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Abstract

To identify a set of genes related to radiosensitivity of

cervical squamous cell carcinomas and to establish a

predictive method, we compared expression profiles of

9 radiosensitive and 10 radioresistant tumors obtained

by biopsy before treatment, on a cDNA microarray

consisting of 23,040 human genes. We identified 121

genes whose expression was significantly greater in

radiosensitive cells than in radioresistant cells, and 50

genes that showed higher levels of expression in

radioresistant cells than in radiosensitive cells. Some

of these genes had already known to be associated with

the radiation response, such as aldehyde dehydrogen-

ase 1 (ALDH1 ) and X-ray repair cross-complementing

5 (XRCC5 ) (P<.05, Mann-Whitney test). The validity of

the total of 171 genes as radiosensitivity related genes

were certified by permutation test (P<.05). Furthermore,

we selected 62 genes on the basis of a clustering

analysis, and confirmed the validity of these genes with

cross-validation test. The cross-validation test also

indicates the possibility of making prediction of radio-

sensitivity for discriminating radiation-sensitive from

radiation resistant biopsy samples by predicting score

(PS) values calculated from expression values of 62

genes in 19 samples, because the prediction success-

fully and unequivocally discriminated the radiosensitive

phenotype from the radioresistant phenotype in our test

panel of 19 cervical carcinomas. The extensive list of

genes identified in these experiments provides a large

body of potentially valuable information for studying the

mechanism(s) of radiosensitivity, and selected 62

genes opens the possibility of providing appropriate

and effective radiotherapy to cancer patients.
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Introduction

Although proper diagnosis and effective treatments for

cervical cancers are widely available now [1], this disease

is still a leading cause of death for women worldwide [2].

Radiotherapy is a generally effective therapeutic method,

particularly for patients with cancers at an advanced stage.

However, individual patients may show quite different

patterns of response against radiotherapy; some can be

cured, but others cannot, and the latter may therefore suffer

needlessly from severe side effects. Hence, if treatment is to

become more patient specific, the molecular mechanism(s)

of radiosensitivity need to be clarified.

Several molecular markers that reflect radiosensitivity

have been proposed as the result of studies that have

involved, for example, transfection of oncogenes such as

N - ras, v -myc with H-ras, and v- fos into cultured cells to

induce a radioresistant phenotype [3,4 ]. Activation of c- raf -1

has been positively correlated with radioresistance of head

and neck squamous cell carcinomas [5], and certain cell

cycle- and apoptosis - related genes also have been corre-

lated with radiosensitivity; e.g., loss or dysfunction of p16

renders melanoma cells resistant to ionizing radiation,

whereas expression of exogenous wild- type p16 and p21 in

glioblastoma cells can induce radiosensitivity [6,7]. Trans-

fection- or radiation- induced expression of Bcl -2 proteins,

which regulate apoptosis, into pro-myeloid cells has intro-

duced a radioresistant phenotype [8,9]; furthermore, expres-

sion of Bax, when induced by gamma irradiation, confers

radiosensitivity on lymphoid cells, small intestinal epithelial

cells [10] and cervical cancer cells [9 ]. However, although

such discoveries have brought partial understanding of the

molecular mechanisms responsible for cellular radiosensitiv-

ity, the whole picture remains to be clarified.

Because the complex mechanism of radiosensitivity

cannot be explained by a small number of genes, we need

to collect genome-wide information about all the genes

involved. To that end, we recruited a newly developed
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technique, cDNA microarray [11], which provides high-

throughput analysis of expression profiles by means of

small -array slides spotted with cDNAs [12-15].

Here we report a genome-wide cDNA microarray analy-

sis of 23,040 human cDNAs, in biopsy samples from 19

cervical squamous carcinomas (9 of them radiosensitive and

10 radioresistant, classified according to tumor-suppression

ratios). We identified 171 genes that were differentially

expressed between the two groups; of those, 121 showed

elevated expression and 50 showed decreased expression

in radiosensitive tumor cells relative to their expression levels

in radioresistant cells. In addition, further selected 62 genes

showed feasibility of predicting the radiosensitivity of cervical

squamous cell carcinomas. These results not only disclose

the complex nature of radiosensitivity as regards the

response of cervical squamous cell carcinomas to ionizing

radiation, but also provide information that should identify

novel targets for efforts to expand the effectiveness of

radiotherapy.

Materials and Methods

Tissue Samples

Cervical squamous cell carcinoma tissues were obtained

with informed consent from 19 patients who underwent

biopsy before radiotherapy at Kansai Medical University, and

snap- frozen at �808C. All cases were at stages IIB to IVB,

and were papillomavirus (HPV)-positive. We observed the

population of tumor cells in all biopsy samples was over 90%

by hematoxylin and eosin staining. Methods for typing of

HPV and establishing p53 status were described previously

[9 ].

Radiation Treatments

All 19 patients were treated with radiotherapy after

sampling. A total of 30.6 Gy was provided to the whole

pelvis, plus an additional dose to parametria with central

shielding to complete 52.2 Gy, along with 192Ir high dose-

rate intracavitary brachytherapy. Details have been

described elsewhere [9]. Effects of the therapy, including

local failure, were checked a month after treatment. Nine

patients revealed 100% reduction in tumor size and the

remaining 10 showed 0% to 40% reduction (Table 1). The

former were classified as a radiosensitive group (complete

response; [CR]) and the latter as a radioresistant group (no

change [NC]).

