
Theoretical Computer Science 410 (2009) 2291–2294

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Note

A best online algorithm for scheduling on two parallel batch machinesI

Ji Tian, Ruyan Fu, Jinjiang Yuan ∗
Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People’s Republic of China

a r t i c l e i n f o

Article history:
Received 29 April 2008
Received in revised form 4 February 2009
Accepted 14 February 2009
Communicated by D.-Z. Du

Keywords:
Online scheduling
Parallel batch machines
Competitive ratio

a b s t r a c t

We consider the online scheduling on two parallel batch machines with infinite batch size
to minimize makespan, where jobs arrive over time. That is, all information of a job is not
available until it is released. For this online scheduling problem, Nong et al. [Q.Q. Nong,
T.C.E. Cheng, C.T. Ng, An improved online algorithm for scheduling on two unrestrictive
parallel batch processing machines, Operations Research Letters, 36 (2008) 584–588] have
provided an online algorithmwith competitive ratio no greater than

√
2.We show that this

bound is tight for the problem. Furthermore we give a new best possible online algorithm
with a tighter structure.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Online scheduling, including online over list and online over time, has been extensively studied for a long time. Themodel
studied in this paper is an online over time system. That is, jobs arrive over time, and the characteristics of each job, including
arrival time, processing time and so on, are unknown until its arrival time. For a job Ji, its arrival time and processing time
are denoted by ri and pi, respectively. In parallel batch scheduling, a machine can process b jobs simultaneously as a batch
with capacity b. Jobs in a batch have a common processing time and a common completion time. The processing time of a
batch is defined to be the maximum processing time of the jobs in the batch. We say that the batch size is infinite if b = ∞.
The qualities of online algorithms are assessed by their competitive ratio. An algorithm is called ρ-competitive if, for any

instance, a solution is achieved with value not worse than ρ times the value of an optimal off-line solution.
For online scheduling on m identical machines to minimize makespan, Chen and Vestjens [1] proposed an online LPT

(largest processing time) algorithm with competitive ratio 3/2, and proved that any online algorithm has a competitive
ratio of at least 1.3473, while form = 2, the lower bound is (5−

√
5)/2. Whenm = 2, Noga and Seiden [3] provided a best

possible online algorithmwith competitive ratio (5−
√
5)/2. In the off-line version, for scheduling n jobs with release dates

onm identical parallel batch machines to minimize the total weighted completion times of the jobs, Li et al. [2] presented a
polynomial-time approximation scheme (PTAS). In online scheduling, Zhang et al. [6] considered the problem of the equal
size jobs onm identical parallel batchmachines tominimizemakespan.When the batch size is infinite, they proposed a best
possible online algorithmwith competitive ratio 1+βm, whereβm is the positive solution of equation (1+βm)m+1 = βm+2.
When the batch size is finite, they provided a best possible online algorithm with competitive ratio (

√
5+ 1)/2.

In this paper, we consider the online scheduling on two parallel batch machines with infinite capacity to minimize
makespan. For this problem, Nong et al. [4] have provided an online algorithm with competitive ratio no greater than

√
2.

We show in this paper that the lower bound of competitive ratio of the problem is
√
2. This means that the online algorithm

provided by Nong et al. is the best possible. Then we propose another best possible online algorithmwith competitive ratio

I Research supported by NSFC (10671183), NFSC-RGC (70731160633) and SRFDP (20070459002).
∗ Corresponding author. Tel.: +86 371 67767835.
E-mail address: yuanjj@zzu.edu.cn (J. Yuan).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.02.011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81950126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:yuanjj@zzu.edu.cn
http://dx.doi.org/10.1016/j.tcs.2009.02.011


2292 J. Tian et al. / Theoretical Computer Science 410 (2009) 2291–2294

√
2. The new algorithm, called Modified-Sleepy, has a tighter structure, which enables us to give a simple proof for the
competitive ratio. As for the idea to tighten the structure of the previous algorithm, it is similar to that of Poon and Yu [5].
The paper is organized as follows. In Section 2, we prove that, for any online algorithm, the lower bound of competitive

ratio is no less than
√
2. In Section 3, we propose a best possible online algorithm called Modified-Sleepy, since we adopt

the advantages of the Sleepy algorithm provided by Noga and Seiden [3].

