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a b s t r a c t

Based on the expressions for the surface displacements due to concentrated vertical and tangential forces
acting on the free surface of a half-space, available from the well-known Boussinesq and Cerruti elasticity
problems, the surface displacements and the surface stresses are derived for a half-space loaded by the
vertical and tangential circular ring loads, or by uniform normal and radial shear stresses applied within a
circular or annular circular domains. By using different routes of integration, alternative forms of dis-
placement expressions are derived from the concentrated force results. Betti’s reciprocal theorem is used
to relate the displacements due to radial and vertical ring loads. The displacement and stress discontinu-
ities under these loads, or along the boundaries of the circular domains within which the uniform stress is
applied, are evaluated and discussed. The radial and circumferential components of stress are discontin-
uous under the load whenever the slope of the radial displacement is discontinuous under that load.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The present work was motivated by recent studies devoted to
the determination of the deformed shape of the surface of a soft
substrate due to deposited liquid drop (Pericet-Camára et al.,
2008; Yu and Zhao, 2009; Liu et al., 2009; Roman and Bico, 2010;
Olives, 2010; Das et al., 2011; Jerison et al., 2011; Lubarda and
Talke, 2011; Lubarda, 2012). If the solid substrate is sufficiently
soft, the distributed capillary force along the triple contact line be-
tween the solid/liquid/vapor phase, resulting from the surface ten-
sions and intermolecular interactions around the triple contact
(Fig. 1), can give rise to appreciable uplifting of the surface of the
substrate below the triple contact line. The formation of circular
ridges can have significant effects on the functioning of MEMS
and other micro/nano devices, lubrication of magnetic hard disks,
molten solder spreading in electronic packaging, etc. (Carré et al.,
1996). This was studied by using a linear elasticity theory by many
researchers, with the early contributions by Lester (1961) and
Rusanov (1975), followed by Fortes (1984), Shanahan (1988) and
Kern and Muller (1992). The elastic response in this problem is
characterized by the singularity of the vertical component of dis-
placement below the capillary force, assumed to be distributed
as a circular line load. The elasticity solution also predicts a discon-
ll rights reserved.
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tinuous radial displacement under the vertical line load. To elimi-
nate this singularity, one approach is to distribute the capillary
force within a finite width, related to the actual thickness of the
interface liquid/vapor layer and the molecular interactions be-
tween a liquid drop and a solid substrate. This thickness may vary
from 1 nm for harder substrates to microns for softer rubber or gel
substrates (Lester, 1961; Rusanov, 1975; de Gennes, 1985; Yu and
Zhao, 2009), but is, in any case, much smaller than the radius R of
the contact circle (Fig. 1). Even though such procedure eliminates
the vertical displacement singularity, it does not eliminate the dis-
continuity in the slope of the radial displacement at the boundaries
of the annular circular region within which the capillary force is
distributed, and this gives rise to the discontinuity in both the
radial and circumferential stresses across these boundaries. The
effect of stress on the wetting angle was studied by Srolovitz and
Davis (2001), who found that elastic effects in solids are incapable
of modifying the wetting angle determined by interfacial tensions,
except in crack-like geometries. Recently, Style and Dufresne
(2012) examined the effect of the surface tension and the
elastocapillary length on the peak displacement under the load.
Marchand et al. (2012) determined the effective surface tension
from the elastic displacement field of a thin elastomeric wire
immersed in a liquid bath, observing experimentally an unex-
pected direction of the force transmission along the contact line.

The stress discontinuity also arises in the classical Love’s (1929)
problem of a semi-infinite solid loaded by a uniform pressure p
within a circular area, in which the radial and circumferential stress
discontinuities across the loading boundary are of magnitude p and
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(b)(a)
Fig. 1. (a) A free-body diagram of a liquid drop. The liquid pressure is pl , the vapor pressure is pv , and the liquid/vapor surface tension is rlv . (b) A self-equilibrated loading on
the surface of the substrate, consisting of pressure p ¼ 2jrlv, vertical line force V ¼ rlv sin h ¼ Rjrlv , and the tangential (radial) line force T ¼ rlv cos h, where h is the Young’s
contact angle. The liquid/vapor surface tension is rlv . The mean curvature of the drop around the triple contact line of radius R is j.
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2mp, respectively. See also Sneddon (1951) discussion of Terezawa
(1916) solution. In the case of uniform radial shear stress applied
within the circle of radius R, the slope of the radial displacement be-
comes infinite at the center (r ¼ 0) and along the boundary r ¼ R,
which results in the stress singularities at these points as well. If
the shear stress is distributed within an annular region R0 6 r 6 R,
the singularity at the center is eliminated, but the stresses are still
singular along the circles r ¼ R0 and r ¼ R. In the limit as R0 ! R, the
solution for the radial ring load is recovered, for which the radial
displacement and its slope, and thus the radial and circumferential
stresses, are all singular under the load, while the vertical displace-
ment is finite but discontinuous.

The solutions for some of the elasticity problems considered in
this paper have been previously constructed and reported in the
literature, e.g., Sneddon (1951), Timoshenko and Goodier (1970)
and Johnson (1985), or can be deduced from them by an appropri-
ate integration, but the stress and displacement discontinuities,
inherently imbedded in these solutions, were not fully discussed
or examined. Furthermore, the expressions for the surface dis-
placement and stress components for all loadings considered in
this paper are derived by using the results for the surface displace-
ments due to the concentrated vertical (Boussinesq) or tangential
(Cerruti) force only, without resorting to involved solutions of
the corresponding entire boundary value problems. Different
expressions for the displacement components due to vertical and
tangential ring loads are derived and discussed.
2. Surface displacement components due to concentrated force

For the later use in the paper, we list in this section the expres-
sions for the surface displacements in the well-known Boussinesq
and Cerruti concentrated force problems, and the surface displace-
ments from the surface doublet and quadruplet acting on the
boundary of an elastic half-space.

2.1. Boussinesq problem

In the Boussinesq elasticity problem, the displacement compo-
nents of the points of the bounding surface (z ¼ 0) of a half-space,
due to the applied concentrated vertical force Q z are given by (e.g.,
Johnson, 1985, p. 50)

un ¼
Qzð1� 2mÞ

4pG
n
q2 ; ug ¼

Q zð1� 2mÞ
4pG

g
q2 ; uz ¼

Q zð1� mÞ
2pG

1
q
;

ð1Þ
where G is the elastic shear modulus and m is the Poisson ratio. The
in-plane Cartesian coordinates are ðn;gÞ and q is the radial distance
from the origin at which the force is applied. The radial displace-
ment is accordingly

uq ¼
Q zð1� 2mÞ

4pG
1
q
: ð2Þ

The nonvanishing surface strain components are

�q ¼
duq

dq
¼ �Qzð1� mÞ

2pG
1
q2 ; �h ¼

uq

q
¼ Qzð1� mÞ

2pG
1
q2 � ��q: ð3Þ

Since rz ¼ 0 away from the load, the corresponding surface stress
components are, from Hooke’s law, rh ¼ �rq ¼ 2G�h.

