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We study the scale dependence of twist-3 distributions defined with chirality-odd quark–gluon operators.
To derive the scale dependence we explicitly calculate these distributions of multi-parton states instead
of a hadron. Taking one-loop corrections into account we obtain the leading evolution kernel in the most
general case. In some special cases the evolutions are simplified. We observe that the obtained kernel in
general does not get simplified in the large-Nc limit in contrast to the case of those twist-3 distributions
defined only with chirality-odd quark operators. In the later, the simplification is significant.

© 2012 Elsevier B.V. Open access under CC BY license.
Predictions can be made from QCD with the concept of factor-
izations for processes with large momentum transfers. A typical
example is DIS. For unpolarized DIS, the differential cross section
at the leading power of the momentum transfer Q is predicted
as a convolution of perturbative coefficient functions with par-
ton distribution functions (PDF’s). PDF’s are defined with twist-2
QCD operators and describe nonperturbative effects of hadrons. Al-
though PDF’s cannot be predicted with perturbative QCD, but their
scale dependence, hence the Q 2-dependence of the differential
cross section, can be determined by perturbation theory. The de-
pendence is governed by the famous DGLAP equation. In the past,
the predicted scale-dependence or DGLAP equation has played an
indispensable role for testing QCD as the correct theory of strong
interaction.

In general, factorized differential cross sections also contain
contributions involving hadronic matrix elements of higher-twist
operators. Although these contributions are suppressed by inverse
powers of Q , they contain more information about inner structure
of hadrons. Among them, the most interesting are those involving
twist-3 operators. These contributions are responsible for certain
asymmetries in differential cross sections. These asymmetries can
be measured in experiment and hence provide information about
hadronic matrix elements of twist-3 operators. A well-known ex-
ample is the study of Single transverse-Spin Asymmetries (SSA).
The asymmetries can be factorized with the ETQS matrix elements
defined with chirality-even quark–gluon operators at twist-3 [1,2].
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The scale dependence of these twist-3 operators have been studied
in [3–8]. Besides them, there are chirality-odd quark–gluon opera-
tors at twist-3. In this work, we study the scale dependence of
these operators.

We consider a spin-1/2 hadron moving in the z-direction
with the momentum Pμ = (P+, P−,0,0). We will use the light-
cone coordinate system, in which a vector aμ is expressed as
aμ = (a+,a−, �a⊥) = ((a0 + a3)/

√
2, (a0 − a3)/

√
2,a1,a2) and a2⊥ =

(a1)2 + (a2)2. In this coordinate system we introduce two light-
cone vectors: nμ = (0,1,0,0) and lμ = (1,0,0,0). There are two
distributions which can be defined with chirality-odd quark–gluon
operators at twist-3. They are:

T (σ )
F (x1, x2)

= gs

∫
dy1 dy2

4π
e−iy1x1 P++iy2x2 P+

× 〈P |ψ̄(y1n)
(
iγ⊥μγ +)

G+μ(0)ψ(y2n)|P 〉,
λT̃ (σ )

F (x1, x2)

= gs

∫
dy1 dy2

4π
e−iy1x1 P++iy2x2 P+

× 〈P , λ|ψ̄(y1n)
(
iγ⊥μγ +γ5

)
G+μ(0)ψ(y2n)|P , λ〉, (1)

where the matrix element in the first equation is spin-averaged
and that in the second equation is of a longitudinally polarized
hadron with the helicity λ = ±1/2. x1,2 are momentum fractions.
The definitions are given in the light-cone gauge n · G = 0. In other
gauges gauge links along the direction n should be supplemented
to make the definitions gauge invariant. From general principle one
can show that the two distributions are real and:
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T (σ )
F (x1, x2) = T (σ )

F (x2, x1),

T̃ (σ )
F (x1, x2) = −T̃ (σ )

F (x2, x1). (2)

Replacing the gluon field strength tensor G+μ(0) in Eq. (1) with
the covariant derivative Dμ = ∂μ + igsGμ(0), one can obtain an-
other two twist-3 distributions. With equation of motion one can
relate those two distributions to the two distributions defined in
Eq. (1), respectively (see, e.g., [9,10,14]).