RNA Extraction and Amplification

Total RNAs were extracted from each specimen by

TRIZOL (Invitrogen, Life Technologies, Carlsbad, CA)

according to the manufacturer’s protocol. The extracted

RNAs were treated for 1 hour at 378C with 10 U of DNase I

(Nippon Gene, Japan) in the presence of 1 U of RNase

inhibitor (TOYOBO, Osaka, Japan), to remove any con-

taminating genomic DNA. After inactivation of DNase at

708C for 10 minutes, the RNAs were purified with phenol–

chloroform–isoamyl alcohol (Gibco BRL, Grand Island, NY)

and then precipitated by ethanol. Next, all DNase I–treated

RNAs were subjected to T7-based RNA amplification as

described previously [16]. Two rounds of amplification

yielded 65 to 152 �g of amplified RNA (aRNA) from each

sample. As a control for comparing gene expression profiles

between the CR and NC groups on the microarray, we

performed two rounds of T7-RNA amplification using a

mixture of poly A+ RNAs from tissues of 12 normal human

organs (brain, heart, liver, skeletal muscle, small intestine,

spleen, placenta, thyroid, fetal brain, fetal kidney, fetal lung,

and fetal liver) purchased from Clontech (Palo Alto, CA) as a

control.

Microarray Design, Production, and Hybridization

We selected 23,040 cDNA clones from the UniGene

database of the National Center for Biotechnology Informa-

tion (Bethesda, MD) (build #131). Our cDNA microarray was

constructed essentially as described previously [13]; 2.5 �g

of aRNA from each cervical carcinoma was labeled with

Cy5-dCTP and the control aRNA was labeled with Cy3-

dCTP by a protocol described elsewhere [13]. Hybridization,

washing, and scanning were carried out according to

published methods [13].

Data Analysis and Selection of Differentially Expressed

Genes

Signal intensities of Cy3 and Cy5 from the 23,040 spots

were quantified by the Array vision software (Amersham

Biosciences, Piscataway, NJ) and normalized as described

previously [12]. In the quantification step, local background

correction method was adopted. Because the data were

unreliable when intensities fell below 2.5�105 relative

fluorescent units or signal to noise ratios were below 3.0

Table 1. Clinical Characteristics of 19 Cervical Squamous Carcinoma

Samples.

Sample No. Stage at

Diagnosis*

Initial

Responsey
Tumor Suppression

Ratio in Size (%)

Age Status

at p53z

16 IIIB CR 100 69 WT

17 IIIB CR 100 65 WT

23 IIIB CR 100 67 WT

47 IVA CR 100 67 WT

74 IIIB CR 100 77 WT

75 IIIB CR 100 32 WT

81 IVB CR 100 55 WT

83 IIIB CR 100 59 WT

89 IIIB CR 100 63 WT

31 IIIB NC 40 53 WT

35 IIIB NC 19 47 WT

39 IIIB NC 0 70 WT

45 IIIB NC 40 59 WT

52 IVB NC 5 56 WT

53 IVB NC 5 63 WT

55 IVB NC 0 76 WT

85 IVB NC 0 52 WT

87 IVB NC 0 84 WT

96 IVB NC 10 53 WT

*Tumors were staged according to International Federation of Gynecology

and Obstetrics criteria.
yCR, tumor suppression ratio of 100%. NC, 50% suppression to +25%

growth a month after radiotherapy.
zMutational status of p53. WT, wild type.
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for both Cy3 and Cy5, genes corresponding to those spots

were not investigated any further. To investigate genes that

were clearly expressed differently between CR and NC

tumors, the Mann-Whitney test was applied based on gene-

expression values of X, where X=the Cy5/Cy3 signal

intensity ratio for each gene and for each sample. U values

for Mann-Whitney test were calculated for each gene.

Genes with U values lower than 20 or greater than 70 were

selected (P<.05 for comparing 9 CR samples vs. 10 NC

samples). Because the U values were calculated for each

sample in the CR group against each sample in the NC group

for each gene based on each X value, genes that have U

value lower than 20 indicate upregulated in the CR group

compared to the NC group. However, genes that have U

value more than 70 indicate upregulated in the NC group

compared to the CR group. 297 genes were upregulated in

the CR group and 132 genes were upregulated the in NC

group. However, because more than half of these genes

have small differences in expression level between CR and

NC group, the difference might be caused by data fluctua-

tion. Therefore, genes showing differences more than double

the median expression value between the two groups

(�XCR/�XNCQ0.5 or R2.0, where �XCR and �XNC indicate

median X values for the CR or NC group, respectively) were

defined as radiosensitivity (or radioresistance) related

genes. A total of 171 genes were selected (121 were

significantly greater in radiosensitive cells than in radio-

resistant cells, and 50 were higher levels of expression in

radioresistant cells than in radiosensitive cells ).

