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1. INTRODUCTION

Let L be a finite algebraic extension of a field K and let 4 be a finite-
dimensional simple algebra with center L. The theory developed in this
paper arises from the following question: what are the “minimal” finite-
dimensional simple algebras with center K in which A4 is embeddable?

Before clarifying what we mean by “minimal” in the above context we
introduce some terminology. We say that 4/L is central simple if 4 is a
central simple algebra finite-dimensional over its center L; if 4 is a division
ring we refer to A as an L-division ring. If A/L is central simple and L/K is
a finite-dimensional extension of fields, we say that 4/L is embeddable in a
central simple B/K if there exists a K-algebra monomorphism ¢ from A4
into B such that @(1 )= 1,; if ¢ exists we usually identify A with its image

* Research supported by NSF Grant DMS-8800687.
 Research supported by NSF Grant DMS-8601279.
* Research supported by NSF Grant DMS-8801051.

404

0021-8693/90 $3.00

Copyright © 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.


https://core.ac.uk/display/81950455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MINIMAL EMBEDDINGS 405

in B. We shall show in Section 2 that there 1s no loss of generality in
assuming that out embeddings preserve identities. That A4/L is actually
embeddable in some central simple B/K is clear; the left regular represen-
tation, for example, embeds 4/L in M, (K)/K, where u=1[4: K.

The most natural notions of minimality in our context are those of
degree minimality and matrix size minimality. Let B/K be central simple.
Then B~ M (D), where D is a K-division ring. We refer 1o D as the skew
field component of B. The index, ind(B), of B equals /[ D: K. The degree,
deg(RB), of B, equals /[ B: K], we have deg(B) =1-ind{B). We refer to ¢ as
the matrix size of B.

DerintrioN.  Let L/K be a finite-dimensional extension of fields and let
A/L be central simple. We define d(4) by:

di(A)=min{deg(B) | B/K is a central simple K-algebra and
A embeds in B/K}.

Similarly, msg(A) is defined by:

msx(A)=min{ | A/L embeds in a central simple K-algebra of

matrix size ¢ }.

If 4/L embeds in a central simple B/K and deg(B)=d{(4) (resp. the
matrix size of B equals msg(A)), we say that B/K is degree minimal for 4/L
{resp. matrix size minimal for 4/L).

It is an easy consequence of the Double Centralizer Theorem (see
Section 2} that the minimum value possible for di (4} is deg(4)-[L: K.
Although A/L is always embeddable in some central simple B/K, there need
not exist any such B/K of this minimum possible degree. This is the case
even when K and L are number fields. It is instructive to compare this.
situation with some of the results in the literature concerning embeddings
in division rings. Suppose, for simplicity, that 4 is an L-division ring and X
and L are number fields. If 4 is embeddable in a K-division ring D, then, as
above, the minimal possible degree of D is deg{A4)- [L: K. Examples exist
of L-division rings 4 which are not embeddable in any K-division ring; if,
however, an L-division ring 4 is embeddable in some K-division ring then
A is embeddable in a K-division ring of minimal possible degree
deg(A4) - [L: K] [3, Theorem 1]. This is in marked contrast with the
situation for embeddings in central simple algebras.

Throughout this paper L/K will be a finite extension of fields and A4/L
will be central simple. We denote the class of 4/L in the Brauer group,
B(L), of L by [4]. The order of [ 4] in B(L) is denoted exp(4). We say
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that L is stable if ind(A)=exp(A4) for every central simple 4/L. Examples
of stable fields are the global and local fields of class field theory. (By a
global field we mean either an algebraic number field or an algebraic
function field in one variable over a finite constant field.) We let 4°P be the
opposite algebra of 4; [A]+ [A°®°]=[L]. The p-primary component of
B(L) is denoted B(L), and the maximal divisible subgroup of B(L) is
denoted DB(L). The restriction map from B(K) to B(L) is denoted Res, x;
here Res, ([ B]) = [B ® L]. The relative Brauer group, B(L/K), is the
kernel of this restriction map.

If n is a positive integer and p is a prime, we let 1, denote the p-part of n;
n=n,n', where (n,, n')= 1. Now suppose G is a group and a € G has order
n=n,n'. Then a is uniquely expressible as a product « =«,, - o’ of two com-
muting elements of G where «,, the p-component of a, has order a power of
p and o', the p-regular component of «, has order prime to p. If
L=un,+uvn, then a,=0o" and a'=a"? If A/L is central simple, then
A= ®,A,, where the tensor products are taken over L and over all
primes p and where deg(4,) is a power of p [4, p.256]. We have
[4,1=[A],. We will say that a numerical invariant p of central simple
L-algebras localizes if u(A),= u(A,). Finally, we point out one easy fact
that we will use repeatedly in what follows. Suppose ¢ is a homomorphism
from a group H to G dnd xe€@(H). Since both «, and « are powers
of a, both «, and o'e@(H). In particular, if [A4]eRes, (B(K)), then
[4,]eRes; «(B(K)) and [4'] e Res x(B(K)).

We begin our discussion of the invariants dx(A4) and msx(A4) in Section 2
by reducing to the case when A4 is an L-division ring. More precisely, if
A= M, (A), we show that d(A)=n-dy(4) and ms(A)=n-msg(4). The
next step in our discussion is to reduce to the case when ind(A4) is a prime
power. Since neither dx(A4) nor ms (A) localize, we need to introduce some
additional invariants of 4/L. Suppose A/L embeds in a central simple B/K.
Let Y be the centralizer of 4 in Cpz(L), the centralizer of L in B. Then
deg(B)=deg(A4)-deg(Y)-[L: K] and [A]+[Y]eRes, (B(K)). Thus
B/K will be degree minimal for 4/L provided deg(Y) is as small as possible.
Since we may reduce easily to the case when Y is an L-division ring, we are
led to consider the following invariant of 4/L:

DerNiTION. Let L/K be a finite extension of fields and let 4/L be
central simple. 7¢(A4) is defined to be the minimum index of an L-division
ring Y such that [4]+ [Y] e Res, x(B(K)).