2.2. Cerruti problem

The displacement components due to the concentrated tangen-
tial force Q n are (Cerruti problem; Johnson, 1985, p. 69)

un ¼
Q n

2pG
1
q
� m

g2

q3

� �
; ug ¼

Q nm
2pG

ng
q3 ; uz ¼ �

Q nð1� 2mÞ
4pG

n
q2 :

ð4Þ

The vertical displacement along the n-axis is singular and discontin-
uous at n ¼ 0. The points n > 0 are depressed (uz < 0), while the
points n < 0 are elevated (uz > 0). Note that u�Qz

n ¼ uQn
z , provided

that the magnitude of the compressive force ð�QzÞ is equal to the
magnitude of the shear Q n; cf. (1) and (4). It is recalled that in a
two-dimensional (plain-strain) version of the problem, the vertical
displacement due to tangential concentrated force is finite but dis-
continuous under the force, uz ¼ �Qxð1� 2mÞsgnðxÞ=ð4GÞ. Likewise,
in a two-dimensional Flamant’s problem, the horizontal displace-
ment due to concentrated vertical force is ux ¼ Qzð1� 2mÞ
sgnðxÞ=ð4GÞ.

2.3. Surface doublet

Two co-linear tangential forces Q at small distance d constitute
a doublet of forces shown in Fig. 2(a). By superposition of results
from (4), the displacement components are

un ¼
Q

2pG
1
q1
� m

g2

q3
1

� 1
q2
þ m

g2

q3
2

� �
;

ug ¼
Qmg
2pG

n� d=2
q3

1

� nþ d=2
q3

2

� �
; ð5Þ



(b)

(a)

Fig. 2. (a) A doublet of two tangential forces Q on the surface of a half-space, at a small distance d along the n-axis. (b) A quadruplet of four tangential forces Q on the surface
of a half-space. The distance between each pair of forces along the two coordinate axes is d.
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uz ¼ �
Qð1� 2mÞ

4pG
n� d=2

q2
1

� nþ d=2
q2

2

� �
: ð6Þ

Sufficiently far from the center of the doublet, and to first order in
d=q, the displacement components are

un ¼
Qd

2pG
n
q3 1� 3m

g2

q2

� �
; ug ¼

Qd
2pG

mg
q3 3

n2

q2 � 1

 !
; ð7Þ

uz ¼ �
Qdð1� 2mÞ

4pG
1
q2 2

n2

q2 � 1

 !
: ð8Þ
2.4. Surface quadruplet

The superposition of the doublets along the n and g-axis gives
rise of a quadruplet, shown in Fig. 2(b). The surface displacement
components are

un ¼
Qdð1� mÞ

2pG
n
q3 ; ug ¼

Qdð1� mÞ
2pG

g
q3 ; uz ¼ 0: ð9Þ

The radial component of this displacement is

uq ¼
Qdð1� mÞ

2pG
1
q2 : ð10Þ

The nonvanishing surface strains and stresses are

�q ¼
duq

dq
¼ �Qdð1� mÞ

pG
1
q3 ; �h ¼

uq

q
¼ Qdð1� mÞ

2pG
1
q3 ; ð11Þ

rq ¼ �rh ¼ �
Qdð2� mÞ

p
1
q3 : ð12Þ
3. Displacements due to vertical ring load

Fig. 3(a) shows the circular ring load on the surface of a half-
space: the vertical line force V (per unit length) is applied along
the circle of radius R. The magnitude of the total vertical force is
2pRV . The vertical component of displacement of the points on
the surface of a half-space (z ¼ 0) can be obtained by integrating
the contributions from the individual concentrated forces VRdu.
By using the third expression in (1), this is

duz ¼
1� m
2pG

VRdu
q

; ð13Þ

where

q2 ¼ R2 þ r2 � 2Rr cos u ¼ ðRþ rÞ2ð1� k̂2 sin2 hÞ ð14Þ

and

h ¼ 1
2
ðp�uÞ; k̂2 ¼ 4Rr

ðRþ rÞ2
6 1: ð15Þ

The substitution of (14) into (13), and integration, gives

uz ¼
2Vð1� mÞ

pG
R

Rþ r
Kðk̂Þ; Kðk̂Þ ¼

Z p=2

0

dh

ð1� k̂2 sin2 hÞ1=2
; ð16Þ

where Kðk̂Þ denotes the complete elliptic integral of the first kind, in
agreement with (3.96a) of Johnson (1985, p. 77).

The radial component of displacement of the points outside the
ring load (r > R) is obtained from Fig. 3(b) by integrating the con-
tributions dur ¼ dun at the point r due to all forces VRdu applied
along the circle of radius R. By using (1), this is

dur ¼
1� 2m
4pG

Vðr � R cos uÞRdu
q2 : ð17Þ



(b)(a)
Fig. 3. (a) Vertical line load V, and (b) tangential (radial) line load T distributed on the surface of a half-space along the circle of radius R.
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Upon integration, there follows

ur ¼
Vð1� 2mÞ

2G
R
r
: ð18Þ

Similar analysis applies for the points inside the ring load
(r < R), with the end result ur ¼ 0. Thus, the radial displacement
of the points on the surface of a half-space is

ur ¼
Vð1� 2mÞ

2G
0; r < R;
R
r ; r > R;

(
ð19Þ

in agreement with (3.96b,c) of Johnson (1985, p. 77). The solution
predicts the discontinuity in the radial displacement at r ¼ R of
the magnitude Vð1� 2mÞ=ð2GÞ.

If the line force V is compressive, rather than tensile, there
would be an unphysical material interpenetration for

R < r <
R
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Vð1� 2mÞ

GR

r" #
; ð20Þ

because the elasticity solution predicts in that region juðrÞj > r � R,
while uðrÞ ¼ 0 for r < R.