Permutation Test

To further evaluate the validity of 171 genes selected by

Mann-Whitney tests, permutation test was performed as

described previously [18], and the probabilities of the genes

to be correlated to group distinction, Ps, were also estimated.

When each gene was represented by expression vector

v(g )=(X1, X2, . . ., X19), where Xi denotes the expression

level of gene of the ith sample in the initial set of samples,

idealized expression patterns were represented by c=(c1,

c2, . . ., c19 ), where c i= +1 or 0 according to whether the ith

sample belongs to the CR or NC group. The correlation

between a gene and a group distinction Pgc was defined as

follows: i.e., Pgc=(�CR��NC) / (�CR+�NC), where �CR

(�NC) and �CR (�NC) indicate the means and the standard

deviations of log2 X of the gene ‘‘g’’ for each sample in newly

defined CR (NC) group. Permutation test was conducted by

permuting the coordinates of c 10,000 times. During every

permutation, the correlation values, Pgcs, were calculated.

These procedures were performed 10,000 times, repeatedly.

On the hypothesis that these obtained 10,000 Ag values

show ideal normal distribution, P values, which imply

probability of the genes to classify the two groups by chance

was estimated for each selected 171 gene.

Hierarchical Clustering

These 171 genes were subjected to a hierarchical -

clustering protocol using ‘‘Cluster’’ and ‘‘Tree view’’ software

written by M. Eisen [17]. Before applying the clustering

algorithm, gene-expression values (X ) for each gene in

each of the 19 samples were log- transformed ( log2 X ). After

that all values in each row and/or column of data were

multiplied by scale factor S, so that the sum of the squares of

the values in each row and column was 1.0 (a separate S is

computed for each row/column). Next, row-wise and

column-wise median values were subtracted from the

values in each row and/or column data, so that the median

value of each row and/or column is 0. Hierarchical clustering

was performed using distance metrics based on Pearson

correlation and adopting Average Linkage Clustering

method.

Cross-Validation Test

The selected 62 genes from 171 genes by clustering

experiment were subjected to cross-validation test. Among

the total 19 samples tested above, one sample was

withheld as test sample and the other 18 samples were

used for building predictor according to the method as

described previously [18]. Next, predictive score (PS) for

test sample was calculated as follow; PS=
P

Vg, where

Vg=Ag
0(Xg�Bg), Ag

0
=(�CR

0� �NC
0 ) / (�CR

0+�NC
0 ), and

Bg=(�CR
0+�NC

0 ) /2; �CR
0 (�NC

0 ) and �CR
0(�NC

0 ) indicates

the means and standard deviations of log2 X of the gene

‘‘g’’ for each sample in the CR (NC) group defined as

predictor samples. Xg denotes the log2 X of the gene ‘‘g’’

for test sample. Finally, the predictor sample and test

sample were changed and then PS for new test sample

was calculated. This process was performed 19 times,

repeatedly.

Results

Identification of Genes Responding to Radiation

We performed cDNA microarray analysis of gene

expression in 19 cervical -cancer materials, of which 9 were

radiation sensitive and 10 were radiation resistant on clinical

grounds. By means of the Mann-Whitney test (P<.05) and

subsequent procedures (see Materials and Methods sec-

tion), we selected a total of 171 genes ( including 74 ESTs)

as being differently expressed between CR (complete

response) and NC (no change) groups. Of those 171

genes, 121 ( including 62 ESTs) revealed increased

expression, and 50 ( including 12 ESTs) showed decreased

expression, in carcinomas belonging to the CR group

compared with the NC group (Table 2, A and B). Genes

involved in adipogenesis and in the MAP kinase pathway

were significantly upregulated in the CR group compared to

the NC group; the former included aldehyde dehydrogenase

1 (ALDH1 ), and retinol -binding protein 1 (RBP1; Figure

1A ). The latter included mitogen-activated protein kinase

kinase kinase 2 (MAP3K2 ), G protein beta subunit - like

(GBL ), and RAB5C (a member of the RAS oncogene

family). However, genes that are considered to be asso-

ciated with repair of breaks in double-stranded DNA,

including X-ray repair cross-complementing 5 (XRCC5;

Figure 1B ) were downregulated in the CR group relative to

Neoplasia . Vol. 4, No. 4, 2002
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Table 2. Genes Showing Different Expression Between CR and NC Groups.

A. Genes Showing Relatively Higher Expression in Radiosensitive Carcinoma Cells than in Radioresistant Cells

Category Unigene ID

(build #131)

Gene Symbol Gene Name U CR/NC P Locus

DNA repair Hs.3248 MSH6 mutS (E. coli ) homolog 6 13 2.0 0.003 2p16

Signal transduction Hs.76578 PIAS3 protein inhibitor of activated STAT3 10 4.5 0.000 1q21

Hs.29203 GBL G protein beta subunit - like 11 2.8 0.044 16

Hs.479 RAB5C RAB5C, member RAS oncogene family 12 2.8 0.001 17q21.2

Hs.28827 MAP3K2 mitogen -activated protein kinase kinase kinase 2 12 2.4 0.002 2

Hs.85155 BRF1 butyrate response factor 1 (EGF - response factor 1 ) 14 2.4 0.003 14q22–q24

