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Abstract A vortex ring impinging on a three-dimensional bump is studied using

large eddy simulation for a Reynolds number Re = 4× 104 based on the initial

translation speed and diameter of the vortex ring. The effects of bump height on

the vortical flow phenomena and the underlying physical mechanisms are inves-

tigated. Based on the analysis of the evolution of vortical structures, two typical

kinds of vortical structures, i.e., the wrapping vortices and the hair-pin vortices,

are identified and play an important role in the flow state evolution. The circu-

lation of the primary vortex ring reasonably elucidates some typical phases of

flow evolution. Furthermore, the mechanism of flow transition from laminar to

turbulent state has been revealed based on analysis of turbulent kinetic energy.
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As one of the typical forms of vortex motion, vortex rings widely exist in nature and engineer-

ing. The interaction of vortex rings with solid or fluid boundaries is a fundamental problem in fluid

dynamics and has received considerable attention. This subject is also associated with a variety

of practical applications, such as cavitated rings used for underwater drilling1 and the downburst

and aircraft interaction.2 Moreover, the underlying flow phenomena and physical mechanisms are

still unclear and are worthy of detailed studies.

Vortex ring interacting with a flat wall has been extensively studied.3–8 These studies showed

that as the primary vortex ring moves gradually toward the wall, its rate of approach slows down

and its radius continues to increase. When the Reynolds number is larger than 500 based on the

initial diameter and translational speed of the vortex ring, the formation of the secondary vortex

ring occurs and then it impacts the primary one. Experimental study3 has revealed that, beyond

Re = 3000, the primary vortex ring will no longer remain stable as it approaches the wall. Thus,

the instability and transition to turbulence for the vortex ring evolution should be considered when

the Reynolds number becomes large enough.

For the instability of vortex rings, extensive investigations have been carried out. Krutzsch9

first studied this subject and found that the vortex ring becomes unstable with some stationary

waves distributed around its azimuthal direction. Then Maxworthy10 verified experimentally that
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the stationary azimuthal waves grow at 45◦ relative to the propagation direction of vortex ring,

and the wave number depends on the slenderness ratio of core radius to ring radius. Widnall and

Tsai11 presented the theoretical explanation of the instability and indicated that a straining field

in the neighbourhood of the vortex core leads to the amplification of small perturbation. Then

Shariff et al.12 established a viscous correction to the growth rate proposed by Widnall and Tsai11

based on their direct numerical simulation (DNS) results.

Comparing with the numerous studies of vortex ring interacting with a flat surface, the in-

vestigation relevant to a vortex ring impacting a curved wall is scarce. Orlandi and Verzicco13

numerically studied vortex pairs interacting with a two-dimensional circular cylinder with no-slip

and free-slip boundary conditions. For the free-slip condition, the dipole is observed to split into

two vortices and then to rejoin on the cylinder. While for the no-slip interaction, the generation

of dipolar and tripolar structures occurs on the cylinder surface. Verzicco et al.14 further studied

this problem. They found that the induced vortices become more apparent as the diameter of

the cylinder increases. Recently, Sousa15 studied a vortex ring impacting a stationary sphere for

Re = 1000 using DNS. After the secondary vortex ring is formed, they found its interaction with

the primary ring results in the fast decay of circulation for the secondary ring.

In this paper, a large eddy simulation (LES) technique is utilized to investigate the effects of

bump height on the dynamics of vortical structures and the turbulent behaviors when a vortex

ring impacts a three-dimensional bump at Reynolds number Re = 4×104. To our knowledge, the

relevant work has never been performed before. The purpose is to investigate the complex flow

phenomena and the underlying mechanisms.

The compressible Navier–Stokes equations in generalized coordinates are solved using the

LES coupled with dynamic subgrid-scale (SGS) models. As employed in our previous work,16,17

the viscous terms and convective terms are discretized by a fourth-order and a second-order cen-

tered scheme, respectively. Moreover, the present numerical methods have already been employed

successfully to a variety of turbulent flows18–20 and have been verified the reliable calculations.

