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Abstract

The problem of steady laminar mixed convection flow of an incompressible viscous fluid over a vertical stretching sheet with

variable wall temperature and concentration in the presence of porous medium and thermal radiation is examined. The governing

boundary layer equations are transformed into a non-dimensional form by a group of non-similar transformations. The resulting

coupled non-linear partial differential equations have been solved numerically by using implicit finite difference scheme in combi-

nation with the quasi-linearization technique. The effects of various parameters on the velocity and temperature profiles as well as

skin friction and heat transfer coefficients are presented. The results are found to be in good agreement with the existing solutions

in literature.
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1. Introduction

The study of flow and heat transfer over a stretching surface has gained considerable attention of researchers

due to its applications, such as extraction of polymer sheet, wire drawing, paper production, glass-fiber production,

hot rolling, solidification of liquid crystals, petroleum production, continuous cooling and fibers spinning and exotic

lubricants. Meanwhile, since the pioneering work of Sakiadis [1], related to stretching sheet have increased greatly in

recent due to its wide applications in industrial and engineering systems as shown by [2–4].

The problem of mixed convection flow past a stretching sheet embedded in porous medium arises in some metal-

lurgical processes which involve the cooling of continuous strips or filaments by drawing them through quiescent fluid

and the rate of cooling can be better controlled and final product of desired characteristics can be achieved if the strips

are drawn through porous media as investigated by Khader and Megahed [5] and Pal and Mondal [6]. The study of

radiative heat transfer flow is useful in manufacturing industries for the design of reliable equipments, nuclear plans,

gas turbines and various propulsion devices for aircraft, missiles, satellites and space vehicles. Also, the aspect of
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thermal radiation on convective flows has very important processes in high temperatures. Based on these applications,

Pal and Mondal [7] and Shateyi and Motsa [8] determined the thermal radiation of a gray fluid which is emitting and

absorbing radiation in non-scattering medium.

Aforementioned studies were primarily concerned without suction or injection. Pal and Mondal [9] and Cortell

[10] reported the influence of uniform suction or injection in the presence of chemical reaction, thermal radiation, heat

generation or absorption, Soret and Dufour effects over a stretching sheet. [11–13] obtained a non-similar solution

into a mixed convection flow over a stretching sheet and cone.

However, so far no attention has been given to the effects of thermal radiation and porous medium over a stretching

sheet in the presence of suction or injection. The governing boundary layer equations along with the boundary

conditions are first cast into a dimensionless form, and the resulting equations are then solved by an implicit finite

difference method of the quasi-linearization technique.

2. Mathematical formulation

Consider a steady two dimensional laminar mixed convection flow of a viscous incompressible and optically thick

radiating fluid over a vertical stretching sheet embedded in a porous medium placed in the plane y = 0. The stretching

surface has linear velocity Uw while two equal and opposite forces are introduced along the x-axis so that the sheet

is stretched with a speed proportional to the distance from the fixed origin x = 0. The fluid is considered to be

gray, absorbing and emitting radiation but not-scattering medium and using Rosseland approximation to describe

the radiative heat flux in the energy equation. The radiative heat flux in the x-direction is considered negligible in

comparison to the y-direction. The temperature and the species concentration vary with the distance from the origin.

The flow is governed by the following equations:

∂u
∂x
+
∂v
∂y
= 0, (1)

u
∂u
∂x
+ v
∂u
∂y
= Ue

∂Ue

∂x
+ ν
∂2u
∂y2
− ν

K
(u − Ue) + g[β(T − T∞) + β∗(C −C∞)], (2)

u
∂T
∂x
+ v
∂T
∂y
=

k
ρcp

∂2T
∂y2
− 1

ρcp

∂qr

∂y
, (3)

u
∂C
∂x
+ v
∂C
∂y
= D
∂2C
∂y2
. (4)

The stretching surface has a uniform temperature Tw and the free stream temperature is T∞ with Tw > T∞. Also,

it has a uniform concentration Cw and the free stream concentration is C∞ with Cw > C∞. Diffusion approximation

model is used for an optically thick medium for equating radiative transfer in which an approximation form of the ra-

diative heat flux gradient qr, in the y-direction is called Rosseland or diffusion approximation which has the following

form:

qr = −4σ∗

aR

∂T 4

∂y
, (5)

where σ is the Stefan-Boltzmann constant and aR is the mean absorption coefficient. The temperature differences

within the flow are assumed to be sufficiently small so that T 4 may be expressed as a linear function of temperature T
using a truncated Taylor series about the free stream temperature T∞, i.e.,

T 4 ≈ 4T 3
∞T − 3T 4

∞.