Hs.74615 PDGFRA platelet - derived growth factor receptor,

alpha polypeptide

14.5 3.3 0.023 4q11–q13

Hs.77439 PRKAR2B protein kinase, cAMP-dependent,

regulatory, type II, beta

15 5.9 0.009 7q22–q31.1

Hs.83070 GRB14 growth factor receptor - bound protein 14 17 9.8 0.042 2q22–q24

Transcription Hs.66394 RNF4 ring finger protein 4 6 5.1 0.000 4p16.3

Hs.8858 BAZ1A bromodomain adjacent to zinc finger domain, 1A 9 5.0 0.031 14q12–q13

Hs.155321 SRF serum response factor ( c - fos serum response

element - binding transcription factor )

9 2.0 0.038 6pter –6q15

Hs.289068 TCF4 transcription factor 4 15 2.2 0.048 18q21.1

Hs.760 GATA2 GATA -binding protein 2 15 2.0 0.011 3q21

Hs.316 DDX6 DEAD/H (Asp -Glu -Ala -Asp /His )

box polypeptide 6

16 3.3 0.009 11q23.3

Hs.301963 HOXD8 homeo box D8 17 3.3 0.038 2q31–q37

Hs.228059 TIF1B KRAB -associated protein 1 19 2.0 0.029 5

Adipogenesis Hs.76392 ALDH1 aldehyde dehydrogenase 1, soluble 15.5 14.1 0.018 9q21

Hs.101850 RBP1 retinol -binding protein 1, cellular 19 2.1 0.018 3q23

Cytoskeleton Hs.7645 FGB fibrinogen, B beta polypeptide 9 4.4 0.018 4q28

Hs.75279 LAMA2 laminin, alpha 2 (merosin, congenital

muscular dystrophy )

10 5.2 0.040 6q22–q23

Hs.75445 SPARCL1 SPARC- like 1 (mast9, hevin ) 15 4.0 0.004 7

Hs.97266 PCDH18 protocadherin 18 16 5.9 0.006

Hs.11494 FBLN5 fibulin 5 16 4.0 0.008 14q32.1

Hs.6441 TIMP2 tissue inhibitor of metalloproteinase 2 17 2.8 0.033 17q25

Hs.79914 LUM lumican 17 2.2 0.035 12q21.3–q22

Hs.108896 LOC51084 lambda - crystallin 18 4.7 0.022 13cen3q14.2

Hs.20072 MIR myosin regulatory light - chain interacting protein 19 2.4 0.015 6p23–p22.3

Immune system Hs.1244 CD9 CD9 antigen (p24 ) 8 2.2 0.001 12p13

Hs.74631 BSG basigin 8 2.2 0.001 19p13.3

Hs.502 ABCB3 ATP -binding cassette, subfamily B

(MDR/TAP ), member 3

11 2.1 0.009 6p21.3

Hs.24395 SCYB14 small inducible cytokine subfamily B

(Cys -X -Cys ), member 14 (BRAK )

17 5.0 0.007 5q31

Proteolysis Hs.173091 UBL3 ubiquitin - like 3 15 2.5 0.016 13q12–q13

Hs.75275 UBE4A ubiquitination factor E4A

(homologous to yeast UFD2 )

19 3.8 0.047 11

Tumor related Hs.81988 DAB2 disabled (Drosophila ) homolog 2

(mitogen - responsive phosphoprotein )

16 2.4 0.003 5p13

Hs.75462 BTG2 BTG family, member 2 16 2.1 0.028 1q32

Peptide hormone Hs.134932 UCN urocortin 9 11.3 0.017 2p23–p21

Others and ESTs Hs.150926 FPGT fucose -phosphate guanylyltransferase 10 2.1 0.009 1

Hs.74566 DPYSL3 dihydropyrimidinase - like 3 18 2.6 0.015 5q32

Hs.101735 DKFZP564J102 DKFZP564J102 protein 19 3.0 0.042 4

Hs.74571 ARF1 ADP- ribosylation factor 1 19 2.9 0.015 1q42

Hs.56874 HSPB7 heat shock 27 - kDa protein family,

member 7 ( cardiovascular )

4 2.5 0.005 1p36.23–p34.3

Hs.74376 NOE1 olfactomedin - related ER localized protein 7 22.4 0.028 9

Hs.112569 GAN giant axonal neuropathy (gigaxonin ) 12 2.6 0.001 16q24.1

Hs.7535 LOC55871 COBW- like protein 13 2.3 0.001 2

Hs.20597 LCP host cell factor homolog 13 2.0 0.002

Hs.24948 SNCAIP synuclein, alpha interacting protein ( synphilin ) 14 7.0 0.003 5q23.1–q23.3

Hs.108725 LOC51660 HSPC040 protein 15 3.0 0.005 6

Hs.49912 LOC55895 22 -kDa peroxisomal membrane protein - like 15 2.7 0.015

Hs.78103 NAP1L4 nucleosome assembly protein 1 - like 4 17 7.0 0.009 11p15.5

Hs.111779 SPARC secreted protein, acidic,

cysteine - rich ( osteonectin )