We show in Section 2 that r (A4) localizes and that d(4)=[L:K]-
deg(A4) - rg(A); this localizes the computation of d (A4). The localization of
the computation of msg(A) is more subtle and will be discussed in
Section 2. For arbitrary fields K and L we are also able to show that if 4/L
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embeds in a central simple B/K, then d {4} divides deg(B) and ms {A}
divides the matrix size of B.

We are able to say more in Section 3 where we assume that K and L are
stable fields. In particular, we show that there exists a B/K which is both
matrix size minimal and degree minimal for 4/L. This permits us to obtain
more precise information regarding the relationship between d {4),
ms{A4), and r(A) in this situation.

Although the invariant rg{A4) of A/L succeeds in localizing the com-
putation of d(4), it is not a particularly natural invariant to consider.
rx(A4) is, however, closely related to a much more natural and more easily
computed invariant of A/L, the order of [ 4] modulo the image of the
restriction map; we denote this order by exp {4} We also define k (4} to
be the maximum index of a K-division ring D such that Res, ;[D]=
expx(A)[4]. We show in Section 3 that if X and L are stable and B(K), is
divisible for all primes dividing ind(4), then d {A4)=[L: K] deg{4}
exprl{d), and ms(A)=[L: K] -deg(4)/kp(4) Finally, in Section4d we
provide an example which illustrates the computation of the invariants that
we have introduced and which also shows that the formulas for d{4) and
msy(A) are not, in general, valid if B(K), is not divisible for some prime p
dividing nd(A4).

2. ARBITRARY FIELDS

In this section we will obtain results about embedding guestions which
are valid for arbitrary fields. We will maintain the following context.

Context. Throughout this section L/X is a finite extension of fields and
A/L is central simple.

We begin by justifying our assertion that no generality is lost by requir-
ing that our embeddings preserve identity elements.

ProposITION 1. Let the context be as above and suppose that ¢ is a
K-algebra monomorphism of A/L into B= M (D), where D/K is central sim-
ple. Suppose ©(1 ) # L gz. Then there exists r <n such that A/L is embeddable
in M, (D).

Proof. Let e=gp(1l,). Then e=e; +e,+ --- +e,, where the {e,;} are a
set of primitive orthogonal idempotents of B. Then e,Be, 2 D so ¢p{4)=
ep(A)eceBex~ M, (D). We note that »r <z since e % 1 ;. Since e is the iden-
tity of eBe, it follows that ¢ is an embedding of A/L into M (D)K. §

Our next result will allow us, when convenient, to restrict our attention
to L-division rings.
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PROPOSITION 2. Let the context be as above and suppose that
A= M, (4), where A/L is central simple. Let A/L be embeddable in M, (D),
D a K-division ring. Then n|m and A is embeddable in M, (D), where
m = nk.

Proof. Let ¢ be an embedding of 4 into B= M, (D) and let e, = ¢(e;),
where ¢, is the nxn matrix having a 1 in the (i, 7) position and O’s
elsewhere. Since ¢(1,)=1,, 1z3=¢,+e,+ --- +¢,. Since e, is an idem-
potent in B, e,Be,~ M (D), where e; is a sum of u, primitive orthogonal
idempotents in B. Since e, and e; have the same Jordan form in M, (L),
there is an invertible we B such that wew™! =e;. It follows that
e;Be;=~e;Be; and so u;=u;. Let k =u,. Then m=nk. Also, 4=~e,, Ae,; and
@le, dey;)c ey Bey; =~ M (D). Since e,; is the identity of e; Ae,, and
@(e ;) =e; is the identity of e,Be,, it follows that 4 is embeddable in
M (D). 1

COROLLARY 3. Let the context be as above and suppose that A= M ,(A),
n a positive integer. Then d(A)=n-d(A4) and ms(A)=n-ms(4).

Proof. Let A be embeddable in B=M, (D), where deg(B)=d(A4).
Then #n-di(4)<di(A4) by Proposition 2. If 4 is embeddable in a central
simple K-algebra B’ with deg(B’)=d(4), then 4 is embeddable in M ,(B’)
$0 di(A)=n-di(4). Thus n-d(4)=d(A) and similarly n msy(4)=
msg(A). 1

Recall that we denote the centralizer in B of a subalgebra E by C4(E).
Our next result collects some standard results about the centralizer of a
simple subalgebra of B/K.

PROPOSITION 4. Let the context be as above and suppose that AJL
embeds in a central simple B/K. Let Y be the centralizer of A in Cy(L).
Then:

(a) Y/L is central simple such that Cx(L)=2A®, Y
(b) B®xL=M,(Cyx(L)), where r=[L: K]
(c) deg(B)=deg(A4) -deg(Y) - [L: K] and [A]+ [Y]eRes, x(B(K))
(d) deg(4)-[L: K]<dr(A)<deg(4)-deg(Y)-[L: K].
Proof. This is immediate from [4, p. 94-967. |

Our next result shows that the minimum possible value for di(4) is
attained precisely when [ 4] e Res, (B(K).

PROPOSITION 5. Let the context be as above. Then di(A)=deg(A)-
[L: K] if and only if [A] € Res,x(B(K). Moreover, if [A]=[D ® L], Da
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K-division ring, then there is an integer w such that A/L is embeddable in
B=M (D) so that A= Cy(L) and deg(B)=deg(A)[Lw K]=d(A4).

Proof. Suppose first that 4 (A) =deg(4)-TL: K] and let A/L be
embedded in B/K, where deg(B)=di{(A4). By Proposition 4{c), 4= Cx(1)
and [A]eRes; ((B(K). Conversely, suppose [A]=[D®xL} D a
K-division ring. Taking matrices over D if necessary, we may assume that L
is a subfield of E= M (D). By Proposition4 (with 4=1L), [CL}]=
[Res; «([P])]=1[4] Thus M(4)=M(CL)) for integers s and ¢ Let
F=M/E). Since M (C(L))y= C{L), we have M (A)= C{L). We identify
M (A) with C(L). Since M (K) is a K-subaigebra of M (4}, M(K)<=F.
Let B be the centralizer of M (K) in . Then L < B because L centralizes
M (K). Cx(L) consists of all xe F which commute with all elements of
L - M (K). Under our identifications, Cg(L) consists of all 2 e M (A4) which
commute with all elements of M (K). It foliows that 4 = Cz{L} and so 4/L
embeds in B. By Proposition4, deg(B)=deg(4)[L: K] Finally, by
[4, pp. 94-96], Fe M (K)®xBso [B]=[D]. §

Recall that in Section 1 we defined ry(4) to be the minimum index of an
L-division ring Y such that [4]+ [Y]eRes, «(B(K}). Our next result
establishes the basic relationship between 4, {4} and r{(4).