The boundary conditions are given by:

u = Uw(x) = Uw0xm, v = vw(x), T = Tw(x) = T∞ + Bxn,

C = Cw(x) = C∞ + B∗xn at y = 0,

u→ U∞(x) = U∞0xm, T → T∞, C → C∞ as y→ ∞.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (6)
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Where B and B∗ are constants, Uw(x) is the stretching sheet velocity of the surface represent the mass transfer velocity

at the surface of the sheet, vw is suction/injection parameter with vw > 0 for injection (blowing), vw < 0 for suction

and vw = 0 corresponds to an impermeable sheet.

The composite reference velocity is defined as U(x) = Uw(x) +U∞(x), U0 = Uw0 +U∞0(� 0). To facilitate numerical

solutions, we introduce the following dimensionless variables:

ξ =

(
U(x)x
ν

) 1
2

, η = y
(

U(x)

νx

) 1
2

,

ψ(x, y) = (νxU(x))
1
2 f (ξ, η), fη(ξ, η) = F(ξ, η),

T − T∞ = (Tw(x) − T∞) G(ξ, η), C −C∞ = (Cw(x) −C∞) H(ξ, η), (7)

where 0 ≤ ξ ≤ 1 and ψ is the stream function which is defined in the usual form as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (8)

So the continuity Eq. (1) is automatically satisfied. Thus substituting equation (7) into (8), we obtain u, v as follows

u = U0xmF(ξ, η), v = −1

2
(νU0)

1
2 x

m−1
2

[
(m + 1)( f + ξ fξ) + (m − 1)ηF

]
. (9)

To transform Eqs. (2)-(4) into a non-dimensional equations, we introduce the following dimensionless parameters

and variables:

λ =
Gr
Re2

x
, Gr =

gβ(Tw − T∞)x3

ν2
, Pr =

μcp

k
,

λ∗ =
Gr∗

Re2
x
, Gr∗ =

gβ∗(Cw −C∞)x3

ν2
, S c =

ν

D
,

Rex =
U0xm+1

ν
, N =

λ∗

λ
, k1 =

1

DaxRex
=
νx

KU
, R =

16σ∗T 3∞
3kaR

.

Using the non-similar transformation in Eq. (8), the following non-linear partial differential equations obtained

from Eqs. (2)-(4) are given by:

Fηη +
(

m + 1

2

)
f Fη + m(ε2 − F2) + λ(G + NH) + k1(F − ε) =

(
m + 1

2

)
ξ(FFξ − fξFη), (10)

Gηη +
( Pr
1 + R

) (m + 1

2

)
fGη −

( Pr
1 + R

)
FGn =

( Pr
1 + R

) (m + 1

2

)
ξ(FGξ − fξGη), (11)

Hηη + S c
(

m + 1

2

)
f Hη − S cFHn = S c

(
m + 1

2

)
ξ(FHξ − fξHη), (12)

where

f =
∫ η

0

Fdη + fw and fw is given by fw =
2

(m − 1)
Aξ

1−m
1+m .

The non-dimensional boundary conditions of the problem

F(ξ, η) = 1 − ε, G(ξ, η) = 1, H(ξ, η) = 1 at η = 0,

F(ξ, η) = ε, G(ξ, η) = 0, H(ξ, η) = 0 at η = η∞,
(13)

where

ε =
U∞(x)

U(x)
=

U∞0

Uw0 + U∞0
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corresponds to the ratio of free stream velocity to the composite reference velocity.

The physical quantities of interest are the local skin friction coefficient C f x, the local Nusselt number Nux and the

local Sherwood number S hx are expressed in dimensionless form are as follows:

C f x =

2

[
μ

(
∂u
∂y

)]
y=0

ρU2
= 2Fη(ξ, 0)(Rex)−1/2,

Nux = −

[
x
(
∂T
∂y

)]
y=0

Tw(x) − T∞
= −Gη(ξ, 0)(Rex)1/2,

S hx = −

[
x
(
∂C
∂y

)]
y=0

Cw(x) −C∞
= −Hη(ξ, 0)(Rex)1/2.