17 2.2 0.020 5q31.3–q32

Hs.75887 COPA coatomer protein complex, subunit alpha 17 2.0 0.028 1q23–q25

Hs.129872 SPAG9 sperm-associated antigen 9 17 2.9 0.001 17

Hs.62041 NID nidogen (enactin ) 17 11.3 0.032 1q43

Hs.83834 CYB5 cytochrome b -5 18 3.6 0.040 18q23

Hs.29981 SLC26A2 solute carrier family 26

(sulfate transporter ), member 2

19 2.8 0.001 5q31–q34
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Table 2. (continued)

Category Unigene ID

(build #131)

Gene Symbol Gene Name U CR/NC P Locus

Hs.17930 BING4 BING4 19 2.9 0.000 6p21.3

Hs.6113 STAU staufen (Drosophila, RNA-binding protein ) 19 2.0 0.002 20q13.1

Hs.11951 ENPP1 ectonucleotide pyrophosphatase /phosphodiesterase 1 19.5 >50 0.047 6q22–q23

Hs.172870 ESTs 4 >50 0.000

Hs.29664 Human DNA sequence from clone

682J15 on chromosome 6p11.22.3.

6 15.1 0.001

Hs.12365 KIAA1427 KIAA1427 protein 7 >50 0.004

Hs.107515 ESTs 7 3.5 0.000

Hs.40583 Homo sapiens clone TCBAP1028 mRNA sequence 7 4.3 0.004

Hs.115315 ESTs 7 2.2 0.037

Hs.176092 ESTs, moderately similar to myosin -binding

protein H [H. sapiens ]

7 7.5 0.000

Hs.125291 ESTs 7 10.0 0.000

Hs.85053 H. sapiens clone 24440 mRNA sequence 8 11.2 0.000

Hs.188228 H. sapiens cDNA FLJ11003 fis, clone PLACE1002851 9 4.0 0.002

Hs.296772 Human DNA sequence from clone RP1 -292B18 10 4.1 0.001

Hs.83724 Human clone 23773 mRNA sequence 10 6.8 0.033

Hs.124558 EST 10 2.8 0.008

Hs.120399 ESTs 10 8.2 0.016

Hs.116464 ESTs 11 3.4 0.014

Hs.281434 H. sapiens cDNA FLJ14028 fis,

clone HEMBA1003838

11 2.9 0.031

Hs.191271 ESTs 11 5.5 0.003

Hs.26676 FLJ10850 hypothetical protein FLJ10850 11 4.8 0.004 20pter –20q12

Hs.292162 ESTs 11 >50 0.007

Hs.181304 13CDNA73 putative gene product 11 >50 0.000 13

Hs.98265 ESTs 11 10.9 0.000

Hs.126857 H. sapiens cDNA FLJ12936 fis, clone NT2RP2005018 11 20.5 0.014

Hs.95071 ESTs 11.5 >50 0.001

Hs.110373 ESTs 12 4.7 0.007

Hs.114453 ESTs 12 2.6 0.005

Hs.15725 LOC51278 hypothetical protein SBBI48 12 2.7 0.003 1p36.13q41

Hs.291979 ESTs, Highly similar to pre -mRNA

splicing SR protein rA4

12 4.6 0.019

Hs.113082 KIAA0443 KIAA0443 gene product 13 6.3 0.019 X

Hs.116117 EST 13 2.2 0.003

Hs.24391 H. sapiens cDNA FLJ13612 fis,

clone PLACE1010833

13 5.9 0.034

Hs.23120 H. sapiens cDNA: FLJ21421 fis, clone COL04123 13 2.1 0.007

Hs.116585 ESTs 13 2.0 0.014

Hs.49476 H. sapiens clone TUA8 Cri - du - chat

region mRNA

14 10.8 0.010

Hs.112745 EST 14 2.1 0.029

Hs.21851 H. sapiens cDNA FLJ12900 fis, clone NT2RP2004321 14 2.7 0.001

Hs.13809 ESTs 14 2.8 0.007

Hs.61268 ESTs 14 >50 0.032

Hs.8469 ESTs 15 2.0 0.049

Hs.11365 H. sapiens cDNA FLJ12145 fis,

clone MAMMA1000395

15 2.1 0.006

Hs.107812 ESTs, Weakly similar to SPOP [H. sapiens ] 15 2.8 0.027

Hs.25329 ESTs 15 4.4 0.033

Hs.178730 ESTs 16 2.3 0.000

Hs.112607 ESTs 16 2.6 0.023

Hs.27497 H. sapiens cDNA FLJ11756 fis, clone HEMBA1005595 16 2.5 0.002

Hs.29356 ESTs 16 2.0 0.024

Hs.158688 IF2 KIAA0741 gene product 16 4.6 0.042 2

Hs.23617 FLJ20531 hypothetical protein FLJ20531 17 2.8 0.041

Hs.44159 LOC51105 CGI - 72 protein 17 13.7 0.003 8

Hs.23650 ESTs, Weakly similar to

AAB47496 NG5 [H. sapiens ]

17 3.3 0.041

Hs.133081 ESTs, Weakly similar to hypothetical

protein [H. sapiens ]