The operators in Eq. (1) contain the operator of the gluon
field strength tensor. There are two chirality-odd twist-3 opera-
tors which only consist of quark field operators. Correspondingly,
one can also define two distributions. One is e(x) for unpolar-
ized hadrons, another is hL(x) for longitudinally polarized hadrons.
Again, these two distributions are not independent. One can use
operators identities in [11] or equation of motion to show that
these two are related with the above two and plus some contri-
butions with local operators. The evolution of e(x) and hL(x) have
been studied in [12–14] and the evolution equations have been
solved in moment space. The evolution of twist-3 quark–gluon
operators has been studied in [15] with the emphasis on the solu-
tions of evolution equations. In this work we derive the evolution
kernel for the two twist-3 distributions defined in Eq. (1) in mo-
mentum fraction space with a different method.

Under renormalization there is no mixing between the two op-
erators in Eq. (1). The evolution kernels can be conveniently ex-
pressed with one function by introducing the combinations:

T̃±(x1, x2,μ) = 〈P ,±|O(x1, x2)|P ,±〉
= T (σ )

F (x1, x2,μ) ± T̃ (σ )
F (x1, x2,μ),

O(x1, x2) = gs

∫
dy1 dy2

4π
e−ix1 y1 P++ix2 y2 P+

ψ(y1n)iγ⊥μ

× γ +(1 + γ5)G+μ(0)ψ(y2n). (3)

The functions T̃±(x1, x2) are nonzero in the region of |x1,2| � 1 and
|x1 − x2| � 1. The scale-dependence can be written in the form:

∂

∂ lnμ
T̃±(x1, x2,μ)

= αs

π

∫
dξ1 dξ2 F±(x1, x2, ξ1, ξ2)T̃±(ξ1, ξ2,μ). (4)

The integration region of ξ1,2 is fixed by the support of T̃± . It is
easy to find that F+ is related to F− . Here we will take F− to
give our results.

The distributions are defined for a given hadron, but the ker-
nel does not depend on the hadron. It is completely determined
by the dynamics of QCD. For large μ it can be calculated with per-
turbative QCD. Because of this one can use various parton states
to calculate the distribution T̃− to find its μ-dependence, hence
the kernel F− . For the case with operators of twist-2 one can
use single-parton state for the purpose. But for the two distribu-
tions defined here, one simply finds null results with single-parton
states because the chirality is flipped by the operators. Therefore,
one has to use multi-parton states to calculate the distribution. By
using multi-parton states factorizations of SSA with twist-3 opera-
tors have been studied in [16–18]. In [7] such multi-parton states
have been employed to study the scale dependence of twist-3 op-
erators relevant for SSA.

We introduce the following state |n(λ)〉 as a superposition of
single- and multi-parton states:∣∣n(λ)

〉 = |q〉 + c1|qG〉 + c2|qGG〉 + c3|qq̄q〉 + · · · . (5)

The state |n〉 is with the momentum (P+,0,0,0). All partons in
the partonic states moving in the z-direction and the sum of their
momenta are that of |n〉. The sum of helicity of partons is λ. In the
above we have suppressed quantum numbers of partons, which
will be specified later. In principle one can introduce wave func-
tions depending on momenta of partons. For simplicity, we take
these wave-functions as δ-functions and hence ci (i = 1,2,3, . . .)
are real constants. If we calculate T̃− of the state |n(λ)〉 instead of
a hadron, we obtain nonzero contributions from interference be-
tween different partonic states. At tree-level, the contributions can
be schematically written as:

T̃−(x1, x2) = C1
〈
q(−)

∣∣O(x1, x2)
∣∣q(+)g(−)

〉
+ C2

〈
q(−)g(+)

∣∣O(x1, x2)
∣∣q(+)

〉
+ C3

〈
q(−)q̄(−)

∣∣O(x1, x2)
∣∣g(−)

〉
+ C4

〈
g(+)

∣∣O(x1, x2)
∣∣q(+)q̄(+)

〉
, (6)

where ± in brackets indicate the helicity of partons. It should be
noted that there are possible spectators. E.g., in the first term,
the spectators must carry the total helicity λs = 0 which can be
a quark pair or gluon pair. In the second term the spectators must
have λs = −1 because we have here λ = −1/2. For the last two
terms we have λs = ±1/2, respectively. The contributions from
spectators give overall factors as products of δ-functions for each
term. These overall factors are contained in the constants Ci which
also depend on ci as in Eq. (5). Because of existence of spectator-
partons, the parton states in the above are not necessarily with the
total momentum P .

