[A]) = 0 for all infinite primes p of L. But [r OK L] = 
expK(A)[A] and so [L,: K,] .inv,[r] =inv,[T@,L] =0 for all exten- 
sions p of 71 to L. In particular, all extensions of rc to L must be complex so 
we may assume that (5) does not hold. Since [L: K] = C, [L,: K,], we 
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are also finished if (3) olds. Finally, suppose (7) 
inhite%y many finite pr es z of K with the 
for all extensions IT of z to L (see, for ex 

eorem 21). For each infinite prime 4 of K with 
a different finite prime r as above and let R(4) be the 

ring such that inv+[Q(d)] = inv,[Q(qb)] = 4 and 
other primes p of K. Let A=TOK(@BkQ(q4)f. 
[A Q K L] = [F Q KL], so we are also finished if ( 

e remark that the precise conditions under 
Theorem 22 equal 1 are complicated and involve the existence of primes of 
K with certain local behavior in L; we omit these ca~~~~atio~s~ Bn the 
section we will give an example to show that the case when u = r = 1 

we will not prove it here, one can show that if u = 1 then 
also give an example in the next section to show the case 
OCCLKS. 

It is natural to ask whether there is a un 
degree minimal B/K for a central simple AIL. 
for global fields one always has infinitely man 

THEOREM 24. Let L/K be a non-triuiai finite extension of global fields 
and let A/L. be central simpIe. Then there exist i~~i~~tei~ many non- 
isomorphic central simple B/K which are both matrix size rni~irn~~ and degree 
rn~~~rn~~~~~ A/k. 

PFOO$ Let p be a prime such that B(L/K) has infinitely many elements 
er p; the existence of such a p follows from [I 

as in the statement of Theorem 18 and let D be 
Then deg(B) = d,(A). We claim that p divides in 
(L) E A oL Y. By Theorem 18, Y is an L-division ring 

a K-division ring of index p split by L. Then 
1 ) QK k] and D 0, D 1 is a K-divisions ring. By 
n integer w such that A OL YyL is 

I) so that CB,(L) g A QL Y/L. Since 
&A) = deg(B) by Corollary 7. Since 
size of B, is strictly smaller than the m 

e minimal for A/L we coraciude t 

be the set of primes 71 of K su 
y: K,] for every extension y of 71 to L. 

et p and v be distinct primes in Y such 
let E be the K-division ring such that inv,[ 
inv,[E] = 0 for all other primes 71 of K; the existence of E follows from 
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[4, (32.13)]. Our assumptions imply that [E] E B(L/K). Let d be the skew 
field component of D OK E. By [4, Theorem 32.191, ind(d) = ind(D). Since 
[A] + [Y] = [d OKL], Corollary 7 implies that A Or. Y is embeddable in 
B, = M,(d), where deg(B,) = a’,(A) = deg(B). Since ind(d) = ind(D) and 
B/K is matrix size minimal for A/L, we conclude that t = ms,(A) and so B, 
is also matrix size minimal for A/L. Since there are infinitely many choices 
for p and v, there are infinitely many choices for B,. In particular, B,/K is 
degree minimal for A/L. [ 

4. AN EXAMPLE 

In this section we will give an example of number fields L/K and a 
central simple A/L such that d,(A) = 2 . [L: K] . deg(A) . exp,(A) and 
ms,(A) = 2. [L: K] .deg(A)/k,(A). 

EXAMPLE. Let f(x)=x4+ 18x2+24x+ 117~Q[x]. Using any of the 
standard computational packages available (e.g., Maple or Macsyma), one 
can easily check that f(x) is irreducible in Q[x], has square discriminant 
2’836, and has an irreducible factor of degree 3 when viewed in Z,[x]. It 
follows that the Galois group of f(x) over Q is isomorphic to A,. One can 
also easily verify that f(x) has no real roots and factors into linear factors 
when viewed in Z,, [xl. Let E be the splitting field of f(x) over Q. Then E 
is totally imaginary, the rational prime 71 splits completely in E, and 
Gal( E/Q) g A,. 

We next construct our base field K so that K is totally real, EK/K is 
unramified at all finite primes, and Gal(EK/K) E A,. Let EP denote the 
splitting field of f(x) over Qp for PE (2, 3). By [6, Proposition 4-10-51, 
[E,: Q,] divides 12. Let yp = 12/ [E,: O,] and let g,(x) be a product of Y,, 
distinct manic irreducible polynomials in Qp[x] each of whose roots is a 
primitive element for E, over Q,. Let g,,(x) =x12 - 71 E &i[x] and 
let g,(x) = n!” i (x-i) E R[x]. We note that g,,(x) is separable for 
p= 2, 3, 71, and co. By the Approximation Theorem [6, Theorem l-2-31, 
Krasner’s lemma [S, Lemma 5.51, and continuity considerations one can 
find a g(x) E Q [x] sufficiently close p-adically to g,(x) for p = 2, 3, 71, and 
co so that if K= Q(a), where CI is a root of g(x), then K is totally real and 
EK/K is unramified at all finite primes of K. Moreover, since the rational 
prime 71 splits completely in E but is totally ramified in K, it follows that 
En K= Q and so Gal(EK/K) 2 A,. 