17 24.6 0.011

Hs.191379 ESTs 17 6.1 0.003

Hs.72363 H. sapiens mRNA for FLJ00116 protein, partial cds 17.5 >50 0.038

Hs.173094 H. sapiens mRNA; cDNA DKFZp564H142

( from clone DKFZp564H142 )

17.5 6.0 0.006

Hs.179891 ESTs, Weakly similar to prolyl 4 - hydroxylase

alpha subunit [H. sapiens ]

18 2.5 0.005

Hs.22860 ESTs 18 2.3 0.011

(continued on next page)
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Table 2. (continued)

Category Unigene ID

(build #131)

Gene Symbol Gene Name U CR/NC P Locus

Hs.12867 ESTs 18 2.3 0.005

Hs.200332 FLJ20651 hypothetical protein FLJ20651 18 3.8 0.004 9p24.1–9q22.33

Hs.273186 LOC56997 hypothetical protein, clone

Telethon( Italy_B41 )_Strait02270_FL142

18 2.8 0.041 1

Hs.30643 ESTs 18 5.7 0.018

Hs.11805 ESTs 19 3.1 0.038

Hs.22505 FLJ10159 hypothetical protein FLJ10159 19 2.7 0.025 6

Hs.127407 ESTs 19 5.6 0.011

B. Genes Showing Relatively Higher Expression in Radioresistant Carcinoma Cells than in Radiosensitive Cells

Category Unigene ID

(build #131)

Gene Symbol Gene Name U CR/NC P Locus

DNA repair Hs.84981 XRCC5 X- ray repair complementing defective

repair in Chinese hamster cells 5

73 0.39 0.034 2q35

Signal transduction Hs.155924 CREM cAMP responsive element modulator 71 0.48 0.020 10p12.1–p11.1

Hs.118520 LOC55970 G-protein gamma2 subunit 73 0.40 0.015 1

Hs.34780 DCX doublecortex; lissencephaly,

X - linked (doublecortin )

74 0.48 0.012 Xq22.3–q23

Hs.7138 CHRM3 cholinergic receptor, muscarinic 3 77 0.50 0.034 1q41–q44

Hs.250857 CAMK2G calcium /calmodulin -dependent

protein kinase II gamma

85 0.41 0.009 10q22

Transcription Hs.168005 TIF1GAMMA transcriptional intermediary factor 1 gamma 72 0.38 0.000 1p13.1

Hs.21771 WHSC2 Wolf -Hirschhorn syndrome candidate 2 73 0.47 0.021 4p16.3

Hs.172280 SMARCC1 SWI /SNF - related, matrix -associated,

actin -dependent regulator of chromatin

74 0.38 0.005 3p23–p21

Hs.110457 WHSC1 Wolf -Hirschhorn syndrome candidate 1 78 0.45 0.005 4p16.3

Hs.78580 DDX1 DEAD /H (Asp -Glu -Ala -Asp /His )

box polypeptide 1

73 0.32 0.032 2p24

Translation Hs.129673 EIF4A1 eukaryotic translation initiation factor 4A, isoform 1 78 0.43 0.001 17p13

Glycolysis Hs.2795 LDHA lactate dehydrogenase A 75 0.39 0.036 11p15.4

Cytoskeleton Hs.821 BGN biglycan 71 0.24 0.026 Xq28

Hs.172928 COL1A1 collagen, type I, alpha 1 74 0.46 0.007 17q21.3–q22

Hs.90408 NEO1 neogenin (chicken ) homolog 1 78 0.48 0.006 15q22.3–q23

Immune system Hs.516 CCR1 chemokine (C–C motif ) receptor 1 71 0.28 0.039 3p21

Hs.198253 HLA-DQA1 major histocompatibility complex,

class II, DQ alpha 1

72.5 0.32 0.007 6p21.3

Hs.75498 SCYA20 small inducible cytokine subfamily A

(Cys–Cys ), member 20

73 0.18 0.041 2q33–q37

Hs.833 ISG15 interferon -stimulated protein, 15 kDa 78 0.25 0.042 1

Proteolysis Hs.61153 PSMC2 roteasome (prosome, macropain )

26S subunit, ATPase, 2

73 0.49 0.032 7q22.1–q22.3

Apoptosis Hs.93213 BAK1 BCL2 -antagonist / killer 1 73 0.36 0.006 6p21.3

Hs.278602 API5 apoptosis inhibitor 5 74 0.46 0.013 11

Others and ESTs Hs.75593 UROS uroporphyrinogen III synthase 71 0.13 0.041 10q25.2–q26.3

Hs.108196 LOC51659 HSPC037 protein 71 0.37 0.027 16

Hs.64595 AASDHPPT aminoadipate - semialdehyde dehydrogenase -

phosphopantetheinyl transferase

71 0.44 0.033 11q22

Hs.286049 PSA phosphoserine aminotransferase 72 0.47 0.009 9

Hs.93659 ERP70 protein disulfide isomerase - related protein 73 0.26 0.036 10

Hs.2281 CHGB chromogranin B (secretogranin 1 ) 75 0.31 0.011 20pter –p12

Hs.110099 CBFA2T3 core - binding factor, runt domain,

alpha subunit 2; translocated to, 3

75 0.33 0.009 16q24

Hs.4747 DKC1 dyskeratosis congenita 1, dyskerin 75 0.40 0.003 Xq28

Hs.83848 TPI1 triosephosphate isomerase 1 77 0.43 0.040 12p13

Hs.75799 PRSS8 protease, serine, 8 (prostasin ) 77 0.13 0.045 16p11.2

Hs.143600 GPP130 type II Golgi membrane protein 77 0.35 0.024 3

Hs.13565 T -STAR Sam68 - like phosphotyrosine protein, T -STAR 78 0.44 0.013 8q24.2