According to the schematic as depicted in Fig. 1, a Gaussian vortex ring13 with radius R0 is

initially placed at xxxc = (0,0,Hv), where Hv is the distance between the vortex ring center and the

bottom surface. The bump has a circular base with a cosine-squared cross section which is defined

as z(x,y) = Hb cos2(π
√

x2 + y2/6), where Hb is the bump height. The initial translational speed

of the vortex ring can be represented as21 uv = [Γ /(4πR0)](ln(8R0/σ0)− 1/4), where σ0 is the

initial core radius and Γ represents the circulation of the vortex ring. To deal with the instability of

the vortex ring, an azimuthal disturbance with an amplitude of 2×10−4 is introduced by imposing

a radial displacement on the axis of the ring.12

In the computation, the effect of bump height is investigated. The parameters of three cases

are given as follows. For all the cases, the slenderness ratio and initial height of the vortex ring

are σ0/R0 = 0.27,17 and Hv/R0 = 6R0, respectively, and the Reynolds number is Re = 4× 104.

The bump height Hb/R0 are 1.8, 2.4, and 3.0 for case 1, case 2, and case 3, respectively. The

computational domain extends for 16R0 in the x and y directions and 12R0 in the z or vertical

direction, i.e., Lx/R0 = Ly/R0 = 16, Lz/R0 = 12. Based on our careful examinations, a mesh of

size Nx×Ny×Nz = 641×641×321 with a resolution R0 = 40Δx is used in the computation. The

grid-spacing is uniform in the x–y plane, and a grid stretching in the vertical direction is used to
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Fig. 1. Schematic diagram of a vortex ring approaching a bump.

increase the grid resolution near the surface. Periodic boundary conditions are used in the x and y
directions. No-slip boundary condition is employed on the bump surface and a far-field boundary

condition is applied in the z = Lz plane.

We first investigate the evolution of vortical structures depicted in Fig. 2. For comparability of

the vortical structures for cases 1–3 as shown in Fig. 2, it is indicated that the distances between

the vortex ring center and the bump top are 0.32R0 approximately for case 1 at T = 15.0, case 2 at

T = 12.5, and case 3 at T = 10.0. From Fig. 2(a) for case 1, when the primary vortex ring moves

close to the bump, a vorticity layer is obviously generated on the core surface of bump at T =

15.0. Then the separation of boundary layer occurs and the secondary vortex ring is generated at

T = 17.5. Due to the growth of the azimuthal perturbation, the primary ring develops into a wavy-

like structure at T = 17.5 and 20.0. Furthermore, by means of Fourier analysis of the azimuthal

perturbation, it is identified that the dominant mode of the instability for the primary ring is k = 11,

consistent with the theoretical estimate of the dominant mode k = 2.26/σ0 approximately by

Maxworthy10 and the number of the wavy-like structures observed at T = 17.5 and 20.0. After the

primary ring collides with the bump surface, the secondary ring generated lifts up from the surface

and then moves over the primary vortex ring. At T = 22.5, it is seen that the secondary ring has

already moved up the primary ring. Subsequently, a variety of loop-like vortices wrapping around

both the primary and secondary vortex rings (briefly called “wrapping vortices”) are formed at

T = 25.0 and 27.5. The generation of these wrapping vortices is associated with the azimuthal

instability of the vortex rings.22 Finally, the complicated interactions of the wrapping vortices and

vortex rings over the bump surface result in the breakdown of the vortical structures into small-

scale vortices at T = 30.0, and further lead to the vortical flow transition to turbulent state which

will be analyzed below.

To investigate the effect of the bump height on the flow structures, Figs. 2(b) and 2(c) show

the vortical structures for cases 2 and 3, respectively. The evolution of vortical structures for

the generation of secondary vortex ring is similar to case 1. When the wavy-like secondary ring

locates over the primary vortex ring, the secondary ring stretches significantly and causes severe

distortion of the secondary ring at T = 20.0 for case 2 in Fig. 2(b) and T = 17.5 for case 3 in

Fig. 2(c). Then, the intense stretching effect results in the disconnection of the secondary ring and

the generation of “hair-pin vortices” at T = 22.5 for case 2 and T = 20.0 for case 3. These hair-pin
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Fig. 2. Evolution of vortical structures depicted by iso-surface of the Q criterion with Q = 0.5: (a) case 1,
(b) case 2, (c) case 3.

vortices evolve over the bump surface because of the induction of the primary vortex ring. When

the hair-pin vortices collide with the surface, the vortices break into small-scale ones and move

upwards over the bump surface at T = 25.0 for case 2 and T = 22.5 for case 3. Subsequently,

the interactions of the hair-pin vortices and vortex rings over the bump surface result in the flow

transition.