THECREM 6. Let L/K be a finite extension of fields and let A/L be central
simple. Then dg(A)=[L: K] -deg(4) rg(4)

Proof. Let Y be an L-division ring such that ind(Y)=rg(4) and
[A®, Y]=[A4]+[Y]eRes, «(B(K)). By Proposition5, there is a
central simple B/K in which 4 ®; Y embeds such that deg(B)=[L: K]
deg(4)-ind(Y). Thus d{4)<[L: K]-deg(A4) rg{4) By Proposxtxon 4{c}
dp(A)=[L: K]-deg(4)-rx(A4), which establishes the result. §

We record a consequence of Theorem 6 for future reference.

COROLLARY 7. Let the context be as above and let Y be an L-division
ring of index v {A) such that [A]+ [ Y]1=[D ®4L], D a K-division ring.
Let A®, Y be embeddabie in B= M (D) so that A®, Y= Cy(L). Then
deg(B)=d{4).

Proof. The existence of w and B follows from Proposition 5 applied to
A ®, Y. By Proposition 4, (c), (c), deg(B) =deg{4) -deg(Y)-[L: K]. The
resuit now follows from Theorem 6. §

We next show that ri(A4) localizes.

PrOPOSITION 8. Ler the context be as above. Then (v (A)), =7(A,}
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Proof. Let Ube an L-division ring such that [4,] + [U] € Res, x(B(K))
and ind(U)=rg(A4,). Then [A,]+[U,1=([4,]+[U]),€Res,«(B(K))
so U=U,. Thus ri(4,) is a power of p. Now let Y be an L-division ring
such that ind(Y)=r(4) and [A]+ [Y]eRes, x(B(K)). Since [A4,]+
[Y,]eRes, x(B(K)) we have (rg(d)),>rg(d,). Since [4']+[Y']e
Res, «(B(K)) and [A4,]+[UleRes, x(B(K)), we have [4]+
[U®, Y ]leRes, (B(K)). By definition of rg(A4) we have rg(4,)>
(rK(A))p' Thus (rK(A))p:rK(Ap)’ |

As mentioned previously, d,(4) does not localize. Since rx(A) localizes,

however, we are able to obtain a simple relationship between di(A) and
the various dg(4,).

COROLLARY 9. Let the context be as above. Then:

dg(4,)

de(4)=[L:K]-]] T

P

Proof. By Theorem 6 and Proposition §,

dK(Ap) _ _ _
l;[ [—L:_Tﬂ_l;l deg(A,) ri(A,)=deg(A4) - r(d)=

dx(A) i
[L:K]

We note two further consequences of Proposition 8.

COROLLARY 10. Let the context be as above and let Y be an L-division
ring such that [A]+ [ Y] € Res x(B(K)). Then r(A) divides ind(Y).

Proof. For each prime p, [4,]14 [Y,] e Res, x(B(K)), and so it follows
that ind(Y,) = r(A4,) = (rg(4)),- |

COROLLARY 11. Let the context be as above. Then r(A) divides ind(A).

Proof. Let Y be the division ring component of [A%]. Since
[A]+[A4%]=[L], Corollary 10 implies that rp(A4) divides ind(Y)=
ind(4). |

We finally have enough to prove that the degree of a degree minimal
central simple algebra for A/L divides the degree of any central simple B/K
in which A/L is embeddable.

THEOREM 12. Let L/K be a finite extension of fields and let A/L be
central simple. If A/L embeds in a central simple B/K, then dy(A) divides
deg(B).
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Proof. Let A embed in a central simple B/K. Let ¥/L be central simple
such that Cx(L)= 4 ®, Y. By Proposition 4(c), deg{Bj=deg(4) -deg(¥)}-
[L: K. The result now follows from Theorem 6 and Corollary 10. §

We turn our attention next to msg{4). We begin with a preliminary
result.

LemMA 13, Let the context be as above and let p be an arbitrary prime.
Let M, be the set of rational numbers of the form ind(Y,)/ind(D,) where ¥,
is an L-division ring of p-power index, D, is a K-division ring of p-power
index, and [A,1+[Y,1=1[D,®xL]. Then M, has a minimum element.

Proof. Suppose Y, is an L-division ring of p-power index, D, is a
K-division ring of p-power index, and [4,]+[Y,1=[D,®xL] By
Proposition 5 there is an integer w(p) such that 4,®, Y, embeds in
M, (D) with w(p)-ind(D,)=[L:K]-deg(4,)-ind(Y,). Thus each
element of 3, becomes an integer when multiplied by [L: K7 -deg(4,) se
9, has a minimal element. §

Lemma 13 enables us to introduce the following invariant of A/L which
by its very definition localizes.

DrrmamioN.  Let L/K be a finite dimensional extension of fields and let
AJL be central simple. For each prime p let M, be defined as in Lemma 13.
We define vi(A,) to be the minimum element of M, and we set v (A} =

T, vx(4,).