Hs.169476 GAPD glyceraldehyde -3 -phosphate dehydrogenase 80 0.47 0.042 12p13

Hs.114366 PYCS pyrroline - 5 - carboxylate synthetase 87 0.24 0.006 10q24.3

Hs.43445 PARN poly(A ) -specific ribonuclease

(deadenylation nuclease )

90 0.35 0.003 16p13

Hs.137556 H. sapiens mRNA; cDNA DKFZp434A132 71 0.18 0.004

Hs.65403 LOC51323 hypothetical protein 71 0.50 0.003 6pter–6q15

Hs.164285 ESTs, Weakly similar to Afg1p [S. cerevisiae ] 72 0.44 0.026

Hs.26675 ESTs 74 0.32 0.012

Hs.11641 H. sapiens cDNA: FLJ21432 fis, clone COL04219 74 0.50 0.000
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the NR group. In addition, a number of genes related to DNA

repair, transcription, signal transduction, cell skeleton, and

adhesion were among those expressed differently in the two

groups.

Permutation Test

To evaluate the validity of the 171 genes selected as

radiosensitivity - related genes, permutation test was per-

formed as described in the Materials and Methods section.

Expression levels of each 19 samples in both groups for

each gene were permuted (randomly scrambled) 10,000

times. Pgc values were calculated using �CR, �NC, �CR, and

�NC values derived from newly classified CR group and NC

group during every permutation. Large absolute values of

Pgc indicate a strong correlation between the gene expres-

sion and the class distinction, whereas the sign of Pgc being

positive or negative corresponds to gene ‘‘g’’ being more

highly expressed in the CR or NC group. After the 10,000

times permutation, the probabilities of the genes to be

correlated to group distinction, Ps, were estimated under the

hypothesis that these 10,000 Pgc values show ideal normal

distribution (Table 2, A and B). As a result, all of the selected

62 genes showed P values >.05 without exception. Hence, it

was proved that these selected 171 genes were to be

radiosensitivity predictive gene under the confidence of

P<.05.

Hierarchical Clustering

Of these 171 genes were subjected to hierarchical

clustering as described in the Materials and Methods

section. This procedure clearly separated the two groups

from each other, except for tumor No. 47 (data not shown).

To achieve complete separation, we selected 62 genes that

showed greater than 2.0 standard deviations of expression

values among all 19 samples. Cluster analysis using these

62 genes achieved complete separation of the groups

(Figure 2 ).

Cross-Validation Test

Cross-validation test was performed to examine whether

the 62 genes were crucial for classifying CR and NC groups

and whether they could predict the group for test samples.

Among the 19 samples, 18 samples were used for group

predictor and 1 sample was used as the test sample. The

Table 2. (continued)

Category Unigene ID

(build #131)

Gene Symbol Gene Name U CR/NC P Locus

Hs.14846 H. sapiens mRNA; cDNA DKFZp564D016 75 0.38 0.009

Hs.283127 ESTs 75 0.36 0.032

Hs.63224 ESTs 75 0.16 0.038

Hs.227591 ESTs, Weakly similar to AF1488561

unknown [H. sapiens ]

76 0.50 0.017

Hs.11156 LOC51255 hypothetical protein 76 0.21 0.005 2

Hs.133207 H. sapiens mRNA for KIAA1230

protein, partial cds

77 0.42 0.011

Hs.201925 H. sapiens cDNA FLJ13446 fis,

clone PLACE1002968

80 0.47 0.015

U, indicates Mann -Whitney statistics. CR/NC, difference ratio between median expression values for each group. P, permutational P value. Genes used for

calculating predictive scores are noted in bold type.

Figure 1. Differential gene expression between the radiosensitive group (CR;

9 samples ) and the radioresistant group (NC; 10 samples ) with significant

difference (P< .05 ). U indicates the Mann -Whitney test statistic. Expression

levels (Ex=Cy5 signal intensity from cancer sample /Cy3 signal intensity from

control ), of two genes are plotted here. Median Ex values for each group of

tumors are denoted by horizontal lines. (A ) Retinol - binding protein 1 (RBP1;

U=19 ); (B ) X - ray repair cross - complementing 5 (XRCC5; U=73 ).