3.1. Alternative displacement expressions

3.1.1. Displacements of points outside the ring load
An alternative integration procedure yields another appealing

representation of the displacement expressions. The contribution
to vertical displacement from the two line load segments, one at
the distance q and the other at the distance qþ b from the point
r (Fig. 4(a)), at which the displacement is being calculated, is

duz ¼
Vð1� mÞ

2pG
Rdu1

q
þ Rdu2

qþ b

� �
: ð21Þ

Since, by the geometric considerations, qdw ¼ Rdu1 cosu and
ðqþ bÞdw ¼ Rdu2 cosu, (21) can be rewritten as

duz ¼
Vð1� mÞ

pG
dw

cos u
: ð22Þ
(a)
Fig. 4. (a) The geometrical construction used to derive the displacement at a point M out
line force elements at m and n, at the distance q and qþ b from M. The length mn ¼ b. (b)
circular line load. The two line force elements at m and n are at the distance q and b�
The integration of (22) over the entire circle gives

uz ¼
2Vð1� mÞ

pG

Z w1

0

dw
cos u

; sin w1 ¼
R
r
: ð23Þ

By using the relationships R sinu ¼ r sin w and
R cos udu ¼ r cos wdw, (23) becomes

uz ¼
2Vð1� mÞ

pG
R
r

Z p=2

0

du
cos w

; cos w ¼ 1� R2

r2 sin2 u

 !1=2

; ð24Þ

i.e.,

uz ¼
2Vð1� mÞ

pG
R
r

K
R
r

� �
; r P R: ð25Þ

For r � R, (25) reduces to

uz ¼
Vð1� mÞ

G
R
r
; r � R: ð26Þ

The same displacement would be produced by a concentrated force
Qz ¼ 2pRV applied at the origin r ¼ 0; cf. (1).

The derivation of the expression for the radial displacement
proceeds similarly, except that the Boussinesq component of the
tangential displacement (in the q-direction) has to be projected
into the r-direction, by multiplying it with cos w. This gives

dur ¼
Vð1� 2mÞ

4pG
Rdu1

q
þ Rdu2

qþ b

� �
cos w; ð27Þ

or, upon integration,

ur ¼
Vð1� 2mÞ

2G
R
r
; r > R: ð28Þ

The same displacement (for r > R) would be produced by a concen-
trated force Qz ¼ 2pRV applied at the origin r ¼ 0; cf. (2).

3.1.2. Displacements of points inside the ring load
For the points inside the ring load (r < R), we have from

Fig. 4(b),
(b)
side the circular line load, by integrating the Boussinesq contributions from the two
The geometrical construction used to derive the displacement at a point M inside the
q from M.
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duz ¼
Vð1� mÞ

2pG
Rdu1

q
þ Rdu2

b� q

� �
: ð29Þ

Since qdw ¼ Rdu1 cosu and ðb� qÞdw ¼ Rdu2 cos u, the substitu-
tion into (29) gives

duz ¼
Vð1� mÞ

pG
dw

cos u
; cos u ¼ 1� r2

R2 sin2 w

� �1=2

: ð30Þ

By integrating, letting w 2 ½0;p=2�, and by multiplying the result
with 2 to cover the entire circle, there follows

uz ¼
2Vð1� mÞ

pG
K

r
R

� �
; r 6 R: ð31Þ

The displacement at the center is uzð0Þ ¼ ð1� mÞV=G.
Combined together, (25) and (31) yield

uz ¼
2Vð1� mÞ

pG

R
r K R

r

� �
; r P R;

K r
R

� �
; r 6 R:

(
ð32Þ

The corresponding plot is shown in Fig. 5(a). For better visualization
of the deformed surface shape, the symmetric variation of the dis-
placement along any two radial directions, opposite to each other,
is shown (r=R thus being positive in both directions). The vertical
displacement under the load is divergent, because KðkÞ ! 1 as
k! 1.

To derive the radial displacement in the range r < R, we begin
by superimposing the two Boussinesq contributions from the pair
of forces,

dur ¼
Vð1� 2mÞ

4pG
Rdu2

qþ b
� Rdu1

q

� �
cos w: ð33Þ

This is identically equal to zero, and therefore the radial displace-
ment vanishes at every point inside the ring load, i.e., ur ¼ 0 for
r < R. By combining this with (28), we reproduce (19). The plot of
u ¼ urðrÞ is shown in Fig. 5(b). There is a discontinuity in the radial
displacement at r ¼ R of the amount urðRþÞ � urðR�Þ ¼
Vð1� 2mÞ=ð2GÞ. There is also a discontinuity in its gradient (radial
strain), ðdur=drÞRþ � ðdur=drÞR� ¼ �Vð1� 2mÞ=ð2GRÞ.

3.2. Transition from (16)–(25) and (31)

The transition from the vertical displacement expression (16) to
its alternative representation as (25) and (31) follows by using the
identity (Gradshteyn and Ruzhik, 1965, p. 908)

K
2
ffiffiffi
k
p

1þ k

 !
¼ ð1þ kÞKðkÞ: ð34Þ
3 2 1 0 1 2 3
0

0.5

1

1.5

2

2.5

(a)
Fig. 5. (a) The vertical displacement of the surface of a half-space, w ¼ uzðrÞ, due to verti
displacement u ¼ urðrÞ, normalized by u0 ¼ Vð1� 2mÞ=ð2GÞ. The vertical displacement is
If r=R 6 1, the parameters k and k̂ are related by

k̂2 ¼ 4Rr

ðRþ rÞ2
¼ 4k

ð1þ kÞ2
; k ¼ r

R
6 1 ð35Þ

and the substitution of (34) into (16) gives (31). On the other hand,
if in the above expression k ¼ R=r 6 1, then the substitution of (34)
into (16) reproduces (25).

3.3. Surface stress components

The nonvanishing strain components at the points of the surface
of a half-space are calculated from (19) by using the expressions
�r ¼ dur=dr and �h ¼ ur=r. This gives

�r ¼ ��h ¼ �
Vð1� 2mÞ

2GR

0; r < R;
R2

r2 ; r > R:

(
ð36Þ

This being locally the state of simple shear, the corresponding sur-
face stresses are

rr ¼ �rh ¼ �
Vð1� 2mÞ

R

0; r < R;
R2

r2 ; r > R:

(
ð37Þ

The discontinuity of the stress components across the radius r ¼ R is
of the magnitude r0 ¼ Vð1� 2mÞ=R. The plots of the radial and cir-
cumferential stress components are shown in Fig. 6(a).