Beyond tree-level, the four matrix elements of partons in Eq. (6)
receive corrections. These corrections make T̃− μ-dependent. We
define the four matrix elements as:

T−qg(x1, x2, y0, z0) = 〈
q(p,−)

∣∣O(x1, x2)
∣∣q(p1,+)g(p2,−)

〉
,

T+qg(x1, x2, y0, z0) = 〈
q(p1,−)g(p2,+)

∣∣O(x1, x2)
∣∣q(p,+)

〉
,

T−qq̄(x1, x2, y0, z0) = 〈
q̄(p2,−)q(p1,−)

∣∣O(x1, x2)
∣∣g(p,−)

〉
,

T+qq̄(x1, x2, y0, z0) = 〈
g(p,+)

∣∣O(x1, x2)
∣∣q(p1,+)q̄(p2,+)

〉
, (7)

with the momenta:

p+
1 = y0 P+, p+

2 = (z0 − y0)P+, p+ = z0 P+. (8)

The color of the state |qg〉 is the same as the single-quark state.
Details can be found in [16,18]. The four matrix elements are not
independent. They are pair-wise related:

T−qg(x1, x2, y0, z0) = T+qg(x2, x1, y0, z0),

T−qq̄(x1, x2, y0, z0) = T+qq̄(x2, x1, y0, z0). (9)

As we will see, the μ-dependence of the four matrix elements de-
termine the kernel F− in different regions of ξ1,2. Because of this,
the determined kernel will not depend on the states, i.e., the co-
efficients ci and Ci . To determine the kernel in the full region of
ξ1,2, one also needs to calculate T̃− of the state |n̄〉 – the charge-
conjugated state of |n〉. However, T̃− of |n̄〉 can be obtained from
T̃− of |n〉 through charge conjugation.

We take T−qg as an example to show how the corresponding
contribution to F− is determined. At tree-level, we have:

T (0)
−qg(x1, x2, y0, z0) = 2π gs

√
2z0 y0

(
N2

c − 1
)

× (z0 − y0)δ(z0 − x1)δ(x2 − y0). (10)

It should be noted z0 > y0 because of p+
2 > 0. If we have the one-

loop result T (1)
−qg , we can substitute the results of T (0,1)

−qg into Eq. (4)
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Fig. 1. A set of diagrams of one-loop corrections to the defined twist-3 matrix elements. This set only contains the self-energy corrections and corrections from the gluon
emission from a gauge link represented by a double line.

Fig. 2. Another set of diagrams for one-loop corrections of the defined twist-3 matrix elements.
through Eq. (6). Then we can find for ξ2 > 0:

gsαsF−(x1, x2, ξ1, ξ2)θ(ξ1 − ξ2)

= 1

2(N2
c − 1)(ξ1 − ξ2)

√
2ξ1ξ2

∂

∂ lnμ
T (1)

−qg(x1, x2, ξ2, ξ1). (11)

The θ -function θ(ξ1 −ξ2) appears because of z0 − y0 > 0. Therefore,
F− in the region of ξ1 > ξ2 and ξ2 > 0 is determined by T (1)

−qg .
Similarly, one can find that F− in the region of ξ2 > ξ1 and ξ1 > 0
is determined by T (1)

+qg . Combining the two contributions one has
the kernel in the region of positive ξ1,2.

The one-loop correction to T−qg is from the diagrams given in
Fig. 1 and Fig. 2. The calculation of these diagrams is rather stan-
dard. Therefore we give the result directly. We introduce the fol-
lowing function which is just the kernel in the region of ξ1,2 > 0:

F1(x1, x2, ξ1, ξ2) = θ(x2)
[
δ(ξ1 − x1) f1(ξ2, x1, x2)

+ δ(ξ1 − ξ2 − x1 + x2) f0(ξ2, x1, x2)

+ δ(ξ2 − x2) f2(ξ1, x1, x2)
]

+ (x1 ↔ x2, ξ1 ↔ ξ2), (12)
with

f0(ξ, x1, x2) = 1

2Nc

x2θ(ξ − x2)

ξ(x2 − ξ)+
,

f1(ξ, x1, x2) = Nc

4

(
θ(x1 − x2)θ(x2 − ξ) − θ(x2 − x1)θ(ξ − x2)

)
×

(
2

(x2 − ξ)+
− x1 − x2

(x1 − ξ)2
− 2

x1 − ξ

)

+ Nc

2
θ(ξ − x2)

x2

ξ

(
1

(ξ − x2)+
− 1

ξ − x1

)

+ 1

2
δ(ξ − x2)

[
3(N2

c − 1)

4Nc

− N2
c − 1

Nc
ln x2 − Nc ln |x1 − x2|

]
,

f2(ξ, x1, x2)