Further, to quantitatively analyze the development of azimuthal instabilities for the vortex

rings, we perform the Fourier decomposition of the vertical vorticity ωz and get Āk,15 which

denotes the azimuthal perturbation in the vortical structures. The evolution of Āk for the primary

vortex ring in case 1 is plotted in Fig. 3. At T = 15.0, the vorticity component in the wall-normal

direction ωz appears and it is obvious that the dominant mode is k= 11, consistent with the vortical

structures shown in Fig. 2(a). With the evolution of the vortex ring, the amplitude of ωz increases

rapidly implying the fast growth of the instability. At T = 20.0, the second harmonic k = 22 is

apparent and the amplitude of Āk increases considerably, as shown in Fig. 3(b). Then with the

vertical vorticity ωz breaking into small-scale vorticity, the dominant and second harmonic modes

decay rapidly, as depicted in Figs. 3(c) and 3(d).

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

(a) (b) (c) (d)10
↩1

10
↩2

10
↩3

10
↩4

10
↩1

10
↩2

10
↩3

10
↩4

10
↩1

10
↩2

10
↩3

10
↩4

10
↩1

10
↩2

10
↩3

10
↩4

A
k

A
k

A
k

A
k

T = 15.0 T = 20.0 T = 25.0 T = 30.0

Fig. 3. Azimuthal perturbation of primary vortex ring for case 1.

We then study the circulation of the primary ring and the total kinetic energy in the flow

field. Here, the circulation is calculated by Γ =
∫ 〈ωθ 〉dr dz,22 where the integration domain for

the primary vortex ring is chosen as the region with 〈ωθ 〉 < 0,12 the symbol “〈〉” represents the

average in the azimuthal direction after transforming the data from the Cartesian coordinate to
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the cylindrical coordinate system. Furthermore, the total kinetic energy can be written as E =

(1/2)
∫
(ūuu · ūuu)dV , where the integral domain is the whole flow field and ūuu represents the resolved

velocity.

The circulation is shown in Fig. 4(a). Based on the profiles for all the cases, the evolution of

circulation can be divided into three phases. Firstly, as the vortex ring is away from the bump,

the circulation is nearly constant. Then the interaction of the vortex ring with the bump occurs

and the circulation decreases quickly. Thirdly, after the vortices break up into small-scale ones,

the strength of vortex ring becomes relatively weak and the circulation decreases slowly. As the

bump height increases, the decay rate of circulation decreases. This behavior is attributed to a

weaker interaction between the primary vortex ring and the surface when Hb increases.
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Fig. 4. (a) Circulation of the primary ring and (b) total kinetic energy in the flow field.

Figure 4(b) depicts the evolution of total kinetic energy, where E0 represents the initial kinetic

energy. It can be seen that the kinetic energy decreases slowly due to viscous dissipation before

the vortex ring collides with the bump surface. Then the kinetic energy deceases quickly as the

vortex-surface interaction. With the increase of the bump height, the decay rate of the kinetic

energy becomes smaller, consistent with the evolution of circulation shown in Fig. 4(a).

Finally, we investigate the flow transition from laminar to turbulent state and the relevant

turbulent behavior. The turbulent kinetic energy (TKE) is defined as ETKE = (1/2)
∫
(uuu′ ·uuu′)dV ,

where uuu′ represents the velocity fluctuations and is defined as uuu′ = ūuu−〈ūuu〉, and the integral domain

is the whole flow field.