4. Displacements due to uniform tension within the circular
area

Displacement components in the classical Love’s (1929) prob-
lem of uniformly distributed normal load within a circular area
on the surface of a half-space (Fig. 7(a)) can be easily derived by
integrating the results for the circular ring load obtained in the pre-
vious section, and by using p ¼ Vdq. The vertical displacement is

uz ¼
2pð1� mÞ

pG

Z r

0
K

r
q

� �
dqþ

Z R

r

q
r

K
q
r

� �
dq

	 

; r 6 R ð38Þ

and

uz ¼
2pð1� mÞ

pG

Z R

0
K

r
q

� �
dq; r P R: ð39Þ

Recalling that (Gradshteyn and Ruzhik, 1965, pp. 626–627)Z
kKðkÞdk ¼ EðkÞ � ð1� k2ÞKðkÞ;

Z
KðkÞdk

k2 ¼ �
EðkÞ

k
; ð40Þ

where KðkÞ and EðkÞ are the complete elliptic integrals of the first
and second kind, from (38) and (39) there follows
3 2 1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)
cal circular line load V, normalized by w0 ¼ Vð1� mÞ=G. (b) The corresponding radial

singular, and the radial displacement is discontinuous at r ¼ R.
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−0.5
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1
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−4

−3

−2

−1

0

1

2

3

4

(b)(a)
Fig. 6. The radial (solid line) and circumferential (dashed line) surface stresses ðrr ;rhÞ due to: (a) vertical ring load V from Fig. 3(a), normalized by r0 ¼ Vð1� 2mÞ=R, and (b)
tangential ring load from Fig. 3(b), normalized by r0 ¼ 4T=ðpRÞ. The Poisson ratio is taken to be m ¼ 0:25.

(a) (b)
Fig. 7. The uniform (a) tension p and (b) radial shear stress s applied on the surface of a half-space within a circular area of radius R.
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uz ¼
2pRð1� mÞ

pG

E r
R

� �
; r 6 R;

r
R E R

r

� �
� 1� R2

r2

� �
K R

r

� �h i
; r P R;

8<
: ð41Þ

in agreement with Timoshenko and Goodier (1970, p. 404), or John-
son (1985, pp. 57–58). The elevation at the center is uzð0Þ ¼
ð1� mÞpR=G. Fig. 8(a) shows the variation of the vertical displace-
ment w ¼ uzðrÞ. There is a singularity in the slope duz=dr at r ¼ R.
Since �zr ¼ 0 on the surface of the substrate, the singularity of
@uz=@r at r ¼ R is canceled by an opposite singularity of the gradient
@ur=@z at r ¼ R.

Similarly, by integrating (19), the radial displacement is found
to be

ur ¼
pð1� 2mÞR

4G

r
R r 6 R;
R
r ; r P R;

(
ð42Þ

as in Johnson (1985, p. 58).
3 2 1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

(a)
Fig. 8. (a) The vertical displacement w ¼ uzðrÞ due to uniform tension p over the circular
corresponding radial displacement u ¼ urðrÞ, normalized by u0 ¼ pRð1� mÞ=ð4GÞ, as dete
There is a singular feature of the radial displacement, which it-
self is continuous at r ¼ R, but its slope is not, because of the load
discontinuity at r ¼ R. This slope (radial strain) discontinuity is

dur

dr

� �
r¼Rþ
� dur

dr

� �
r¼R�
¼ � pð1� 2mÞ

2G
: ð43Þ

The plot of u ¼ urðrÞ is shown in Fig. 8(b). There is a discontinuity in
the radial strain dur=dr at r ¼ R, because the applied tension
abruptly changes from p to 0 across r ¼ R.

4.1. Surface stress components

The radial displacement, together with Hooke’s law, completely
determines the nonvanishing strain components on the surface of a
half-space. These are
3 2 1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

(b)
region of radius R, normalized by w0 ¼ pRð1� mÞ=G, as determined from (41). (b) The
rmined from (42).
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Fig. 9. The radial (solid line) and circumferential (dashed line) surface stresses ðrr ;rhÞ for: (a) tension loading from Fig. 7(a), and (b) radial shear loading from Fig. 7(b). The
Poisson ratio is m ¼ 0:25.

1 This simple method of calculating the surface displacement due to circular line
load can be used for other problems, as well (circular plates, cylindrical shells, beams
on elastic foundation, etc.). For example, in the Euler–Bernoulli beam theory, the
deflection of the cantilever beam of length L due to the concentrated force F at its end
can be calculated from ðdwp=dLÞDL, in the limit as pDL! F, where
wp ¼ px2ð6L2 � 4Lxþ x2Þ=ð24EIÞ is the deflection due to uniform pressure p over the
entire length of the cantilever. The bending stiffness of the beam is EI, and x is the
running coordinate along its length measured from the fixed end.
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�r ¼
dur

dr
; �h ¼

ur

r
; �z ¼

1� 2m
2Gð1� mÞrz �

m
1� m

ð�r þ �hÞ: ð44Þ

Thus, in view of (42), the radial and circumferential surface strains
are

�r ¼
pð1� 2mÞ

4G

1; r < R;

� R2

r2 ; r > R;

(
; �h ¼

pð1� 2mÞ
4G

1; r < R;
R2

r2 ; r > R:

(

ð45Þ

The longitudinal stress and strain are

rz ¼ p
1; r < R;

0; r > R;

�
; �z ¼

pð1� 2mÞ
2G

1; r < R;

0; r > R:

�
ð46Þ

The radial and circumferential stress components on the surface
of a half-space are obtained from Hooke’s law as

rr ¼
2G

1� m
ð�r þ m�hÞ þ

m
1� m

rz; rh ¼
2G

1� m
ð�h þ m�rÞ þ

m
1� m

rz:

Upon the substitution of (45) and (46), this gives

rr ¼
p
2

1þ 2m; r < R;

�ð1� 2mÞ R2

r2 ; r > R;

(
; rh ¼

p
2

1þ 2m; r < R;

ð1� 2mÞ R2

r2 ; r > R:

(

ð47Þ

The discontinuities in the surface stress components across the ra-
dius r ¼ R are

rrðRþÞ � rrðR�Þ ¼ �p; rhðRþÞ � rhðR�Þ ¼ �2mp;

rzðRþÞ � rzðR�Þ ¼ �p: ð48Þ

The plots of the radial and circumferential stress components are
shown in Fig. 9(a). Both, the radial and circumferential stresses
for r < R are constant and equal to ð1þ 2mÞp=2. The presence of
the stress discontinuity across r ¼ R was originally pointed out by
Love (1929, p. 382). In the two-dimensional/plane version of the
considered problem, the longitudinal surface stress just below the
ends of the loading interval is also discontinuous, the magnitude
of the discontinuity being equal to p.