2. Lower bound

In this section we will prove that no online algorithm has a competitive ratio less than
√
2. To find the lower bound of

competitive ratio, we use adversary strategy to construct a special instance. Let α =
√
2−1. Thenwe have α2+2α−1 = 0.

We use Cmax(σ ) and Cmax(π) to denote the objective value generated by the online algorithm and by an optimal off-line
algorithm, respectively.

Theorem 2.1. For the online scheduling problem on two parallel batch machines with infinite batch size to minimize makespan,
there exists no online algorithm with competitive ratio less than

√
2.

Proof. Consider the following instance provided by the adversary. The first job J1, with processing time p1 = 1, arrives at
time 0. Suppose that the online algorithm starts job J1 at time S1 on machine 1.
If S1 ≥ α, then Cmax(σ ) ≥ S1 + 1 ≥ 1+ α and Cmax(π) = 1. Thus Cmax(σ )/Cmax(π) ≥ 1+ α.
If S1 < α, the second job J2 with processing time p2 = 1− S1 arrives at time S1 + ε. If J2 is processed on machine 1, then

Cmax(σ ) ≥ S1 + 1+ 1− S1 = 2 and Cmax(π) = 1. Thus Cmax(σ )/Cmax(π) > 1+ α. So we assume that the online algorithm
starts to process J2 at time S2 on machine 2. We consider the following three cases.

Case 1. S2 ≥ S1+α. Then Cmax(σ ) ≥ S2+p2 ≥ S1+α+1−S1 = 1+α and Cmax(π) = 1+ε. Thus Cmax(σ )/Cmax(π) ≥ 1+α
as ε −→ 0.

Case 2. 2S1 ≤ S2 < S1+α. The third job J3with processing time p3 = α(S1+1) arrives at time S2+ε. Since the completion
time of J2 is S2 + 1− S1 ≥ 2S1 + 1− S1 = S1 + 1 and the completion time of J1 is equal to S1 + 1, we know that the starting
time of the third job cannot be earlier than time moment S1 + 1. Then Cmax(σ ) ≥ S1 + 1 + α(S1 + 1) = (1 + α)(S1 + 1).
Since there exists a feasible schedule, say π ′, in which J1 and J2 are processed in a common batch on a machine and J3 is
processed on the other machine, we have Cmax(π) ≤ Cmax(π ′) = max{S1 + ε + 1, S2 + ε + α(S1 + 1)}. By the fact that
S2 + ε + α(S1 + 1) ≤ S1 + α+ ε + α(S1 + 1) = S1 + ε + α(S1 + 2) ≤ S1 + ε + α(α+ 2) = S1 + 1+ ε (recall that S1 < α),
we conclude Cmax(σ )/Cmax(π) ≥ 1+ α as ε −→ 0.

Case 3. S1 + ε = r2 ≤ S2 < 2S1. The third job J3 with processing time p3 = 1 + S1 − S2 arrives at time S2 + ε.
In this case the completion time of the second job is S2 + 1 − S1 < 2S1 + 1 − S1 = S1 + 1, which is earlier than
the completion time of the first job and it is also the earliest possible time moment for starting job J3. Then we have
Cmax(σ ) ≥ S2 + 1 − S1 + 1 + S1 − S2 = 2 and Cmax(π) ≤ max{S1 + ε + 1, S2 + ε + 1 + S1 − S2} = S1 + ε + 1
(since there exists a feasible schedule in which J1 and J2 are processed in a common batch on a machine and J3 is processed
on the other machine). Thus Cmax(σ )/Cmax(π) ≥ 2/(S1+ ε+ 1) ≥ 2/(α+ ε+ 1) −→ 1+ α as ε −→ 0, since S1 < α. This
completes the proof of Theorem 2.1. �

3. A new online algorithm

Since the algorithm is non-preemptive, when two machines are busy, it should wait until at least one machine is idle. So
it needs to properly handle the case when two machines are idle and the case when one machine is running (busy) and the
other one is idle. Note that the capacity of batch is unbounded. At each starting time of batches, the algorithm will process
all unscheduled available jobs as a single batch. That is, at a time moment, there is at most one batch starting to process.
Some notations will be used in the algorithm. Let U(t) denote the set of all unscheduled available jobs at time t . We say

J(t) is the last longest job in U(t)means that it has the largest arrival time among all longest jobs in U(t). Let p(t) and r(t)
denote the processing time and arrival time of job J(t), respectively. If at time t , only onemachine is running a batch, we use
B∗(t) to denote this batch, and suppose that it has starting time S∗(t) and processing time p∗(t). If at time t , both machines
are idle, we define S∗(t) = p∗(t) = 0. Let α =

√
2− 1, which is the positive solution of equation α2 + 2α − 1 = 0.

First of all, we recall the online algorithm A2(α) provided by Nong et al. [4] in order to compare to the Modified-Sleepy
algorithm in this paper.

Algorithm A2(α). At time t , if a machine is idle, U(t) 6= ∅, and t ≥ (1+α)r(t)+αp(t), then start U(t) as a single batch on
the machine at time t; otherwise, do nothing but wait.

By deliberating the structure of the instance in the proof of Theorem 2.1 and taking advantage of the Sleepy algorithm
[3], the Modified-Sleepy algorithm is designed as follows.
Modified-Sleepy Algorithm:
At time t , if a machine is idle, U(t) 6= ∅, and t ≥ max{αp(t), S∗(t) + αp∗(t)}, then start U(t) as a single batch on the

machine; otherwise, do nothing but wait.



J. Tian et al. / Theoretical Computer Science 410 (2009) 2291–2294 2293

It can be observed that, at each decision time t , the action of algorithm A2(α) is uniquely determined by the information of
the last longest job inU(t)without considering the running batch B∗(t) at time t . This is themain reason for the complicated
proof in [4]. In theModified-Sleepy algorithm, the action at each decision time t is additionally affected by the running batch
B∗(t). Hence, the strategy in the Modified-Sleepy algorithm seems more reasonable. Although both algorithms apply delay
strategy, the delay caused in the Modified-Sleepy algorithm is less than that in algorithm A2(α) in most cases. Hence, the
Modified-Sleepy algorithm has a tighter structure than algorithm A2(α). This enables us to give a simple proof.
WeuseM1 andM2 to denote the twoparallel batchmachines. Letσ andπ denote the schedule generated by theModified-

Sleepy algorithm and an optimal off-line schedule, respectively. Their objective values are denoted by Cmax(σ ) and Cmax(π),
respectively. We assume that there are n batches totally in σ , which are written as B1, B2, . . . , Bn. For each i, the last longest
job in batch Bi is denoted by Ji with processing time pi and arrive time ri. Let Si and Ci be the starting time and the completion
time of batch Bi, respectively. Suppose that C1 ≤ C2 ≤ · · · ≤ Cn. It can be observed that Si < Sj implies rj > Si. The objective
value Cmax(σ ) is assumed by batch Bn, i.e., Cmax(σ ) = Cn. Without loss of generality, we assume that batch Bn is scheduled
on machineM1.
In schedule σ , if there exists some batch with the starting time greater than Sn, we will cancel this batch, since the

objective value is reached by batch Bn. Thiswould not impact the value of Cmax(σ ), butmay possibly decrease that of Cmax(π).
The competitive ratio would not decrease. So we suppose in the sequel that no jobs arrive after timemoment Sn. Let us start
by giving a claim that was first proposed in Nong et al. [4].

Claim 3.1 ([4]). Without decreasing the ratio of Cmax(σ )/Cmax(π), we can assume that there is only one job in each batch
of σ . �

By Claim 3.1, we use the set of n jobs {J1, . . . , Jn} to replace the set of n batches {B1, . . . , Bn} generated by the Modified-
Sleepy algorithm.We say job Ji is running at time t if batch Bi is running at that timemoment in σ . We consider the last three
jobs Jn−2, Jn−1 and Jn. Note that Cn−2 ≤ Cn−1 ≤ Cn and Jn is scheduled on machine M1 in σ . Without loss of generality, we
suppose that Jn−2 is also scheduled onM1 and Jn−1 is scheduled on machineM2. In the following, we will offer some claims
that describe the structure of σ .