= − Nc

4(ξ − x2)
θ(x1)

[
θ(x1 − ξ)θ(x2 − x1)

x1 − x2

x2(ξ − x2)

× (3x2 − 2x1 − 2ξ)
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+ 2θ(ξ − x1)θ(x2 − x1)
x1

ξx2
(x2 − x1 − ξ)

− θ(ξ − x1)θ(x1 − x2)
2x2x1 − 3ξx2 − 2x2

1 + x1ξ + 2ξ2

ξ(ξ − x2)

]

+ N2
c − 1

2Nc
θ(x2 − x1)θ(x1)

x1(x2 − x1)

x2
2(ξ − x2)

+ θ(x2 − x1)

2Nc(ξ − x2)
(x2 − x1 − ξ)

[
−ξ − x2 + x1

ξ(ξ − x2)

× θ(−x1)θ(ξ − x2 + x1)

− θ(x1)

(
− x1θ(x2 − ξ − x1)

x2(ξ − x2)

+ x2 − x1

ξx2
θ(ξ − x2 + x1)

)]
. (13)

The +-distributions here are defined as:

x∫
0

dz
f (z)

(x − z)+
=

x∫
0

dz
f (z) − f (x)

x − z
+ f (x) ln x,

1∫
x

dz
f (z)

(z − x)+
=

1∫
x

dz
f (z) − f (x)

z − x
+ f (x) ln(1 − x). (14)

It should be noted that our +-distribution is not the standard +-
distribution defined later. The function f0 and f1 are determined
by the contributions from Fig. 1. In general for each diagram with a
gluon emitted from the gauge link there is a light-cone singularity.
But, the sum is free from the singularity.

Now we turn to the contributions from T−qq̄ . At tree-level we
have

T (0)

−qq̄(x1, x2, y0, z0) = −2π gs
(
N2

c − 1
)√

2y0(z0 − y0)

× z0δ(x1 − y0)δ(x2 + z0 − y0). (15)

With the one-loop result of T−qq̄ one can determine the kernel

gsαsF−(x1, x2, ξ1, ξ2)θ(ξ1)θ(−ξ2)

= − 1

2(N2
c − 1)(ξ1 − ξ2)

√−2ξ1ξ2

∂

∂ lnμ

× T (1)

−qq̄(x1, x2, ξ1, ξ1 − ξ2). (16)

The kernel determined from T−qq̄ is in the region of ξ1 > 0 and
ξ2 < 0. From T+qq̄ the kernel in the region ξ1 < 0 and ξ2 > 0 can
be obtained. The one-loop correction to T−qq̄ is still given by the
diagrams in Fig. 1 and Fig. 2, where the quark line in the left side
should be taken as an outgoing anti-quark. The calculation of these
diagrams are again straightforward. The result can be summarized
by the function

F2(x1, x2, ξ1, ξ2)

= δ(ξ1 − x1)θ(x1)
(
h1(−ξ2, x1, x2) + h2(−ξ2,−x2,−x1)

)
+ δ(ξ2 − x2)θ(−x2)

(
h1(ξ1,−x2,−x1) + h2(ξ1, x1, x2)

)
+ δ(ξ1 − ξ2 − x1 + x2)

(
θ(−x2)h0(−ξ2, x1, x2)

+ θ(x1)h0(ξ1,−x2,−x1)
)
, (17)

with the functions
h0(ξ, x1, x2) = 1

2Nc
θ(x2 + ξ)

x2

ξ(ξ + x2)+
,

h1(ξ, x1, x2)

= Nc

4

[
θ(−x2)θ(x2 + ξ)

(
ξ + 2x1 − x2

(ξ + x1)2
− 2x2

ξ(ξ + x1)

)

× x1 − x2

(ξ + x2)+
+ θ(x1 − x2)θ(x2)

ξ + 2x1 − x2

(ξ + x1)2

x1 − x2

ξ + x2

]

+ 1

2
θ(−x2)δ(x2 + ξ)

[
3

4

N2
c − 1

Nc
− N2

c − 1

Nc
ln |x2|

− Nc ln |x1 − x2|
]
,

h2(ξ, x1, x2) = − Nc

4

1

(ξ − x2)2

[
θ(x1)θ(ξ − x1)

× −2ξ2 − x1ξ + 2x2
1 + 3ξx2 − 2x1x2

ξ

+ θ(−x1)θ(x1 − x2)
x1 − x2

x2
(2ξ + 2x1 − 3x2)