4.2. From uniform tension to ring load

The expression for uV
z can be obtained from the expression for up

z

by superimposing the solutions of two loadings on the surface of a
half-space, and by performing an appropriate limit. These loadings
are the pressure of magnitude p over the circle of radius R, and the
tension of magnitude p over the circle of radius Rþ DR (DR� R).
The resulting displacement is1

uV
z ðrÞ ¼

dup
z

dR
DR; pDR! V ; ð49Þ

to first order in DR. By using (41) for up
z , and by recalling that

(Gradshteyn and Ruzhik, 1965, p. 907)

dEðkÞ
dk

¼ 1
k
½EðkÞ � KðkÞ�; dKðkÞ

dk
¼ 1

k
EðkÞ

1� k2 � KðkÞ
	 


; ð50Þ

it follows that

uV
z ¼

2ð1� mÞV
pG

K r
R

� �
; r 6 R;

R
r K R

r

� �
; r P R;

(
ð51Þ

reproducing (25) and (31).
Similarly, the radial displacement (19) due to tensile line load V

can be deduced from (42) in the limit

uV
r ¼ lim

pDR!V

dup
r

dR
DR

� �
¼ Vð1� 2mÞ

2G
0 r < R;
R
r ; r > R:

(
ð52Þ
5. Tension load over an annular ring

To eliminate the singularity of displacement under the circular
line load, it is assumed that the vertical load is distributed over a
small but finite thickness. The vertical displacement along the sur-
face of the substrate due to the loading shown in Fig. 10(a) is read-
ily obtained from (28) by superposing the displacements due to
tensile load of magnitude p along r 6 R and the pressure load of
magnitude p along r 6 R0. This gives

uz ¼
2ð1� mÞpR

pG
Uz; ð53Þ



(b)(a)
Fig. 10. The uniform (a) tension p and (b) radial shear stress s applied within the annular region R0 6 r 6 R on the surface of a half-space.
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Fig. 11. (a) The vertical displacement w ¼ uzðrÞ along the surface of the substrate for the loading shown in Fig. 10(a). The solid curve is for R0 ¼ 0:9R, and the dotted for
R0 ¼ 0:5R. The normalizing displacement factor is w0 ¼ ð1� mÞpðR� R0Þ=G. (b) The corresponding radial displacement u ¼ urðrÞ. The normalizing displacement factor is
u0 ¼ ð1� 2mÞpðR� R0Þ=ð4GÞ.
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with

Uz ¼

E r
R

� �
� R0

R E r
R0

� �
; r 6 R0;

E r
R

� �
� r

R E R0
r

� �
� 1� R2

0
r2

� �
K R0

r

� �h i
; R0 6 r 6 R;

r
R E R

r

� �
� E R0

r

� �
� 1� R2

r2

� �
K R

r

� �
þ 1� R2

0
r2

� �
K R0

r

� �h i
; r P R:

8>>>><
>>>>:

The corresponding radial displacement is obtained in the same way
by using (42), with the end result

ur ¼
pð1� 2mÞr

4G

0; r 6 R0;

1� R2
0

r2 ; R0 6 r 6 R;
R2�R2

0
r2 ; r P R:

8>><
>>: ð54Þ

Fig. 11(a) shows the vertical displacement profile w ¼ uzðrÞ in
the cases R� R0 ¼ 0:1R and 0:5R. The plots show the formation of
a blunted ridge under the load. As expected, the blunting increases
with the increase of the interface thickness R� R0. Fig. 11(b) shows
the corresponding radial displacement u ¼ urðrÞ. In the limit as
r !1, the radial displacement vanishes. The displacement gradi-
ent is discontinuous at r ¼ R0 and r ¼ R. There is a sharp displace-
ment gradient dur=dr between r ¼ R0 and r ¼ R, which is sharper
for the smaller width ðR� R0Þ, giving rise to displacement discon-
tinuity of amount Vð1� 2mÞ=ð2GÞ in the limit as R! R0 and
pðR� R0Þ ! V; cf. Fig. 5(b).

5.1. Surface stress components

The radial and circumferential strain components are, from (44)
and (54),

ð�r; �hÞ ¼
pð1� 2mÞ

4G

0; r < R0;

1� R2
0

r2 ; R0 < r < R;

� R2�R2
0

r2 ; r > R:

8>><
>>: ð55Þ
The longitudinal stress and strain are

rz ¼ p

0; r < R0;

1; R0 < r < R;

0; r > R;

8><
>: ; �z ¼

pð1� 2mÞ
2G

0; r < R0;

1; R0 < r < R;

0; r > R:

8><
>:

ð56Þ

The corresponding radial and circumferential stresses on the
surface of a half-space follow from Hooke’s law as

ðrr ;rhÞ ¼
p
2

0; r < R0;

1þ 2m� ð1� 2mÞ R2
0

r2 ; R0 < r < R;

�ð1� 2mÞ R2�R2
0

r2 ; r > R:

8>><
>>: ð57Þ

The discontinuities in the surface stress components across the radii
r ¼ R0 and r ¼ R are

rrðRþ0 Þ � rrðR�0 Þ ¼ p; rrðRþÞ � rrðR�Þ ¼ �p;

rhðRþ0 Þ � rhðR�0 Þ ¼ 2mp; rhðRþÞ � rhðR�Þ ¼ �2mp:
ð58Þ

The radial and circumferential stresses are plotted in Fig. 12(a). The
stress discontinuities would be eliminated if the applied load p has
gradually rather than abruptly decreased to zero at the boundaries
of the loading annulus.

6. Tangential line load

Fig. 3(b) shows a tangential line load (T) in the radial direction
along the circle of radius R. Two different representations of the
expressions for the displacement components on the surface of a
half-space are derived in this section.

Radial displacement
The contribution to radial displacement at the point r from the

tangential force TRdu at an arbitrary point ðR;uÞ (Fig. 13) is
dur ¼ dun cos u� dug sin u, where, by using (4),
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Fig. 12. The radial (solid line) and circumferential (dashed line) surface stresses ðrr ;rhÞ for: (a) annular vertical load from Fig. 10(a), and (b) radial shear load from Fig. 10(b).
The radius R0 ¼ 0:5R and the Poisson ratio is m ¼ 0:25.

(b)(a)
Fig. 13. The calculation of the radial displacement ur at an arbitrary point at distance r from the origin O, in case (a) r > R, and (b) r < R. The result is obtained by integrating
the contributions from the radial force TRdu at an arbitrary point ðR;uÞ along the circle of radius R. The local coordinate axes at that point are ðn;gÞ.

V.A. Lubarda / International Journal of Solids and Structures 50 (2013) 1–14 9
dun ¼
TRdu
2pG

1
q
� m
ðr sinuÞ2

q3

" #
; dug ¼

TRdu
2pG

mr sin uðR� r cos uÞ
q3 :

ð59Þ

Thus,

dur ¼
TRdu
2pG

1
q

cos u� mRr
sin2 u

q3

 !
: ð60Þ

Since

q2 ¼ R2 þ r2 � 2Rr cos u ¼ ðRþ rÞ2ð1� k̂2 sin2 hÞ ð61Þ

and

h ¼ 1
2
ðp�uÞ; k̂2 ¼ 4Rr

ðRþ rÞ2
6 1; ð62Þ

the expression (60) can be rewritten as

dur ¼
�TRdh

pGðRþ rÞ
2 sin2 h� 1

ð1� k̂2 sin2 hÞ1=2
� 4mRr

ðRþ rÞ2
sin2 h cos2 h

ð1� k̂2 sin2 hÞ3=2

" #
:

ð63Þ

Recalling that (Gradshteyn and Ruzhik, 1965, pp. 162 and 165)

R p=2
0

sin2 hdh
ð1�k̂2 sin2 hÞ1=2 ¼ 1

k̂2 ½Kðk̂Þ � Eðk̂Þ�;R p=2
0

sin2 h cos2 hdh
ð1�k̂2 sin2 hÞ3=2 ¼ 1

k̂4 ½ð2� k̂2ÞKðk̂Þ � 2Eðk̂Þ�;
ð64Þ
the integration of (63) gives

ur ¼
Tð1� mÞ

pG
Rþ r

r
1� 1

2
k̂2

� �
Kðk̂Þ � Eðk̂Þ

	 

; ð65Þ

in agreement with (3.97a) of Johnson (1985, p. 77).