Claim 3.2. For each job Ji, with 1 ≤ i ≤ n, the starting time Si satisfies Si ≥ αpi. �

Claim 3.3. If there exists a job Ji in σ such that Cmax(σ )− Cmax(π) ≤ (1−α)pi and Cmax(π) ≥ Si+ pi or Cmax(π) ≥ (1+α)pi,
then we have Cmax(σ )/Cmax(π) ≤ 1+ α.

Proof. From Claim 3.2, we have that Si ≥ αpi. Then the inequality Cmax(π) ≥ Si + pi implies that Cmax(π) ≥ (1+ α)pi. By
the fact that Cmax(σ )− Cmax(π) ≤ (1− α)pi, we conclude that (Cmax(σ )− Cmax(π))/Cmax(π) ≤ (1− α)/(1+ α) = α. The
result follows. �

A job Ji is called normal in σ if the starting time Si = max{S∗(Si) + αp∗(Si), αpi, ri}. If job Ji is not normal in σ , then, for
every job Jj with Sj < Si, we have Si > Sj + αpj.

Claim 3.4. If Jn is a normal job in σ , then we have Cmax(σ )/Cmax(π) ≤ 1+ α.

Proof. If there exists a running job at time moment Sn in σ , it must be job Jn−1. Since Jn is a normal job in σ , we have
Sn = max{Sn−1 + αpn−1, αpn, rn}. Note that rn > Sn−1. Then we have Cmax(π) > Sn−1 + pn. If Sn = Sn−1 + αpn−1,
then Cmax(σ ) = Sn−1 + αpn−1 + pn and so Cmax(σ ) − Cmax(π) < αpn−1 < αCmax(π). If Sn = max{αpn, rn}, then
Cmax(σ ) = Sn + pn = max{(1+ α)pn, rn + pn} ≤ (1+ α)Cmax(π). The result follows. �

In the following, we suppose that Jn is not a normal job in σ . Then we have Sn = Cn−2 > max{Sn−1+αpn−1, αpn, rn}, and
Cmax(σ ) = Sn−2 + pn−2 + pn.

Claim 3.5. If, for a certain i ∈ {n− 1, n− 2}, Ji is a normal job and Cmax(π) ≥ ri + pi + pn, then Cmax(σ )/Cmax(π) ≤ 1+ α.

Proof. Suppose that the running job (if exists) is J∗ at timemoment Si. Then ri > S∗ and Si = max{S∗+αp∗, αpi, ri}, since job
Ji is normal in σ . When Si = S∗+αp∗, we have Cmax(σ ) ≤ S∗+αp∗+pi+pn. Recall that Cmax(π) ≥ ri+pi+pn > S∗+pi+pn.
Then Cmax(σ ) − Cmax(π) < αp∗ < αCmax(π). When Si = max{αpi, ri}, since Cmax(π) ≥ ri + pi + pn, we have
Cmax(σ )− Cmax(π) < αpi < αCmax(π). The result follows. �

In the following discussion, we suppose that {Sn−1, Sn−2} = {Si1 , Si2} such that Si1 > Si2 . Then Cmax(σ ) = Sn−2 + pn−2 +
pn ≤ Sn−1 + pn−1 + pn, and therefore, Cmax(σ ) ≤ min{Si1 + pi1 + pn, Si2 + pi2 + pn}.

Theorem 3.6. Cmax(σ )/Cmax(π) ≤ 1+ α.