It should be noted that v(4,) is not, in general, trivial if p does not
divide ind(A4). For such p, the value of v,{4,) depends on the structure of
the relative Brauer group B(L/K). Since our next result shows that v,{4) is
related to ms,(A4) in the same way that r{A4) is related to d {4), this
explains why msg(4) is a subtler invariant than d.(4)

THEOREM 14. Let L/K be a finite extension of fields and let AJL be
central simple. Then ms (A)=[L: K] -deg(A) v (A}

Proof. We show first that ms(A)<[L: K] -deg{d)-T1,vi(4,). For
each prime p choose Y, an L-division ring of p-power index and D, a
K-division ring of p-power index such that [4,]+[Y,]1=[D, ® L] and
vl(d,)=md(Y,)/ind(D,). Let Y=@&,Y, and D= ,D,, the tensor
products being taken over L and K, respectively. Then [AJ+ (V1=
[ID®xL] so by PropositionS there is an integer u such that
A®, Y=CgL), where B=M (D). By Proposition 4{c), u=[L:K]-
deg(A4)-[1,vx(4,). Thus

ms {A)<[L: K] -deg{A) -] vild,)
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Now let t=ms (A4) and suppose E is a K-division ring such that 4/L is
embeddable in B= M (E). Let A ® ; X = Cg(L). Suppose X = M (U). Then
A®, X=2M(A®, U). By Proposition2, ms{d)=kr and A®, U is
embeddable in M, (E). But then A/L is embeddable in M (E) and so r=1
by the minimality of ms.(4). By Proposition 4(c), we have

[L: K]-deg(4)-[] ind(X,)/ind(E,)) = msx(A)

b

< [L:K]-deg(4) -] vx(4,).

But [4,]1+[X,]1=[E,®xL] so (ind(X,)/ind(E,)) Zv(A4,) for each
prime p. It follows that (ind(X,)/ind(E,)) = vx(4,) for each prime p and so
ms{A)=[L: K] -deg(A) -ve(4). 1

Suppose B/K is matrix size minimal for A/L, where [B]=[FE], E a
K-division ring. Let 4 ® ; X = Cz(L). For future reference we note that the
above proof shows that X is an L-division ring and (ind(X,)/ind(E,))=
vi(A,) for every prime p. In particular, ind(X) =ind(E) - vx(A4).

Using Theorem 14 we obtain the analog of Corollary 9 for msg(4).

COROLLARY 15. Let the context be as above. Then:

msg(A,)
[L: K]~

ms(A)=[L:K]-[]

4

Proof. By Theorem 14,

ms  (Z)
[L:K]

1——[ mSK(AP):H deg(A,)-vi(A4,) =deg(A4) -vi(4)= 1

) [L:K] A
We next prove the analog of Theorem 12 for ms,(A4).

THEOREM 16. Let the context be as above. If A/L embeds in a central
simple B/K, then ms (A) divides the matrix size of B.

Proof. Let Chl)=A®,Y, where Y/L is central simple. Let
B>~ M (D), where w is the matrix size of B. To show that ms (A4) divides w
it is sufficient to show that ms.(A) divides w/k for some divisor k of w; thus
by Proposition 2 we may assume that Y is an L-division ring. By
Proposition4, w=[L: K] -deg(4)-I1,(ind(Y,))/ind(D,)). Since [4,]+
[Y,1=[D,®xL], vg(4,)<(ind(Y,)/ind(D,)). It follows that w/ms (A) =
I1, ((ind(Y,)/ind(D,)) - (v(4,) " is an integer. [
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3. STABLE FIFLDS

In this section we will refine the results of Section2 under the
assumption that &K and L are stable fields. Recall that a field L is called
stable if exp(4} =1ind(A) for every central simple 4/L and that global and
local fields are stable. We will adhere to the:

Context. Throughout this section IL/K is a finite extension of stable
fields and A4/L 1s central simple.

Our main resuits for stable fields will foilow by showing that there exists
a B/K which is both matrix size minimal and degree minimal for 4/L. The
proof of this follows from an abelian group argument which we next
proceed to isolate.

Let G and H be abelian groups (written additively) and let &: G — H be
a homomorphism such that the kernel, ker(®), of @ has bounded
exponent. Let p be a fixed prime and let «, € A, with a + f € &(G). Define
m,(f) to be the minimum of exp(f)/exp(d), the minimum taken over all
de G, such that @(5)=a+ f. (We are denoting the order of § by exp(f).)
We note that this minimum exists because of our assumption that ker(®}
has bounded exponent.

Lemma 17. Let o, B, e H, with a+f, «+ ' € D(G) and exp(f’)>
exp(). Then: m,(f))=min{m,(p), m,(B+p(f'—B)) mi(p—1)° f~
p(p—2)8")}. In particular, there exists ye H, with o« +7ye ®(G) and with
exp(y) < exp(B') such that m (B = m(y). ’

Proof. Let 48, 6'eG, with ®(0)=a+f, S )=a+f, mif) =
exp(f)/exp(d), and m (8") =exp(B')/exp(d’). If exp(d’) <exp{d) then clearly
m,(B) = m (). Suppose exp(d') >exp(d). Let y =46+ p(d'—8) so plexp{n}
<exp(d')and S(n)=a+ (B +p(f' — B)). We note that p -exp(f +p(8'— 8))
Lexp(f'). Suppose first that p - (exp(n) =exp(d’). Then,

. exp(f) _ exp(B+p(f —B))
P eXp(n) exp(n)

zm,(B+p(f —B))

Finally, suppose that p-(exp(n) <exp(d'). Then p-exp{pd —{(p—1)n)=
exp{d’). An easy computation shows that &(pd' —{(p—1}n)=
(p—1*B—p(p~2)p'. Then,

N

2

-
H

_expl(p— 2B8—plp—2)p")
exp(pd’ —(p—1)n)
exp(ﬁ? L
€Xp(5 } 1\/3 )

m{{(p—1)*E—p(p—2)8")
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THEOREM 18. Let L/K be a finite extension of stable fields, and let A/L
be central simple. Then there exists a central simple B/K such that:

(a) B/K is degree minimal for AJL,
(b) B/K is matrix size minimal for A/L, and
(¢} Cp(LY=A®, X, where X is an L-division ring of index rg(A).