Vertical displacement
The vertical component of displacement of the points outside

the ring load (r > R) is obtained from Fig. 13(a) by integrating
the contributions from the third of (4) corresponding to the radial
force TRdu. This is

duz ¼ �
1� 2m
4pG

Tðr cos u� RÞRdu
q2 : ð66Þ

Introducing the angle h ¼ ðp�uÞ=2, the above can be recast as

duz ¼
TRð1� 2mÞ

2pG
2r sin2 h� ðr þ RÞ
ðRþ rÞ2ð1� k̂2 sin2 hÞ

dh: ð67Þ

Upon the integration, following the same procedure as in Section 3,
it follows that uz ¼ 0.

For the points inside the ring load (Fig. 13(b)), the same analysis
applies, except that in the integration procedure ð1� k̂2Þ1=2 ¼
ðR� rÞ=ðRþ rÞ. The end result is uz ¼ Tð1� 2mÞ=ð2GÞ. Thus, the ver-
tical displacement of the points on the surface of a half-space due
to tangential ring load T is

uz ¼
Tð1� 2mÞ

2G
1; r < R;

0; r > R;

�
ð68Þ

in agreement with (3.97b,c) of Johnson (1985, p. 77).



(b)(a)
Fig. 14. The geometric construction used to derive the displacement components by integrating the Cerruti contributions from the two line segments at the distance q and (a)
bþ q, or (b) b� q from the point at which the displacement is being calculated.
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6.1. Alternative displacement expressions

6.1.1. Displacements of points outside the ring load
An alternative derivation proceeds by considering the contribu-

tion to radial displacement from two line load segments, one at the
distance q and the other at the distance qþ b from the point r
(Fig. 14(a)), at which the radial displacement is being calculated.
This is

dur ¼ dun1 cos u1 � dug1
sin u1 � dun2 cos u2 � dug2

sinu2; ð69Þ

where

dun1 ¼
TRdu1

2pG
1
q
� m
ðq sinuÞ2

q3

" #
;

dug1
¼ � TRdu1

2pG
mq2 sinu cos u

q3 ;

dun2 ¼
TRdu2

2pG
1

qþ b
� m
ðqþ bÞ2 sin2 u
ðqþ bÞ3

" #
;

dug2
¼ TRdu2

2pG
mðqþ bÞ2 sin u cos u

ðqþ bÞ3
:

Since, by the geometric considerations,

qdw ¼ Rdu1 cos u; ðqþ bÞdw ¼ Rdu2 cos u;

r sin w ¼ R sin u; cos w ¼ 1� R2

r2 sin2 u

 !1=2

;

sinu1 ¼
q
R

sin w; sin u2 ¼
qþ b

R
sin w;

q ¼ r cos w� R cos u; qþ b ¼ r cos wþ R cos u

and since u1 ¼ u� w, u2 ¼ uþ w, there follows

dur ¼
Tð1� mÞ

pG
R2

r2

sin2 u
cos w

du: ð70Þ

Upon the integration of (70), the radial displacement is found to be

ur ¼
2Tð1� mÞ

pG
K

R
r

� �
� E

R
r

� �	 

; r P R: ð71Þ

At large r � R, (71) gives

urðrÞ ¼
Tð1� mÞ

2G
R2

r2 ; r � R: ð72Þ
This also follows directly from the expression (10) for the radial dis-
placement due to the force quadruplet, provided that the substitu-
tions are made Q ¼ TRðp=2Þ and d ¼ 2R.

6.1.2. Displacements of points inside the ring load
For the points insider the ring load (r < R), from Fig. 14(b) we

have

dur ¼ dun1 cos u1 þ dug1
sinu1 � dun2 cos u2 � dug2

sin u2; ð73Þ

where

dun1 ¼
TRdu1

2pG
1
q
� m
ðq sin uÞ2

q3

" #
;

dug1
¼ � TRdu1

2pG
mq2 sin u cos u

q3 ;

dun2 ¼
TRdu2

2pG
1

b� q
� m
ðb� qÞ2 sin2 u
ðb� qÞ3

" #
;

dug2
¼ TRdu2

2pG
mðb� qÞ2 sin u cos u

ðb� qÞ3
:

Since

qdw ¼ Rdu1 cos u; ðb� qÞdw ¼ Rdu2 cos u;

r sin w ¼ R sinu; cos u ¼ 1� r2

R2 sin2 w

� �1=2

;

sinu1 ¼
q
R

sin w; sinu2 ¼
b� q

R
sin w;

q ¼ R cos u� r cos w; b� q ¼ R cos uþ r cos w

and since u1 ¼ w�u, u2 ¼ wþu, there follows

dur ¼
Tð1� mÞ

pG
r
R

sin2 w
cos u

dw: ð74Þ

Thus, upon the integration,

ur ¼
2Tð1� mÞ

pG
R
r

K
r
R

� �
� E

r
R

� �h i
; r 6 R: ð75Þ

Written together, expressions (71) and (75) are

ur ¼
2Tð1� mÞ

pG

R
r K r

R

� �
� E r

R

� �� 

; r 6 R;

K R
r

� �
� E R

r

� �
; r P R:

(
ð76Þ
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The transition from the expression for the radial displacement
(65) to its alterative representation (76) is made by using the rela-
tions (Gradshteyn and Ruzhik, 1965, p. 908)

K
2
ffiffiffi
k
p

1þ k

 !
¼ ð1þ kÞKðkÞ; E

2
ffiffiffi
k
p

1þ k

 !