Proof. By the implementation of the Modified-Sleepy algorithm and the fact that Si1 > Si2 , we have Si1 ≥ Si2 + αpi2 and
rn > Si1 ≥ ri1 > Si2 . Then Cmax(π) ≥ rn + pn > Si2 + αpi2 + pn. Using the fact that Cmax(σ ) ≤ Si2 + pi2 + pn, we have
Cmax(σ )− Cmax(π) ≤ (1− α)pi2 .
If job Ji2 starts at or after time moment αpi2 in schedule π , then we have Cmax(π) ≥ (1 + α)pi2 . From Claim 3.3, we

conclude that Cmax(σ )/Cmax(π) ≤ 1+ α.



2294 J. Tian et al. / Theoretical Computer Science 410 (2009) 2291–2294

We suppose below that Ji2 starts before time moment αpi2 in schedule π . By Claim 3.2, we know that Si2 ≥ αpi2 . With
the fact that ri1 > Si2 and rn > Si2 , we conclude that neither of the jobs Ji1 and Jn belong to a common batch with job Ji2 in
schedule π . We analyze this situation by the following two cases, keeping in mind that Cmax(σ )− Cmax(π) ≤ (1− α)pi2 .

Case 1. Jobs Ji1 and Jn are not scheduled on the same machine in schedule π . Then we have Cmax(π) ≥ min{ri2 + pi2 +
pi1 , ri2+pi2+pn}. If Cmax(π) ≥ ri2+pi2+pi1 , we distinguish two subcases. When pi1 ≥ αpi2 , we have Cmax(π) ≥ (1+α)pi2 .
Note that Cmax(σ )− Cmax(π) ≤ (1−α)pi2 . By Claim 3.3, the result Cmax(σ )/Cmax(π) ≤ 1+α holds. When pi1 < αpi2 , since
Cmax(σ ) ≤ Si1 + pi1 + pn and Cmax(π) ≥ rn + pn > Si1 + pn, we have Cmax(σ )− Cmax(π) ≤ pi1 < αpi2 < αCmax(π).
If Cmax(π) ≥ ri2 + pi2 + pn, from Claim 3.5, we need to properly handle the case that job Ji2 is not normal. Then Si2 is the

completion time of some batch in schedule σ . Assume that Si2 = Ci3 and job Ji4 is running or completes at time moment Si2 .
Then Ci3 ≤ Ci4 . Further, in σ job Ji3 is scheduled on the same machine as Ji2 and job Ji4 is on the same machine as Ji1 . Thus
Si1 ≥ Ci4 . We need to consider two possibilities depending on the relationship of Si3 and Si4 .
First, Si4 > Si3 . Then we have ri2 > Si4 and Si4 ≥ Si3 + αpi3 . Since Cmax(π) ≥ ri2 + pi2 + pn ≥ Si3 + αpi3 + pi2 + pn, by the

fact that Cmax(σ ) ≤ Si3 + pi3 + pi2 + pn, we have Cmax(σ )− Cmax(π) ≤ (1−α)pi3 . Note that Cmax(π) > rn > Si2 = Si3 + pi3 .
Using Claim 3.3, we conclude that Cmax(σ )/Cmax(π) ≤ 1+ α.
Second, Si4 < Si3 . Then we have ri2 > Si3 and Si3 ≥ Si4 + αpi4 . Recall that Si3 + pi3 ≤ Si4 + pi4 . Then we have pi4 − pi3 ≥

Si3 − Si4 ≥ αpi4 , and so, pi3 ≤ (1− α)pi4 . This implies that Cmax(σ )− Cmax(π) ≤ (Si3 + pi3 + pi2 + pn)− (Si3 + pi2 + pn) =
pi3 ≤ (1− α)pi4 . Since Cmax(π) > rn > Si1 ≥ Si4 + pi4 , by Claim 3.3, we conclude that Cmax(σ )/Cmax(π) ≤ 1+ α.

Case 2. Jobs Ji1 and Jn are scheduled on a common machine in schedule π . Note that rn > Si1 ≥ ri1 > Si2 . Depending on
whether Ji1 and Jn belong to a common batch or not in π , we consider two possibilities.
First, jobs Ji1 and Jn belong to a commonbatch inπ . Since rn > Si1 ≥ Si2+αpi2 , wehaveCmax(π) ≥ Si2+αpi2+max{pi1 , pn}.