Proof. Let t=msg(A) and let C~ M (F) be matrix size minimal for
A/L, where E is a K-division ring. Let C(L)=A4®, V. It follows from the
remark following Theorem 14 that V is an L-division ring and for each
prime p, vg(A4,)=ind(V,)/ind(E,). Let p be an arbitrary prime. Let
G=B(K), H=B(L), and let @ =Res, . If [D]eker(®), D a K-division
ring, then L splits D, so exp(D) divides [ L : K]. Thus ker(®) has bounded
exponent and so Lemma 17 applies in this situation. Suppose
ind(V,)>ri{Ad,) Leta=[4,], p'=[V,], and let f=[Y,], where Y is as
in Corollary 7. Since K and L are stable, we have ind(V,)=exp(}V,). By
Lemma 17 there is a K-division ring W, of p-power index and an L-division
ring X, of p-power index with exp(X,) <exp(V,) such that [4,]+ [X,]=
D([W,]) and vx(A,) > exp(X,)/exp(W,). By definition of v4(4,) we must
have v,(A4,) =exp(X,)/exp(W,). We also have rx(4,) <exp(X,) <exp(V,).
By repeated application of Lemma 17 we may assume that exp(X,)=
ri(4,). Let W (resp. X) be the K-division ring (resp. L-division ring) having
p-primary component W, (resp.X,) for each primep. Since
[4,1+[X,]=2([W,]) for each prime p, [A]+[X]=D([W]). By
Proposition 8, ind(X)=rx(4). Let A®,; X be embeddable in B=M (W)
so that 4 ®; X = Cg(L). By Corollary 7, B/K is degree minimal for 4/L. By
Theorem 14, ms(A)=[L : K] -deg(A4)-vx(A4). But

vi(A) =[] vil(d4,) =] exp(X,)/exp(W,) = deg(X)/deg( W)

and so msg(A)-deg(W) = [L:K] -deg(4) - deg(X). It follows from
Proposition 4(c), that msg(4) - deg(W) = deg(B) = w - deg(W). Thus
w=msy(A) and so B/K is both degree minimal and matrix size minimal
for A/L. |

It is not true, in general, that if B/K is degree minimal (resp. matrix size
minimal) for A/L, then B/K is also matrix size minimal (resp. degree
minimal) for A/L. Assume, for example, that p and ¢ are distinct primes,
K is a global field, and [L:K]=g¢. Let D, be a K-division ring of index
p. By [ 1, Corollary 4] B(L/K) is infinite. Let D, be a K-division ring such
that [D,je B(L/K). Let A=D,® L. Then 4 is an L-division ring of
index p. By Theorem 6, dy{(4) = pg. Let B= M (D). By Proposition 5, B/K
is degree minimal for 4. B/K is, however, not matrix size minimal for 4,
since Proposition 5 also shows that 4 embeds in the K-division ring
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D, ®y D,. If r is a prime distinct from p and ¢ and D, is a K-division ring
of index r, then A embeds in the K-division ring D, ®, D, ®x D5. Thus
D, ®x D, ® Dy is matrix size minimal for 4 but it clearly is not degree
minimal.

Using Theorem 18 we can read off the relationship between the main
invariants of 4/L that we have been considering.

CoroLLARY 19. Letr L/K be a finite extension of stable fields and let AJL
be central simple. Then d {A)-v{A)y=msg(A) 7x(4).

Proof. Let B/K be as in the statement of Theorem 18 and let
CplY=A®, X Let E be the skew field component of B. Then
v{4) = ind(XYind(E) and deg(B)=dy(4)=ms(A) -ind(E). Thus
di(A)-vp(A)=msg(A) - re(4). §

With notation as in Theorem 18, we note that v{A4,) =r{(4,)/md(D,}
for each prime p. Let us define m(4,) to be the maximum index of a
K-division ring 4, of p-power index such that for some L-division ring ¥,
with ind(V,})=rg(4,) we have [4,]+[V,]=[4,®xL] I we then
define mg{(A) to be ], mg(A,), then my(A)=1ind(D) and by Corollary 19
we have ms {A)=d {A)m{A). mg(A4) is an answer f{o the following
problem: it is the maximal degree of a K-division ring D so that
[AT1+[Y]=ID®s L] and Y is an L-division ring of degree r {A4). We
will, however, not be concerned with m {A4) in what follows.

The invariants #(A4) and vg{4) of 4/L are useful for localizing the com-
putation of d{A4) and ms(A4) for arbitrary fields L and K. Unfortunately,
both r{A) and v {A4) suffer from the defect that their definition involves
considering central simple Y/L such that [A]+ [Y]eRes; (B(K}}); this
makes their computation difficult. We next introduce two additional
invariants of A/L, exp{4) and kg (A) These new invariants are more
natural and more readily computable than r{4) and v.{(4). While their
exact relationship to d(4) and ms,(4) is unclear for arbitrary fields, we
are able to obtain simple expressions for dg(4) and msg{4) in terms of
expy{A4) and k {A4) in many important cases.

DermiTioON.  Let L/K be a finite dimensional extension of fields and let
A/L Dbe central simple. We define expg{(4) to be the order of
[A]+ Res; x(B(K)) in B(L)/Res; x(B(K)) and k{A) tc be the maximum
index of a K-division ring D such that Res; ([ D])=exp{4)[4]

We note that k{(A4) does not, in general, localize because of the possible
existence of primes p not dividing ind(4) such that B(L/K),# {0}.

481/133/2-12
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LemMA 20. Let the context be as above. Then:

(@) for each prime p, ki(A,),=kg(A),
(b) expg(A) divides r(A)

Proof. (a) LetI'bea K-divisionringofindex k x(A4) withResx([I']) =
exp(A)[A]. Then [I', @ 4 L]=expg(A)[A4,]. Let expg(Ad) =v-expg(4,)
and let ro=1 mod exp(4,). Since r[I, ® x L] =exp(4,)[4,] and r[I,]
has exponent k(A4),, it follows that k(4),<kx(4,),. Now let & be a
K-division ring of index kx(4,) such that [@ ® x L] =expg(4,)[4,].
Then [0, ®xL]=expl(4,)[4,] so [(0, R [Ty ) ®xL]=
expg(A)[4]. It follows that kx(4,), <k(A),, proving (a). Now let B/L be
as in the statement of Theorem 18 and let Cpx(L)= A®,; X. Then X is an
L-division ring of index r(4) such that [4]+4 [X]eRes, (B(K)). Thus
riA)[A]=r(A)[A]+rx(A)[Y]eRes, x(B(K) so expx(d) divides
re(4). |

In order to obtain the desired expressions for d(4) and ms (A) in terms
of expy(A4) and kg(A) it will be necessary at a crucial point in the
argument to take an appropriate root of an element of B(K). Since B(K) is
not always divisible, this will not always be possible. It is, however, well
known that if X is a global field then 2B(K) is always divisible; this follows
easily, for example, from [4, (32.13)]. This motivates the somewhat
technical condition in the next lemma.