3. Method of Solution

The set of non-linear coupled partial differential equations (10)-(12) along with the boundary condition (13) is

solved by an implicit finite difference scheme in combination with the quasi-linearization technique. With the help

of quasi-linearization technique, the non-linear coupled partial differential equations (10)-(12) are replaced by the

following sequence of linear partial differential equations:

Fi+1
ηη + Xi

1Fi+1
η + Xi

2Fi+1 + Xi
3Gi+1 + Xi

4Fi+1
ξ + Xi

5Hi+1 = Xi
6, (14)

Gi+1
ηη + Yi

1Gi+1
η + Yi

2Gi+1 + Yi
3Fi+1 + Yi

4Gi+1
ξ = Yi

5, (15)

Hi+1
ηη + Zi

1Hi+1
η + Zi

2Hi+1 + Zi
3Fi+1 + Zi

4Hi+1
ξ = Zi

5. (16)

The coefficient functions with iterative index (i) are known and the functions with iterative index (i + 1) are to be

determined.

The corresponding boundary conditions of Eqs. (14)-(16) are

Fi+1 = 1 − ε, Gi+1 = 1, Hi+1 = 1 at η = 0,

Fi+1 = ε, Gi+1 = 0, Hi+1 = 0 at η = η∞.
(17)

The coefficients in Eqs. (14)-(16) are as follows:

Xi
1 = f

(
m + 1

2

)
+

(
m + 1

2

)
ξ fξ,

Xi
2 = −2mF + k1 −

(
m + 1

2

)
ξFξ,

Xi
3 = λ,

Xi
4 = −

(
m + 1

2

)
ξF,

Xi
5 = Nλ,

Xi
6 = −

(
m + 1

2

)
ξFFξ − m(ε2 + F2) + εk1;

Yi
1 =

( Pr
1 + R

) (m + 1

2

) [
f + ξ fξ

]
,

Yi
2 = −nF

( Pr
1 + R

)
,
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Yi
3 = −

( Pr
1 + R

) [(m + 1

2

)
ξGξ + nG

]
,

Yi
4 = −

( Pr
1 + R

) (m + 1

2

)
ξF,

Yi
5 = −

( Pr
1 + R

) [(m + 1

2

)
ξFGξ + nFG

]
;

Zi
1 = S c

[(
m + 1

2

)
f +
(

m + 1

2

)
ξ fξ

]
,

Zi
2 = −S c n F,

Zi
3 = −S c

[(
m + 1

2

)
ξHξ + nH

]
,

Zi
4 = −S c

(
m + 1

2

)
ξF,

Zi
5 = −S c

[(
m + 1

2

)
ξFHξ + nFH

]
.

At each iteration step, the set of linear partial differential equations (14)-(16) were expressed in difference form by

using central difference in η-direction and backward difference in ξ-direction. Then the system of linear algebraic

equations with a block tri-diagonal matrix is solved by using Varga’s algorithm [14]. To ensure the convergence of

the numerical solution to the exact solution, the step sizes Δη and Δξ are optimized and taken as 0.01 and 0.005,

respectively. The solution is assumed to have converged when the difference reaches less than 10−5.

4. Results and Discussion

The effect of various physical parameters on the flow field are examined and discussed in this section. To check

the accuracy of the result, the present solution is compared with the available particular solution in the literature for

heat transfer parameter −Gη(0) in Table 1.

Table 1. Comparison of heat transfer parameter −Gη(0) for various values of Pr
Pr 0.7 1.0 2.0 7.0 10.0 100.0

Tsou et al. [2] 0.3492 0.4438 – – 1.6804 5.545

Ali [3] 0.3476 0.4416 – – 1.6713 –

Soundalgekar and Murty [4] 0.3508 – 0.6831 – 1.6808 –

Patil et al. [11] 0.35004 0.44401 0.68314 1.38625 1.68011 5.54610

Patil [12] 0.352215 0.444428 0.683204 1.386861 1.680150 5.547512

Present work 0.3520 0.4441 0.6831 1.3870 1.6803 5.5476

The effects of permeability parameter k1 and temperature exponent parameter n on velocity profiles (F) in the

boundary layer for ξ = 1.0, Pr = 0.7, λ = 1.0, m = 0.0, A = 1.0, S c = 0.60, N = 0.5, ε = 1.0 and R = 1.0 are shown

in Fig. 1. It is clearly observed that the velocity increases as the permeability parameter k1 increases along the sheet.