If max{pi1 , pn} ≥ (1− α)pi2 , by using Claim 3.2, we have Cmax(π) ≥ Si2 + αpi2 +max{pi1 , pn} ≥ (1+ α)pi2 . From the fact
that Cmax(σ ) − Cmax(π) ≤ (1 − α)pi2 and Claim 3.3, we conclude that Cmax(σ )/Cmax(π) ≤ 1 + α. Then we assume that
max{pi1 , pn} < (1−α)pi2 . Note thatCmax(σ )−Cmax(π) ≤ (Si1+pi1+pn)−(Si1+max{pi1 , pn}) < min{pi1 , pn} ≤ max{pi1 , pn}.
Thus

Cmax(σ )− Cmax(π)
Cmax(π)

≤
max{pi1 , pn}

Si2 + αpi2 +max{pi1 , pn}
≤

(1− α)pi2
αpi2 + αpi2 + (1− α)pi2

≤
1− α
1+ α

= α.

Second, Ji1 and Jn belong to distinct batches in π . Then Cmax(π) ≥ ri1 + pi1 + pn. If Ji1 is a normal job in σ , from Claim 3.5,
the result Cmax(σ )/Cmax(π) ≤ 1+α holds. Suppose that Ji1 is not a normal job in σ . Then Si1 is the completion time of some
batch in schedule σ . Suppose Si1 = Si3 + pi3 . We consider the relationship of Si2 and Si3 by the following two subcases.
If Si2 > Si3 , then Si2 ≥ Si3+αpi3 . Further,with the fact that ri1 > Si2 , we have Cmax(π) ≥ Si2+pi1+pn ≥ Si3+αpi3+pi1+pn.

Thus Cmax(σ ) ≤ Si1 + pi1 + pn = Si3 + pi3 + pi1 + pn, and so, Cmax(σ ) − Cmax(π) ≤ (1 − α)pi3 . From the fact that
Cmax(π) > rn > Si1 = Si3 + pi3 and Claim 3.3, we have Cmax(σ )/Cmax(π) ≤ 1+ α.
If Si2 < Si3 , then ri1 > Si3 ≥ Si2 + αpi2 and Cmax(σ )− Cmax(π) ≤ (Si3 + pi3 + pi1 + pn)− (Si3 + pi1 + pn) = pi3 . From the

fact that Si3 + pi3 ≤ Si2 + pi2 , we have pi3 < (1− α)pi2 . Note that Cmax(π) > rn > Si3 + pi3 ≥ Si2 + αpi2 + pi3 . We conclude
that

Cmax(σ )− Cmax(π)
Cmax(π)

≤
pi3

Si2 + αpi2 + pi3
≤

(1− α)pi2
αpi2 + αpi2 + (1− α)pi2

=
1− α
1+ α

= α.

This completes the proof of Theorem 3.6. �

References

[1] B. Chen, A.P.A. Vestjens, Scheduling on identical machines: How good is LPT in an on-line setting? Operations Research Letters 21 (1997) 165–169.
[2] S.G. Li, G.J. Li, X.Q. Qi,Minimizing totalweighted completion time on identical parallel batchmachines, International Journal of Foundations of Computer
Science 176 (2006) 1441–1454.

[3] J. Noga, S.S. Seiden, An optimal online algorithm for scheduling two machines with release times, Theoretical Computer Science 268 (2001) 133–143.
[4] Q.Q. Nong, T.C.E. Cheng, C.T. Ng, An improved on-line algorithm for scheduling on two unrestrictive parallel batch processing machines, Operations
Research Letters 36 (2008) 584–588.

[5] C.K. Poon,W.C. Yu, A flexible on-line scheduling algorithm for batchmachinewith infinite capacity, Annals of Operations Research 133 (2005) 175–181.
[6] G.C. Zhang, X.Q. Cai, C.K. Wong, Optimal on-line algorithms for scheduling on parallel batch processing machines, IIE Transactions 35 (2003) 175–181.


	A best online algorithm for scheduling on two parallel batch machines
	Introduction
	Lower bound
	A new online algorithm
	References