LEMMA 21.  Let the context be as above. Let p be a prime and let I, be a
K-division ring of index ky(A), such that Res, ([I,])=expx(d,)[4,].
Let n be minimal such that there exists [A]e B(K), satisfying
P"-expilA4), [A]=p"[I']. Then there are integers u, r with 0 <u, r <n with

dg(A,)=p"- [L: K]-deg(4), exp(4),
ms(d,)=p"-[L: K] -deg(4),/kx(4),.
Proof. In view of Theorems 6 and 14 we need to show that there are
integers u, r with 0 <<, r <n such that r(4),= p*-exp(A4), and v(4 )=

P'fkx(A),. Let V be the L-division ring such that [V]=[4 ® (L] — [4,].
Since

p"-expg(A), [V1=p"-expg(d), [4 @ ¢ L] —p"-exp(d), [4,]
and
p" 'eXpK(A)p [4®xL] =p"([I,®xL]=p" expg(4), [4,],

it follows that exp(¥') divides p" -expg(4),. But [4,]1+ [V]eRes, «(B(K)
so rx(4), divides exp(¥) by Corollary 10. Thus exp(V) =p”-expg(4), for
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some v<n and so by Lemma 20(b) ri(A4),=p" expg(4), for some
UKV

By Proposition 5 there is an integer w such that 4, ® , V is embeddable
in M,(4) so that w-exp(d4)=[L:K]-deg(4,) -exp(V). Since exp(4d}=
expx(A),-kx(A), we have w=p”-[L: K]-deg(4,)/k(A),. But msg(4,)
divides w by Theorem 16, so [L: K] -deg(4,) - vg{d}, divides p*-[L: K7 -
deg(A,)/kx(A),. Thus kp(d),-ve(Ad),<p’ It remains to show that
ki A)y vl A), > 1.

Let B/L be as in the statement of Theorem [8. Let D be the skew field
component of B and let Ch(l)=A®, Y. By Theorem 1§, ¥ is an
L-division ring of index rx(A4) and exp(D,) =rg{A4,)/vx(A4,). We have

eXpK(A)p [Dp ®K'L:| = eXpK(A )p [Ap] + GXPK(A }p [Y,n} {i}

Let G=B(K),, H=B(L),, and let ®=Res, . Let a=expe(d),[4,],
B=1L], and B'=expi{d4),[Y,]. Since ry(4),=p" expi(A4), for some
u<n, we have exp(f)=p“=1 If u=0 then ry {4}, =expg(4), This
implies that Res; x(expx(A4), [D,])=expx({4), [4,]. By definition of
kil A), il A), > explexpi(d), [D,]) = 1/ox(4),. Thus ky(4), v.(4),> 1
and so we may assume that > 1. We have

expx(d,)L4,1+ [L]=Res, ([I, 1) 2

R—°

Now exp(f’) >exp(f) so Lemma 17 applies for (1) and (2). Note that
in (2) we have m,(B)=1/kg(A4,), and the choice of I, makes this
value minimal. Using (1), we have m,(f')=v(4,). Lemma 17 says
m (') = m(u), where u has order strictly smaller than B’ Iterating this
conclusion reduces us to the case u=0. But (2) returns the minimal value
among all m,(0). Thus vi(4), > 1/kx(A4),, so again, vx(4), ki(4),>1, as
desired. §

We record some consequences of Lemma 21 in the special case when
various p-Sylow components of B(L/K) are divisible. These conditions will
hold over global fields for all odd p. The proofs are all immediate from
Lemma 21.

CororLary 22. Let L, K, A satisfy the hypotheses of this section, ie.,
we are assuming that K and L are stable. If for some prime p dividing exp{4)
we have B(K), is divisible, then ri(A,) =expxlA,). If B(K), is divisible for
all primes p dividing exp(4) then

(1) r(d)=expa(4)
(2) dx(d)=[L: K] deg(A) expxl4)
(3) ms(A)=[L: K] deg(A)/kx(A).
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In case B(K), is not divisible but p"B(K), is divisible, the conclusion of
Lemma 21 is that the estimates of (2) and (3) of Corollary 22 are “off by at
most p™” for that local component.

We are finally able to give our main result relating d,(A) to expg(4) and
msg(A) to kg(A) when L/K is a finite extension of global fields. We will
freely use the classification theory of central simple algebras over global
fields by means of Hasse invariants; we refer the reader to [4, Section 32]
for the relevant theory assumed. We denote the Hasse invariant of [4] at a
prime 7 of K by inv,[A]. Let inv_[A4] =s/me Q/Z, where (s, m)=1. Then
m is called the local index of A at = and denoted by Li. [A]; Li [4]=
exp(4 ® x K, ), where K denotes the completion of K at 7. We let co denote
the infinite prime of Q.

THEOREM 23. Let L/K be a finite extension of global fields and let A/L
be central simple. Then d (A)=[L: K] -deg(A4)-expg(A) and ms (A)=
[L: K] -deg(A)/k(A) if any of the following conditions are satisfied:

(1) K has positive characteristic
(2) ind(4) is odd

(3) [L:K] is odd

(4) K has no real embeddings
(5)Y L is totally real

(6) expg(A) is odd

(7Y B(L/K), is infinite.

In  any case, dg(A)=2"-[L:K]-deg(A) -expg(d) and msg(Ad)=
2"-[L: K] -deg(A)ki(A), where 0<u, r<1.