This is due to the fact that the porous medium produces a resistive type of force which leads to reduction and increase

in the fluid velocity. Also, the momentum boundary layer thickness increases for linear stretched surface temperature

(n = 1) while they decrease for uniform surface temperature (n = 0).

The effect of radiation parameter R on velocity and temperature profiles (F,G) for k1 = 0.5, Pr = 0.7, λ = 1.0,

m = 0.0, n = 1.0, S c = 0.60, N = 0.5, ε = 1.0, A = 1.0 and ξ = 1.0 are shown in Figs. 2(a) and 2(b). It is observed that

the velocity profile increases with increasing of radiation parameter (R). That is because the presence of the radiation

yields an increase in acceleration of the fluid motion and hence an increase in the liquid velocity (see Fig. 2(a)). It can

also be observed from Fig. 2(b) that in each point with the increase of the radiation parameter (R), the temperature

rises. The physical reason is that due to the fact that a higher radiation parameter implies a larger surface heat flux

which leads to increase the temperature of the fluid.
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Fig. 1. Effects of permeability parameter k1 and temperature exponent parameter n on velocity profiles
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Fig. 2. Effect of radiation parameter R on (a) velocity and (b) temperature profiles

Figures 3(a) and 3(b) display the effects of streamwise co-ordinate ξ and surface mass transfer A on velocity and

temperature profiles (F,G) for k1 = 0.1, Pr = 0.7, λ = 1.0, m = 0.0, n = 0.0, S c = 0.22, N = 0.5, ε = 0.5 and

R = 1.0. It can be seen that increasing the suction parameter (A > 0) will reduce the momentum and thermal boundary

layer thickness for both the velocity and temperature profiles inside the boundary layer. It is noticed in Fig. 3(a), the

velocity inside the boundary layer reaches a fixed value which is zero. However, increasing the injection parameter

will increase both the velocity and temperature boundary layer thickness. This is because the buoyancy forces are

not capable to heat the injected fluid any more. The velocity overshoot decreases with the increase of streamwise

co-ordinate ξ. Due to increase in the streamwise co-ordinate, the velocity and thermal boundary layer thicknesses

reduce near the wall of the sheet within the boundary layer.

The effect of radiation parameter R on skin friction and heat transfer coefficients (C f x(Rex)1/2 and Nux(Rex)−1/2)

are shown in Figs. 4(a) and 4(b), when k1 = 0.1, Pr = 0.7, λ = 1.0, m = 0.0, n = 1.0, N = 1.0, S c = 0.60, ε = 1.0
and A = 1.0. It can be seen that the skin friction coefficient increases with the increase of thermal radiation parameter

(R) while it decreases for the heat transfer coefficient. It should be noted from Fig. 4(b), increase in the values of (R)

have the tendency to increase the conduction effect and to increase the thermal boundary layer. This, in turn, causes

the temperature to increase at every point away from the sheet surface. Since the wall slope of the temperature profile
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Fig. 3. Effects of surface mass transfer parameter A and streamwise co-ordinate ξ on (a) velocity and (b) temperature profiles
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Fig. 4. Effect of radiation parameter R on (a) skin friction and (b) heat transfer coefficients

increases as (R) increases and the heat transfer coefficient decreases because it is proportional to the negative value of

the wall slope of the temperature profile.

5. Conclusion

A numerical study is performed for the problem of thermal radiation embedded in porous medium over a stretching

sheet in the presence of suction or injection. The present study indicates that, an increase in thermal radiation param-

eter increases the skin friction coefficient while it decreases heat transfer coefficient. The injection parameter (A < 0)

tends to increase the magnitude of the velocity overshoot but suction parameter (A > 0) reduces the magnitude of the

velocity overshoot. The influence of temperature exponent parameter (n) increases thermal boundary layer thickness

for linear stretched surface (n = 1) while it decreases for uniform surface temperature (n = 0).
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