]

+ 1

2Nc

ξ + x1 − x2

(ξ − x2)2
θ(−x1)θ(ξ − x2 + x1)

×
[
θ(x1 − x2)

x1

x2
+ θ(x2 − x1)

ξ − x2 + x1

ξ

]

+ N2
c − 1

2Nc
θ(−x1)θ(x1 − x2)

x1(x1 − x2)

x2
2(ξ − x2)

. (18)

The function F2 is just the kernel in the region of ξ1 > 0 and
ξ2 < 0. The kernel in the region of ξ1 < 0 and ξ2 > 0 can be ob-
tained from T+qq̄ through the relation in Eq. (9).

Finally, we have the kernel in the full region of ξ1,2 as:

F−(x1, x2, ξ1, ξ2)

= θ(ξ1)θ(−ξ2)F2(x1, x2, ξ1, ξ2)

+ θ(ξ2)θ(−ξ1)F2(x2, x1, ξ2, ξ1)

+ θ(ξ1)θ(ξ2)F1(x1, x2, ξ1, ξ2)

+ θ(−ξ1)θ(−ξ2)F1(−x2,−x1,−ξ2,−ξ1). (19)

The kernel in the region with ξ1,2 < 0 can be obtained from that
in the region with ξ1,2 > 0 through charge-conjugation. Eq. (19) is

our main result. Since T (σ )
F and T̃ (σ )

F are not mixed under renor-
malization, the correct kernel should satisfy:

F−(x1, x2, ξ1, ξ2) = F−(x2, x1, ξ2, ξ1). (20)

Our result has the property. Therefore, taking the part of F− sym-
metric between x1 and x2, one can obtain the evolution of T (σ )

F as

a convolution with T (σ )
F . The anti-symmetric part of F− gives the

kernel of the evolution of T̃ (σ )
F .

The evolution kernel for arbitrary x1,2 is rather lengthy. But the
convolution in Eq. (4) is a one-dimensional integral at one-loop.
In some special cases, the kernel is simplified. E.g., for x1 = x2 =
x > 0, i.e., the case where the gluon carries zero momentum frac-
tion entering a hard scattering, we have:

∂

∂ lnμ
T (σ )

F (x, x,μ)

= αs

π

{
− N2

c + 3

4Nc
T (σ )

F (x, x,μ)



1362 J.P. Ma et al. / Physics Letters B 718 (2013) 1358–1363
+
1∫

x

dz

z

1

(1 − z)+

(
Nc T (σ )

F (x, ξ) − z

Nc
T (σ )

F (ξ, ξ)

)

+ 1

Nc

1−x∫
0

dξ
ξ

(ξ + x)2
T (σ )

F (x,−ξ)

}
,

∂

∂ lnμ
T̃ (σ )

F (x, x,μ) = 0 (21)

with z = x/ξ . Here the +-distribution is the standard one defined
as:

1∫
0

dz
θ(z − x)

(1 − z)+
t(z) =

1∫
x

dz
t(z) − t(1)

1 − z
+ t(1) ln(1 − x). (22)

The result in Eq. (21) agrees with that in [8]. Part of the evolution
has been also derived in [19]. It agrees with our corresponding re-
sult. There are also cases in which a quark carries zero momentum
fraction entering a hard scattering. In these cases, one has either
x1 = 0 or x2 = 0. The evolutions in these cases are:

∂

∂ lnμ
T̃−(0, x,μ)

= αs

π

{ 1∫
x

dz

z

[(
− Nc

2

(
1 + z + z2)T̃−(0, ξ)

+ 1

2Nc
T̃−(ξ, x) + 1

2Nc
T̃−(ξ − x, ξ)

)

+ 1

(1 − z)+

(
Nc T̃−(0, ξ) + Nc

2
T̃−(x − ξ, x)

− 1

2Nc
T̃−(ξ − x, ξ)

)]

+ (1 − z)2

2Nc
T̃−(0,−ξ) + 3(N2

c − 1)

4Nc
T̃−(0, x)

}
. (23)

Changing every T̃−(x1, x2) to T̃−(x2, x1) in the above equation, we
obtain the evolution of T̃−(x,0).