¼ 1
1þ k

2EðkÞ � ð1� k2ÞKðkÞ
h i

: ð77Þ
6.1.3. Vertical displacement
For the points inside the ring load (r < R), we have

duz ¼ �
TRdu1

4pG
ð1� 2mÞ�q cos u

q2 � TRdu2

4pG
ð1� 2mÞ

	 �ðb� qÞ cos u
ðb� qÞ2

: ð78Þ

Since qdw ¼ Rdu1 cosu and ðb� qÞdw ¼ Rdu2 cosu, the expression
(78) becomes duz ¼ Tð1� 2mÞdw=ð2pGÞ, and the integration gives

uz ¼
Tð1� 2mÞ

2G
; r < R: ð79Þ

For the points outside the ring load (r > R),

duz ¼ �
TRdu1

4pG
ð1� 2mÞq cos u

q2 � TRdu2

4pG
ð1� 2mÞ

	 �ðbþ qÞ cos u
ðbþ qÞ2

: ð80Þ

Since qdw ¼ Rdu1 cosu and ðbþ qÞdw ¼ Rdu2 cosu, the expression
(80) reduces to duz ¼ 0, i.e., upon integration, uz ¼ 0 for r > R. To-
gether, this and (79) reproduce (68). Fig. 15(b) shows the plot of
the vertical displacement w ¼ uzðrÞ, normalized by
w0 ¼ Tð1� 2mÞ=ð2GÞ. The parameter w0 represents the vertical dis-
placement for r < R, and thus the vertical displacement discontinu-
ity across the radius r ¼ R.

In retrospect, the result uz ¼ 0 for r > R could have been recog-
nized from the outset by recalling that the vertical displacement of
the points on the surface of a half-space due to the force quadru-
plet from Fig. 2(b) vanishes; cf. (9).

6.2. Surface stress components

The nonvanishing strain components at the points of the surface
of a half-space are calculated from (76) by using the expressions
�r ¼ dur=dr and �h ¼ ur=r. This gives
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0

0.5

1

1.5

2

(a)

Fig. 15. (a) The radial displacement u ¼ urðrÞ due to radial line load T applied along the ci
corresponding vertical displacement w ¼ uzðrÞ, normalized by w0 ¼ Tð1� 2mÞ=ð2GÞ, as d
�r ¼
2Tð1� mÞ

pGr

Rr
R2�r2 E r

R

� �
� R

r K r
R

� �
� E r

R

� �� 

; r < R;

� R2

r2�R2 E R
r

� �
; r > R

(
ð81Þ

and

�h ¼
2Tð1� mÞ

pGr

R
r K r

R

� �
� E r

R

� �� 

; r < R;

K R
r

� �
� E R

r

� �
; r > R:

(
ð82Þ

The corresponding surface stresses follow from Hooke’s law as

rr ¼
4T
pr

Rr
R2�r2 E r

R

� �
� ð1� mÞ R

r K r
R

� �
� E r

R

� �� 

; r < R;

� R2

r2�R2 E R
r

� �
þ m K R

r

� �
� E R

r

� �� 

; r > R

(
ð83Þ

and

rh ¼
4T
pr

mRr
R2�r2 E r

R

� �
þ ð1� mÞ R

r K r
R

� �
� E r

R

� �� 

; r < R;

� mR2

r2�R2 E R
r

� �
þ K R

r

� �
� E R

r

� �
: r > R:

(
ð84Þ

The plots of the radial and circumferential stress components are
shown in Fig. 6(b). The stresses are discontinuous and singular at
r ¼ R. The radial stress is tensile for r < R and compressive for
r > R. Both stress components are equal to Tð1þ mÞ=R at the center
r ¼ 0. In the two-dimensional analogue of the problem, in which the
uniform shear stress is applied on the surface of a half-space from
x ¼ �a to x ¼ a, the longitudinal stress rx along the surface of the
half-space is also singular at x ¼ �a, being compressive at x ¼ a
and tensile at x ¼ �a.

7. Reciprocal properties

Once the expression for the radial displacement due to vertical
ring load is derived, the expression for the vertical displacement
due to radial ring load can be deduced directly by applying the Bet-
ti reciprocal theorem. Indeed, from Fig. 16(a), one can write

2rpVuT;R
z ðrÞ ¼ 2RpTuV ;r

r ðRÞ: ð85Þ

The superscripts ðV ; rÞ in uV ;r
r designate that the load V is applied at

the radius r, and likewise for the superscripts ðT;RÞ in uT;R
z . Since,

from (19),

uV ;r
r ðRÞ ¼

Vð1� 2mÞ
2G

r
R ; r < R;

0; r > R;

�
ð86Þ

(85) gives

uT;R
z ðrÞ ¼

Tð1� 2mÞ
2G

1; r < R;

0; r > R:

�
ð87Þ
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(b)
rcle of radius R, normalized by u0 ¼ 2Tð1� mÞ=ðpGÞ, as determined from (76). (b) The
etermined from (68).



(b)(a)
Fig. 16. (a) The surface of a half-space under the vertical ring load along the circle of radius r and the tangential (radial) ring load along the circle of radius R. (b) The vertical
ring load applied along the circle of radius R, and the tangential ring load applied along the circle of radius r.
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Similarly, once the expression for the vertical displacement due
to radial ring load is derived, the expression for the radial displace-
ment due to vertical ring load can be deduced directly by applying
the Betti reciprocal theorem. Indeed, from Fig. 16(b), we can write

2rpTuV ;R
r ðrÞ ¼ 2RpVuT;r

z ðRÞ: ð88Þ

Since, from (68),

uT;r
z ðRÞ ¼

Tð1� 2mÞ
2G

0; r < R;

1; r > R;

�
ð89Þ

(88) gives

uV ;R
z ðrÞ ¼

Vð1� 2mÞ
2G

0; r < R;
R
r ; r > R:

(
ð90Þ
8. Uniformly distributed radial shear stress within a circular
area

Consider the problem of a uniform radial shear stress s applied
within a circular area of radius R, as depicted in Fig. 7(b). Upon the
integration of the displacement expressions due to the ring load
(68), with T ¼ sdq, we obtain

uz ¼
sð1� 2mÞ

2G
R� r; r 6 R;

0; r P R:

�
ð91Þ

The plot of w ¼ uzðrÞ is shown in Fig. 17(b). The vertical displace-
ment of the center point (r ¼ 0) is w0 ¼ sRð1� 2mÞ=ð2GÞ.