Proof. Suppose I, is a K-division ring of index kg(4), such that
Res; x([I,])=expg(A4,)[4,]. The crux of the matter in Lemma 21 is
whether [I',] is in DB(K). By [4,(32.12)], [I,]1€ DB(K) unless p=2
and K has a real infinite prime n such that inv,[1,]=4. In particular,
if p#2 orif p=2 and one of (1), (2), (4), or (6) hold, then by Lemma 21
we have di(A4,)=[L:K] deg(A4), -expg(A4), and msg(A4,)=[L:K]-
deg(A4),/kx(A),.Since dg(A)=[L: K]-T1, (dx(A4,)/[L: K])and msg(A)=
[L:K]-T1, (msg(A4,)/[L: K1), we may assume that p=2, A has index a
power of 2, and none of conditions (1), (2), (4), or (6) hold. We set I'=TI,.
By the criterion mentioned above for [ 1] to be in DB(K), we may assume
that K has a real infinite prime = such that inv,[I]=31. Since expg(4) is
even, inv ,(exp (4)[A]) =0 for all infinite primes p of L. But [’ ® (L] =
expg(A)[A] and so [L,:K,]-inv [I]=inv, [I"®,L]=0 for all exten-
sions i of n to L. In particular, all extensions of z to L must be complex so
~ we may assume that (5) does not hold. Since [L: K]=3,[L,: K,], we
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are also finished if (3) holds. Finally, suppose (7} holds. Then there exist
infinitely many finite primes 7 of K with the property that [L_: K, is even
for all extensions ¢ of 7 to L (see, for example, the proof of
[1, Theorem 2]). For each infinite prime ¢ of K with inv,[I,]=7 we
choose a different finite prime 1 as above and let 2(¢$) be the K-division
ring such that inv,[Q(4)]=inv,[Q(¢)] =7 and inv, [Q(¢)]1=0 for all
other primes p of K. Let A=I'®x(®,2(4)). Then 4eDB(K) and
(4@ L= ®gL], so we are also finished if (7) holds. §

We remark that the precise conditions under which the u and r of
Theorem 22 equal 1 are complicated and involve the existence of primes of
K with certain local behavior in L; we omit these calculations. In the next
section we will give an example to show that the case when u=r=1 does
arise. Although we will not prove it here, one can show that if u=1 then
also r=1. We also give an example in the next section to show the case
u=0 and r=1 occurs.

it is natural to ask whether there is a unique matrix size minimal or
degree minimal B/K for a central simple 4/L. Qur final result shows that
for global fields one always has infinitely many non-isomorphic choices for
such a B.

THEOREM 24. Let L/K be a non-trivial finite extension of global fields
and let AJL be central simple. Then there exist infinitely many non-
isomorphic central simple B/K which are both matrix size minimal and degree
minimal for A/L.

Proof. Let p be a prime such that B(L/K) has infinitely many elements
of order p; the existence of such a p follows from [1, Corollary 47. Let B/K
be as in the statement of Theorem 18 and let D be the skew component of
B. Then deg(B) =dx(A4). We claim that p divides ind{D). Suppose not. Let
Cp (LY A®, Y. By Theorem 18, Y is an L-division ring of index r {A4).
Let D, be a K-division ring of index p split by L. Then [A®, V=
[{(D®x D)@, L] and D®; D, is a K-division ring. By Proposition 5
there is an integer w such that 4 ®, Y/L is embeddable in B, =
M, (D ®xD,)so that Cp(L)~A® , Y/L. Since ind(Y)=rg{(A4), we have
deg(B,)=d(A)=deg(B) by Corollary 7. Since deg(D ® D) > deg{D),
the matrix size of B, is strictly smaller than the matrix size of B. Since B/K
is matrix size minimal for 4/L we conclude that p divides ind(D) as
asserted.

Let 7 be the set of primes 7 of X such that p divides the local degree
[L,:K,] for every extension y of = to L. By [1, Theorem 27, 4 is infinite.
Let 1 and v be distinct primes in . such that inv, [D]=inv,[D]=0 and
let £ be the K-division ring such that inv, [E]=1/p, inv,[E]= —1/p, and
inv [ £]=0 for all other primes n of K; the existence of E follows frem
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[4, (32.13)]. Our assumptions imply that [ E] e B(L/K). Let 4 be the skew
field component of D ® x E. By [4, Theorem 32.197], ind(4) = ind(D). Since
[A1+[Y]=[4d ® L], Corollary 7 implies that 4 ® ; Y is embeddable in
B,=M/[(4), where deg(B,)=dg(A)=deg(B). Since ind(4)=ind(D) and
B/K is matrix size minimal for 4/L, we conclude that ¢ =msg{(A) and so B,
is also matrix size minimal for A/L. Since there are infinitely many choices
for p and v, there are infinitely many choices for B,. In particular, B,/K is
degree minimal for A/L. §

4, AN EXAMPLE

In this section we will give an example of number fields L/K and a
central simple A/L such that d(A4)=2-[L:K] -deg(A)-exp{A4) and
ms(A)=2-[L: K] -deg(A4)/k(4).

ExamprLe. Let f(x)=x"+18x>+24x+117e Q[x]. Using any of the
standard computational packages available (e.g., Maple or Macsyma), one
can easily check that f(x) is irreducible in @[ x], has square discriminant
2'83° and has an irreducible factor of degree 3 when viewed in Z[x]. It
follows that the Galois group of f(x) over Q is isomorphic to 4,. One can
also easily verify that f(x) has no real roots and factors into linear factors
when viewed in Z,,[x]. Let E be the splitting field of f(x) over Q. Then E
is totally imaginary, the rational prime 71 splits completely in E, and
Gal(E/Q)= A4,.

We next construct our base field K so that K is totally real, EK/K is
unramified at all finite primes, and Gal(EK/K)=>~ A,. Let E, denote the
splitting field of f(x) over Q, for pe {2, 3}. By [6, Proposition 4-10-5],
[E,: Q,] divides 12. Let r,=12/[E,: @,] and let g,(x) be a product of r,
distinct monic irreducible polynomials in @,[x] each of whose roots is a
primitive element for E, over Q,. Let g, (x)=x"2—71eQ,[x] and
let g,(x)=T112, (x—i)eR[x]. We note that g,(x) is scparable for
p=2,3,71, and co. By the Approximation Theorem [6, Theorem 1-2-37,
Krasner’s lemma [5, Lemma 5.57, and continuity considerations one can
find a g(x) e Q[x] sufficiently close p-adically to g,(x) for p=2, 3, 71, and
oo so that if K= Q(a), where « is a root of g(x), then K is totally real and
EK/K is unramified at all finite primes of K. Moreover, since the rational
prime 71 splits completely in E but is totally ramified in K, it follows that
EnK=0Q and so Gal(EK/K)x~ A,.