Let M= EK. Then M/K is Galois with Gal(M/K) z A,, K is totally real, 
A4 is totally imaginary, and each finite prime of K is unramified in M. Let 
L and T be, respectively, the fixed fields of distinct involutions 5 and z of 
Gal(M/K). Since @ and z are conjugate in Gal(M/K), L E T. Since M= LT 
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an is totally imaginary, each of L a T must also be totally 
imaginary. For future reference we note the Elowing two erties of 
UK: 

(*) if 71 is an infinite prime of L exten ing the prime p of then 
[L,:K,]=2 

(**) if 5 is a finite prime of K, then there is a 
z such that CL,: K,] is odd. 

erty (*) follows from the fact & is totally imaginary while 
real and Property (**) is proved exactly as in 13, Exam 

p. 184J 
Let 7 be the prime of K extending the 

6,, . . . . 6, denote the primes of L extending “J. 
L-division ring A such that inv,,[A] = 4 fo 
iE (4, 5,6}, and inv,[A] =0 for all other primes p of L. 
that exp,(A ) = 2 but r,(A) = 4 and that k,(A) = 6 but uK(A ) = i. In view of 
Theorems 6 and 14, this will show that 

and 

ms,(A) = 2. [L: K] .deg(A),/k,(A). 

e show first that exp,(A)=2 and k,(A)=6 , Theorem 12.191, 
exp(A) = 4. Let z be a fixed infinite prime of K and let A be the K- 
ring such that inv,[A] =$, inv,[d]=+, a inv,[d] =O for a 
primes p of K. By Property (*) and 14, eorems 31.9 and ( 

esL,JXl =XAl and so exp,(A) divi 
Then there exists a K-division 
Since CL,,: KY] = 1, inv,[Q] = $. 
inv,,[A ] = 2. Thus exp,(A) = 2. 

there exists a K-division ring 
es.,,([d OK Y])=exp,(A)[A] so k,(A)36 Suppose 
be a K-division ring of index k,(A) 

(L/K) so !P has index dividing 12 [4, Theorem 28.51. It follows 
must have index 12. There must exist a prime v of K such that 
= 4. Clearly v is a finite prime so b erty (**) there is an 

[ of v to I. such that [I,(: ut then invi Z[A] = 
.inv,[Fj and so Ii., 2[A] = on. Fhils k,(A) = 5. 

show next that rK(A) = 4. By Coroflary I I, r,(A 
(M), rK(A)# 1. Suppose r,(A)=2 and 
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ring of index 2 such that [A] + [Y] ER~~,,,(B(K). Let [A] + [Y] = 
Res.,Adl, where A is a K-division ring. Since invhz( [A] + [Y]) = 
inv,,( [A] + [Y]) = inv,[A] for iE { 1,2, 3) and Jo (4, $6) it follows that 
we may assume that invJ Y] = 0 for i E { 1,2, 3 } and inv,,[ Y] = $j for 
Jo (4, 5,6}. Let Y denote the set of primes ,n of L such that 
,U $ { 6,, 6,, S,} and inv,[ Y] # 0. Since the sum of the invariants of [ Y] is 
an integer and Y has exponent 2, we must have inv,[ Y] = 4 for all primes 
ALE Y and 191 is odd. Fix a prime r of K, z #y, and let pl, . . . . ,uL, denote the 
primes of L extending r. Since z # y, invJA] = 0 for i= 1, . . . . Y. Suppose 
invp,[ Y] = 1. If [L,: K,] is even then l.i.,[A] is divisible by 4. In par- 
ticular, z must be a finite prime. By Property (H) there exists an i such 
that [L,: K,] is odd. But [L,: K,] .inv,[A] = inv,[ Y], contradicting the 
fact that Y has exponent two. It follows that CL,,: K,] is odd and 
inv,[/i] = $. This implies that invJ Y] = f for all i such that [L,,: K,] is 
odd. But Ci [L,: K,] = 6 so there are an even number of i with [L,: K,] 
odd. This implies that IYI is even, a contradiction, proving that Ye = 4. 

Finally, we show that aK(A)= $. Let B/K be as in the statement of 
Theorem 18, let D be the skew field component of B, and let C,(L) e' 
A OL Y. By Theorem 18, exp(Y)=4, [D @,L] = [A] + [Y], and 
aK(A)=4/exp(D). Then 4[D] E B(L/K) so exp(D) divides 24. Suppose 
exp(D)=24. Then there exists a prime z of K such that 8 1 l.i.,[D]. z is 
clearly finite and z # y. By Property (**), [LB: K,] is odd for some extension 
p of r. Since invB[A] =O, 8 1 l.i.,[ Y], contradicting exp( Y) = 4. Thus 
exp(D) < 12 and so oK(A) > $. Let q be a prime of K splitting completely 
in L, q # y. (Since the rational prime 197 splits completely in E, if we 
require g(x) to be sufficiently close 197-adically to xl2 - 197, we can take 
7 to be the prime of K extending 197.) Let A, be the K-division ring such 
that inv,[d,] = $, inv,[d,] = s, and inv,[d,] = 0 for all other primes p of 
K. Let A = A, OK Y, where [Y] E B(L/K) with exp( Y) = 3. Let [Y] = 
[A OKL] - [A]. Then Y has exponent four and so rK(A)< A. Thus 
uK(A) = f, as was to be shown. 

We can also construct an example to show that the case u = 0, r = 1 
occurs. With notation as in the example, let x be a fixed infinite prime of K 
and let x1 be an extension of 71 to L. Let A be the’L-division ring with 
invariants as follows: invd, = 4, inv,, = f, all other invariants 0. Then one 
can easily check that exp,(A) = rK(A) = k,(A) = 2 but v~(A) = 1. 
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