Figure 5 shows the evolution of ETKE. Before the vortex ring interacts with the bump, the

turbulent kinetic energy vanishes, corresponding to laminar flow state. As a typical example, we

mainly discuss the behavior for case 1. It is identified that the generation of secondary vortex ring

at T = 17.5 approximately is an indication of the growth of ETKE. Then with the development of

the azimuthal instability in the vortical structures and the breakdown of these vortices, the ETKE

grows rapidly and reaches its maximum at approximately T = 28, representing the flow transition

to turbulence.23,24 After T = 28, the ETKE decays quickly due to the vortical evolution and viscous

decay. Moreover, compared with the three cases, as the bump height increases, the maximum of

ETKE decreases gradually in Fig. 5.
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According to the investigation of an isolated vortex ring by Archer et al.,22 the shedding of

hair-pin vortices along the azimuthal direction of the ring indicates turbulent flow state. In this

study, two typical vortical structures are identified. As both the wrapping and hair-pin vortices

are mainly distributed by the vorticity components in the radial and vertical directions, we can

reasonably measure the strength of these vortices by integrating the enstrophy in the whole flow

field, Ωrz = (1/2)
∫
(ω2

r +ω2
z )dV , where ωr and ωz represent the vorticity components in the

radial and vertical directions, respectively.

The evolution of Ωrz is shown in Fig. 6. Compared with the profiles of ETKE in Fig. 5, it is

interesting to notice that the time-dependent characters of both Ωrz and ETKE exhibit the similar

manner. The generation of Ωrz (or the wrapping vortices and hair-pin vortices) corresponds to

the instant of the growth of ETKE. This behavior reasonably indicates that the formation of the

wrapping and hair-pin vortices plays an important role in the flow transition.
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In summary, the interaction between a vortex ring and a three-dimensional bump has been

studied by means of an LES technique. The effects of bump height on the vortical flow phe-

nomena and the underlying physical mechanisms were investigated. Two typical kinds of vortical

structures are identified and briefly represented as the wrapping vortices and the hair-pin vortices.

The circulation of the vortex ring and the total kinetic energy have been investigated to reveal the

different stages of flow evolution. The evolution of circulation can be divided into three phases.

Firstly, as the vortex ring is far away from the bump, the circulation is nearly constant. Then the

interaction of the vortex ring with the bump occurs and the circulation decreases quickly. Thirdly,

after the vortices break up into small-scale ones, the circulation decreases slowly. Moreover, the

evolution of TKE and enstrophy has been analyzed. It is found that the formation of the wrapping

and hair-pin vortices plays an important role in the flow transition from laminar to turbulent state.

This work was supported by the National Natural Science Foundation of China (11202100) and the
Natural Science Fund in Jiangsu Province (BK2011723).

1. G. L. Chahine, P. F. Genoux. Collapse of a cavitating vortex ring. Journal of Fluids Engineering 105, 400–405 (1983).

2. T. S. Lundgren, N. N. Mansour. Vortex ring bubbles. Journal of Fluid Mechanics 224, 177–196 (1991).



032004-7 Three-dimensional numerical simulation of a vortex ring impacting a bump

3. J. D. A. Walker, C. R. Smith, A. W. Cerra, et al. The impact of a vortex ring on a wall. Journal of Fluid Mechanics
181, 99–140 (1987).

4. C. C. Chu, C. T. Wang, C. C. Chang. A vortex ring impinging on a solid plane surface-vortex structure and surface
force. Physics of Fluids 7, 1391–1401 (1995).

5. P. Orlandi. Vortex dipole rebound from a wall. Physics of Fluids A 2, 1429–1436 (1990).

6. H. J. H. Clercx, C. H. Bruneau. The normal and oblique collision of a dipole with a no-slip boundary. Computers &
Fluids 35, 245–279 (2006).

7. M. Cheng, J. Lou, L. S. Luo. Numerical study of a vortex ring impacting a flat wall. Journal of Fluid Mechanics 660,
430–455 (2010).

8. L. D. Couch, P. S. Krueger. Experimental investigation of vortex rings impinging on inclined surfaces. Experiments in
Fluids 51, 1123–1138 (2011).
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