Let M = EK. Then M/K is Galois with Gal(M/K)= A4,, K is totally real,
M is totally imaginary, and each finite prime of K is unramified in M. Let
L and T be, respectively, the fixed fields of distinct involutions ¢ and 1 of
Gal(M/K). Since ¢ and 1 are conjugate in Gal(M/K), L~ T. Since M= LT
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and M is totally imaginary, each of L and 7 must also be totally
imaginary. For future reference we note the following two properties of
L/K:

(¥} if # is an infinite prime of L extending the prime p of K, then
(LK, 1=2
(#x} if 7 is 2 finite prime of K, then there is a prime § of L extending
7 such that {L,: K. ] is odd.

Property () follows from the fact L is totally imaginary while X is
totally real and Property (%) is proved exactly as in [3, Example i,
p. 1841].

Let y be the prime of K extending the rational prime 71 and let &,
85, ..., 6¢ denote the primes of L extending y. By [4, (32.13}] there exists an
L-division ring A such that inv;[A4]=14 for ie {1,2,3}, inv;[4]=2 for
i {4,5,6}, and inv,[A] =0 for all other primes p of L. We shall show
that exp (4} =2 but r{A)=4 and that k (4} =6 but v (4) =1 In view of
Theorems 6 and 14, this will show that

d{A)=2-[L: K]-deg(4)-expg(4)
and
ms {A)y=2-[L: K] -deg(A)/k(A).

We show first that expg(A4)=2 and k {4)=6. By [4, Theorem 32.19],
exp(4A)=4. Let n be a fixed infinite prime of K and let 4 be the K-division
ring such that inv,[4]=14, inv [4]=3, and inv,[4]=0 for all other
primes p of K. By Property (*) and [4, Theorems 31.9 and (32.13}],
Res, x[4]=2[A] and so expi(4) divides 2. Suppose expg{d)=1
Then there exists a K-division ring £ such that Res, [Q]=[4]
Since [L;:K,J=1, inv,[Q]=4 But then inv,(Res, [Q2]=; while
invs,[A]=32. Thus expg(4)=2. By [1, Corollary 3], B(L/K), is infinite
so there exists a K-division ring Y of index 3 in B(L/K}. Then
Res, il [4 @ g Y])=exps{A)[A] s0 ki(A) > 6. Suppose kg{4)>6 and let
¥ be a K-division ring of index k {A4) such that [P ®L1=2[A4]. Then
2{ ¥l e B(L/K) so ¥ has index dividing 12 [4, Theorem 28.57. It follows
that ¥ must have index 12. There must exist a prime v of K such that
Li,[¥,]1=4. Clearly v is a finite prime so by Property (x*)} there is an
extension { of v to L such that [L,: X,] is odd. But then inv, 2[4 =
[L,:K,] -inv,[¥] and so 11, 2[A] =4, a contradiction. Thus k (A4)=6.

We show next that r(4)=4. By Corollary 11, r(4) divides 4. Since
[A1¢Res; x(B(K), ri(A)+#1. Suppose rx{4)=2 and Y is an L-division
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ring of index 2 such that [A]+ [Y]eRes, x(B(K). Let [4]+[Y]=
Res,x[A], where A4 is a K-division ring. Since inv;([4]+[Y])=
invs([4]1+[Y])=inv,[4] for ie {1,2,3} and je {4,5, 6} it follows that
we may assume that inv;[Y]=0 for ie{1,2,3} and inv,[Y]=7 for
je{4,5,6}. Let & denote the set of primes u of L such that
K¢ {04,905, 06} and inv,[ Y] #0. Since the sum of the invariants of [ Y] is
an integer and Y has exponent 2, we must have inv,[ Y] =4 for all primes
pe and | &) is odd. Fix a prime 1 of K, 7 #7, and let y,, ..., 4, denote the
primes of L extending t. Since t#7y, inv,[4]=0 for i=1, .., r. Suppose
inv,[Y]=3 If [L,:K,] is even then li,[A] is divisible by 4. In par-
ticular, T must be a finite prime. By Property (*x) there exists an i such
that [L,: K,] is odd. But [L,: K. ] -inv ,[4]}=inv,[ Y], contradicting the
fact that Y has exponent two. It follows that [L,:K.] is odd and
inv.[4]=4. This implies that inv, [ Y]=14 for all i such that [L,:K,] is
odd. But 3, [L,: K,] =06 so there are an even number of i with [L : K]
odd. This implies that |#| is even, a contradiction, proving that r(A4)=4.

Finally, we show that v (4)=1% Let B/K be as in the statement of
Theorem 18, let D be the skew field component of B, and let Cy(L)x
A®,Y By Theorem 18, exp(Y)=4, [D®L]=[A]+[Y], and
vg(A)=4/exp(D). Then 4[D]e B(L/K) so exp(D) divides 24. Suppose
exp(D)=24. Then there exists a prime t of K such that 8 |Li.,[D]. 7 is
clearly finite and 7 # y. By Property (*), [ Ls: K, ] is odd for some extension
B of 7. Since invg[A]=0, 8|Lig[Y], contradicting exp(Y)=4. Thus
exp(D) <12 and so vx(4)> 1. Let n be a prime of K splitting completely
in L, n#y. (Since the rational prime 197 splits completely in E, if we
require g(x) to be sufficiently close 197-adically to x'*— 197, we can take
n to be the prime of K extending 197.) Let 4, be the K-division ring such
that inv,[4,] =1, inv,[4,] =13, and inv,[4,]=0 for all other primes p of
K Let A=4,®%Y, where [Y]e B(L/K) with exp(X)=3. Let [Y]=
[A®xL]—[A]. Then Y has exponent four and so vg(4)<5. Thus
vi(A)=1% as was to be shown.

We can also construct an example to show that the case u=0, r=1
occurs. With notation as in the example, let 7 be a fixed infinite prime of K
and let m, be an extension of n to L. Let A be the L-division ring with
invariants as follows: invs, =4, inv, =4, all other invariants 0. Then one
can easily check that expg(A)=rg(A)=kx(Ad)=2 but v,(4)=1.
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