Figure 2. Expression patterns of 62 genes across 19 samples of cervical

squamous cell carcinoma. Red or green colors indicate higher or lower

expression, respectively, relative to the mean signal intensity of a given gene

across 19 tumor samples; black, same expression level with mean value;

gray, no expression detected ( intensities of both Cy3 and Cy5 were below

cut - off values ). Each row represents each gene and each column a cervical

squamous cell carcinoma sample. Single and double triangles indicate the

gene -expression profiles of TCF4 and BAK1, respectively.
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sample sets of predictor and test sample were changed

19 times and PS for each 19 samples was calculated as

described in the Materials and Methods section (Figure 3

and Table 3). Threshold line for PSs to discriminate CR or

NC group were settled at the half point between average PS

values of the CR group and that of the NC group: �12. As

shown in Figure 3, PSs for samples in CR and NC groups

were clearly separated, except for sample No.74 (error ratio

was 5.3% ( =1 sample/19 samples)).

Discussion

cDNA Microarray analysis is a powerful tool for obtaining

comprehensive information about expression of thousands

of genes in cancer cells [12-15]. By combining this

technology with statistical analysis, we identified 171 genes

that showed different expression patterns between two

distinct clinical groups and, therefore, were likely to reflect

differences in the response of cervical cancer cells to

radiotherapy. To examine the validity of 171 genes selected

as radiosensitivity - related genes, random permutation test

was performed by calculating Pgcs, and P values for each

gene were evaluated. After 10,000 times permutation test,

P values for all of the 171 genes were lower than .05,

indicating that these genes were significantly correlated to

radiosensitivity. Furthermore, in a clustering analysis, the

expression profiles of these 171 genes were able to classify

each of 19 tumor samples, except for one, to the appropriate

group ( radiosensitive or radioresistant ). However, when the

cluster analysis was limited to 62 genes having greater than

2.0 standard deviations of expression level across the 19

samples, all tumors were properly classified into their

respective groups. To further evaluate the validity of 62

genes selected as radiosensitivity - related genes, we carried

out cross-validation test. After 19 times cross-validation

test, each PS value for each sample that belonged to the CR

(or NC) group showed higher (or lower) value than threshold

line. This study not only supports the feasibility of these 62

genes as radiosensitivity - related genes, but also indicates

the possibility of predicting radiosensitivity for discriminating

radiation-sensitive from radiation-resistant biopsy samples

by PS values calculated from expression values of 62 genes.

However, further study with additional tumor samples would

be required to apply these genes for predicting radio-

sensitivity of tumors in patients before therapy begins.

Because all of the cervical cancer samples we used in this

study were human papillomavirus (HPV)-positive, p53 as

well as RB functions were likely to be eliminated by the viral

protein [19]. Hence, the set of genes listed here may be

associated with a cell -death pathway independent of p53.

Radiation kills tumor cells mainly as a result of double-strand

breaks (DSBs) in DNA [20]. If cells are defective in their

DNA-repair systems, especially as regards DSB repair, they

should be more susceptible to cell death. The gene product

of XRCC5, Ku80, a protein that binds double-stranded DNA

and a component of DNA-dependent protein kinase holo

enzyme, is involved in DSB repair [21]. XRCC5 -deficient

cells and Ku80-knockout mice are hypersensitive to ionizing

Figure 3. Predictive score (PS ) for radiosensitive and radioresistant groups

by cross - validation test. Details of the calculation method were noted in the

Materials and Methods section. A dashed line indicates the threshold.

Table 3. Predictive Scores to Classify Radiosensitive Group and Radio

Resistant Group.

Sample No. PS

CR

16 36

17 30

23 38

47 0.6

74 �15

75 31

81 25

83 26

89 13

NC

31 �48

35 �40

39 �54

45 �35

52 �62

53 �34

55 �70

85 �32

87 �42

96 �30

PS, predictive score. CR, radiosensitive group. NC, radioresistant group.
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radiation [22,23]. Therefore, the higher expression of this

gene we observed in radioresistant cancer cells accords with

its physiological function. XRCC5 would be one of the most

crucial genes for determining the fate of cells under the

genotoxic stress caused by irradiation. We also observed a

relatively higher level of expression of lactate dehydrogen-

ase (LDHA ), which aids glycolysis under hypoxic conditions

[24] in radioresistant cells. Cells in fact become radio-

resistant under hypoxic conditions [25], and a high level of

LDHA expression could be an important mechanism confer-

ring radioresistance.

In radiosensitive cells, we found elevated expression of

adipogenesis- related genes including ALDH1 and RBP1.

The product of ALDH1 is involved in retinoic acid (RA)

synthesis [26] and RBP1 is a transporter of retinol. Cervical

carcinomacells treatedwithRAbefore irradiationare reported

to become radiosensitive [27]; furthermore, RA induces

TRAIL expression and causes apoptosis [28]. Therefore,

elevated expression of these genesmay induceRA synthesis

and, thereby, encourage apoptosis after radiation.

Our list of 171 genes should be useful not only as an aid to

understanding the mechanism of radiosensitivity, but also as

a means to expand the possibilities for effective radio-

therapy. For example, if some novel drugs could block gene

products that are involved in radioresistance, or if genes that

induce apoptotic signals after radiation could be exoge-

nously introduced, the effectiveness of radiotherapy would

be increased. In addition, the 62 selected genes might prove

of great benefit for diagnosing radiosensitivity of individual

cervical cancers, to provide opportunities for selecting

appropriate treatment (personalized medicine) for each

patient.
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