The evolutions in these special cases of Eqs. (21), (23) are not
closed, i.e., they depend on T (σ )

F (x1, x2) and T̃−(x1, x2). However,
the twist-3 matrix elements with x1 = x2 or x1,2 = 0 can play a
special role in collinear factorization. They can be directly related
to physical observables. E.g., in the collinear factorization of an SSA
studied in [20] there is a contribution proportional to T (σ )

F (x, x), in
addition to the contribution involving chirality-even twist-3 oper-
ators. In the study of collinear factorizations of SSA [2,18,21], one
has found that the twist-3 matrix elements of chirality-even oper-
ators in the special cases corresponding to the special cases here
are directly related to physical observables. It is also in general ex-
pected that T̃−(x,0) or T̃−(0, x) will be related to some physical
observables. To show this further studies are needed. Therefore,
the evolutions in these special cases of Eqs. (21), (23) are particu-
larly interesting.

The two studied twist-3 distributions do not mix in the evolu-
tion with other twist-3 distributions mentioned in the beginning,
e.g., with e(x) and hL(x). But the evolution of the distribution e(x)
or hL(x) does mix with T (σ )

F and T̃ (σ )
F [12–14]. One may derive

the evolution of e(x) and hL(x) through their relations to T (σ )
F and

T̃ (σ )
F , respectively. But the derivation is very tedious. It has been

shown in [12] that in the large-Nc limit the evolution of e(x) or
hL(x) is simplified and obeys DGLAP-type equations. The result for
this in momentum fraction space can be found in [14]. These evo-
lutions in the large-Nc limit can also be derived with the approach
used here. In the below we take e(x) as an example.

For an unpolarized hadron there is one twist-3 distribution e(x)
defined only with bilinear operator of quark fields in the light-cone
gauge:

e(x) = P+
∫

dy

4π
e−iyxP+〈P |ψ̄(yn)ψ(0)|P 〉. (24)

With equation of motion it can be shown that e(x) for x 	= 0 is
related to T (σ )

F . The relation is [9,10,14]:

xe(x) = 1

4π

∫
dx1 dx2

T (σ )
F (x1, x2)

x2 − x1

(
δ(x − x1)

x1
− δ(x − x2)

x2

)
.

(25)

Using our results of T (σ )
F at tree-level and one-loop, one can also

derive the tree-level- and one-loop result for e(x). From these re-
sults and by taking the large-Nc limit, we find the following evo-
lution for x > 0:

∂e(x)

∂ lnμ
= αs Nc

2π

[
1

2
e(x) +

1∫
x

dz

z
e(ξ)

(
2

(1 − z)+
+ 1

)]

+O
(
N−1

c

)
, (26)

with z = x/ξ . This result agrees with that in [14]. Although the
evolution of e(x) and hL(x) gets simplified in the large-Nc limit,
the evolutions of T (σ )

F and T̃ (σ )
F are not much simplified in the

limit. This can be observed from our results. This supports the ob-
servation made in [22] that simplifications of evolutions of higher-
twist distributions can be accidental.

In this Letter we have mainly concentrated on the evolutions of
T (σ )

F and T̃ (σ )
F . We have not studied the evolutions of other twist-3

distributions in detail, e.g., hL(x), because they are all related to
T (σ )

F or T̃ (σ )
F . For hL its relation to T̃ (σ )

F is more complicated than
that in Eq. (25), there is an additional twist-3 operator entering
the relation [9,10]. For physical predictions like differential cross
sections, the most useful evolutions should be those T (σ )

F or T̃ (σ )
F .

The reason is the following: The studied twist-3 distributions are
the most general distributions, e.g., T (σ )

F (x1, x2) contains more in-
formation than that of e(x). In collinear factorization of physical
observables one should take T (σ )

F or T̃ (σ )
F instead of other twist-3

operators to perform the factorization. Otherwise, inconsistencies
can appear. A well-known example is the factorization of the struc-
ture function gT = g1 + g2 of DIS [23]. At tree-level the function
can be factorized with a twist-3 operator defined only with bilin-
ear quark field operator, similar to e(x). But beyond the tree-level
and for consistent factorization one should factorize the function
with a twist-3 operator consisting of bilinear quark field operator
and a gluon field strength tensor operator, similar to T (σ )

F or T̃ (σ )
F .

To summarize: We have calculated the twist-3 distributions of
multi-parton states. The distributions are defined with chirality-
odd quark–gluon operators. The evolution kernel of the distri-
butions has been obtained by the calculation at one-loop. The
evolution at one-loop is a one-dimensional convolution. In some
special cases the evolution takes a short form. We have also de-
rived the evolution of e(x) in the large-Nc limit and found an
agreement with existing results.
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