The derivation of the expression for the radial displacement ur

is more tedious. For r 6 R, we have from (76),
3 2 1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)
Fig. 17. (a) The radial displacement u ¼ urðrÞ due to uniform radial shear s applied withi
and (101). (b) The corresponding vertical displacement w ¼ uzðrÞ, normalized by w0 ¼ s
ur ¼
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The first integral on the right-hand side of (92) can be evaluated
easily,Z r

0
K

q
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q
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Z 1

0
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; k ¼ q
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6 1; ð93Þ

where C ¼ 0:915965 . . . is Catalan’s constant.
The evaluation of the second integral on the right-hand side of

(92) is more involved. First, we note that

J ¼
Z R
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q
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dq
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and the integration by parts gives

J ¼ 1
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� 1
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Z r=R

1
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d
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½KðkÞ � EðkÞ�dk: ð95Þ

Incorporating (50), the integral on the right-hand side of (95)
becomesZ r=R

1
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n the circle of radius R, normalized by u0 ¼ sRð1� mÞ=ðpGÞ, as determined from (99)
Rð1� 2mÞ=ð2GÞ, as determined from (91).
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Fig. 18. (a) The radial displacement u ¼ urðrÞ for the loading shown in Fig. 10b. The solid curve is for R0 ¼ 0:9R, and the dotted for R0 ¼ 0:5R. The normalizing displacement
factor is u0 ¼ ð1� mÞsðR� R0Þ=ðpGÞ. (b) The corresponding vertical displacement w ¼ uzðrÞ. The normalizing displacement factor is w0 ¼ ð1� 2mÞsðR� R0Þ=ð2GÞ.
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i.e.,Z r=R
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and, therefore, (95) becomes
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2

r
R2

r2 � 1

 !
K

r
R

� �
� E

r
R

� �h i
�
Z r=R

1

EðkÞ
k

dk

( )
: ð98Þ

Finally, by substituting (93) and (98) into (92), the radial displace-
ment is

ur ¼
sð1�mÞ

pG
r 2C�1þ R2

r2 �1

 !
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r
R
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The evaluation of the remaining integral in (99) can be done
numerically.

For r P R, the radial displacement is

ur ¼
2sð1� mÞ

pG

Z R

0
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q
r

� �
� E

q
r

� �h i
dq; ð100Þ

i.e., by introducing k ¼ q=r,

ur ¼
2sð1� mÞ

pG
r
Z R=r

0
KðkÞ � EðkÞ½ �dk; r P R: ð101Þ

The integrals on the right-hand side of (101) can also be evaluated
numerically. The plot of u ¼ urðrÞ is shown in Fig. 17(a). The maxi-
mum radial displacement is umax ¼ 1:2502u0 and it occurs at
r ¼ 0:6518R. The radial displacement at r ¼ R is uðRÞ ¼ 0:8319u0,
where u0 ¼ sRð1� mÞ=ðpGÞ.

The nonvanishing surface strain components are calculated
from (99) and (101) as �h ¼ ur=r, and �r ¼ dur=dr. The surface stress
components follow from Hooke’s law and their plots are shown in
Fig. 9(b). The radial and circumferential stresses are singular at the
center r ¼ 0 and at the radius r ¼ R.

9. Radial shear load over an annular ring

To eliminate the singularity and the discontinuity in the dis-
placement under the concentrated radial ring load, it may be as-
sumed that the radial load is distributed over a small but finite
thickness. The vertical displacement along the surface of a half-
space due to the loading shown in Fig. 10(b) is readily obtained
from (28) by superposing the displacements due to radial shear
stress s within the circle r 6 R and the opposite shear stress of
the same magnitude within the circle r 6 R0 < R. By using (91), this
gives

uz ¼
sð1� 2mÞ

2G
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R� r; R0 6 r 6 R;

0; r P R:

8><
>: ð102Þ

Similarly, by using (99) and (101), the radial displacement is
found to be
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The normalized plots of ur and uz are shown in Fig. 18. When
compared with the displacements due to the radial line load T,
shown in Fig. 15, it is seen that the singularity in the radial dis-
placement and the discontinuity in the vertical displacement un-
der the load have both been eliminated, with the resulting
degree of smoothness dependent on the ratio R0=R.

The nonvanishing surface strain components are calculated
from (103) as �h ¼ ur=r and �r ¼ dur=dr. The surface stress compo-
nents follow from Hooke’s law and are shown in Fig. 12(b). Both
stress components are singular at r ¼ R0 and r ¼ R. They are both
finite and equal to sð1þ mÞ lnðR=R0Þ at the center r ¼ 0. The stress
singularities would be eliminated if the applied shear stress s has
gradually rather than abruptly decreased to zero at the boundaries
of the loading annulus.
10. Conclusion

We have presented in this paper an analysis of the displacement
and stress singularities and discontinuities under various types of
circular loads applied to the surface of a half-space. This was
accomplished without deriving or using the solutions of the entire
boundary value problems, but rather by using only the expressions
for the displacement components within the surface of a half-
space. These are readily obtained by integrating the expressions
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for the surface displacements of the well-known Boussinesq and
Cerruti concentrated force problems. Two different representations
of the expression for the vertical displacement due to vertical ring
load are derived, (16) and (32), and two for the radial displacement
due to the radial ring load, (65) and (76). In each case, the derived
new representation of the displacement expression is more conve-
nient for the subsequent derivation of the expressions for the dis-
placements due to distributed surface loads. The presented method
is used to reproduce the surface stress and displacement expres-
sions of Love’s problem, (41), (42) and (47), and to derive a novel
solution for the surface displacements and stresses due to uni-
formly distributed radial shear stress within a circular area, given
by (91), (99), (101), and Hooke’s law. The displacement and stress
expressions are also derived for the distributed normal and shear
stresses applied within an annular circular region. In the former
case, these are given by (53), (54), (57), and in the latter by
(102), (103), and Hooke’s law.

For the vertical line load V, the elasticity solution predicts not
only the singular (infinite) vertical displacement under the line
load, but also a discontinuous radial displacement under that load
(Fig. 5). The radial and circumferential stresses are finite but dis-
continuous under the load, being equal to zero for r < R
(Fig. 6(a)). For the radial line load T, the radial displacement is sin-
gular under the load, while the vertical displacement is discontin-
uous (Fig. 15). The corresponding stresses are singular and
discontinuous under the load, both being equal to Tð1þ mÞ=R at
the center (Fig. 6(b)). In Love’s problem of uniform normal stress
applied within a circular area, both displacement components are
continuous (Fig. 8), but the radial and circumferential stress com-
ponents are discontinuous below the boundary of the load
(Fig. 9(a)). Both stress components are equal to pð1þ 2mÞ=2 for
r < R. In the case of a uniform normal stress applied within an
annular region, the stresses are discontinuous below both bound-
aries of the applied load, and equal to zero for r < R0 (Fig. 12(a)).
In the problem of uniform radial shear stress applied within a
circular area, the displacements are finite and continuous every-
where (Fig. 17), but the radial and circumferential stresses are
singular at the center and along the boundary of the load
(Fig. 9(b)). Finally, if a uniform radial shear stress is applied within
an annular region, the radial and circumferential stress compo-
nents are singular along both boundaries, but are finite and equal
to sð1þ mÞ lnðR=R0Þ at the center (Fig. 12(b)).
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