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a b s t r a c t

We consider random binary search trees when the input consists of a multiset, i.e. a set
with multiple occurrences of equal elements, and prove that the randomized insertion and
deletion algorithms given by Martínez and Roura (1998) [4] produce random search trees
regardless of multiplicities; even if all the elements are equal during the tree updates, a
search treewillmaintain its randomness. Thus, equal elements do not degenerate a random
search tree and they need not to be handled in any special way. We consider also stability
of a search tree with respect to its inorder traversal and prove that the algorithms used
produce stable trees. This implies an implicit indexing of equal elements giving another
proof that multiplicities do not pose problems when maintaining random binary search
trees.

© 2010 Elsevier B.V. All rights reserved.

1. Random binary search tree

When a set of size n is stored into a binary search tree, then all elements in the tree are unequal and the left subtree of
the root includes elements smaller than the root element and the right subtree of the root includes elements larger than the
root, see trees on left in Fig. 1. For common concepts related to binary search tree we refer to any standard text book like [3]
or [1], and for defining a random binary search tree we use the definition below [4].

Definition 1. Let T be a binary search tree of size n. We say that T is a random binary search tree if T is empty, or T is not
empty and its left subtrees TL and its right subtree TR are independent random binary search trees, and all sizes of TL occur
with equal probability: for all s ∈ {0, . . . , n − 1}

Pr[size(TL) = s | size(T ) = n] = 1/n.

That is, the conditional probability of size(TL) has a uniform distribution.

When T includes only unequal elements of a set S, the above equation is equivalent to (∀x ∈ S): Pr[x is at the root of T |

size(T ) = n] = 1/n; this fact was the key idea whenMartínez and Roura proved that the randomized insertion and deletion
algorithms produce random search trees [4].

When T stores a multiset, i.e. a set including multiplicities, the equivalence is not true. The extreme case appears when
the tree stores a set consisting only of equal elements;We call this kind of set amono-multiset ormonoset for short (see trees
on right in Fig. 1). Given amonoset as input for the standard insertion algorithm degenerates a binary search tree to a list [3].
To avoid this several approaches have been proposed: equal elements can be collected together forming lists so that each
node of the binary search tree actually includes a list of equal keys, use randomization for selecting the left or right child for
comparisons and use flipping bits implying left or right preference in comparisons [1]. All the techniques imply algorithm
modification and the modified algorithms will include parts which are not needed in most cases. We will show that the
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randomized algorithms presented by Martínez and Roura [4] manage multisets equally well as sets (See Algorithms 1–3 for
insertion of an element, and Algorithms 4 and 5 for deletion of an element.); so modifications are not needed. We start by
considering first monosets and then we generalize the results for multisets. Finally, we consider stability in trees produced
by the algorithms mentioned above giving another view and proof on the reasons why the algorithms are able to produce
random trees in spite of multiplicities.

Algorithm 1 Insertion of an element.
bst insert(int x, bst T) {

if (random(0, T->size) == 0)
return insert_at_root(x, T);

if (x < T->key)
T->left = insert(x, T->left);

else /* x >= T->key */
T->right = insert(x, T->right);

return T;
}

Algorithm 2 Insertion at the root.
bst insert_at_root(int x, bst T) {

bst S, G;
split(x, T, &S, &G);
T = new_node();
T->key = x; T->left = S; T->right = G;
return T;

}

Algorithm 3 Split at the root.
void split(int x, bst T, bst *S, bst *G) {

if (T == NULL) {
*S = *G = NULL;
return;

}
if (x < T->key) {

*G = T;
split(x, T->left, S, &(*G->left));

}
else { /* x >= T->key */

*S = T;
split(x, T->right, &(*S->right), G);

}
}

2. Monoset

Lemma 1. If a random binary search tree T stores a monoset H and x is an element that is equal to all elements of H, then
subroutine split() always produces two independent random binary search trees S ′ and G′ storing monosets H and ∅,
respectively.

Proof. Code inspection reveals that split() always produces the original tree T and an empty tree as trees S ′ and G′,
respectively, which are random and independent binary search trees. �

Lemma 2. If a random binary search tree T stores a monoset H and x is an element that is equal to all elements of H, then
insert() produces a new random binary search tree T ′ storing the monoset union of H and {x}.

Proof. The proof is by induction on the size n of the tree T . When n = 0, the claim is true because insert() returns a new
random binary search tree T ′ consisting only of a root node containing x. Because the left and right subtrees of T ′ are empty
trees, and therefore independent, T ′ is a random binary search tree.
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Algorithm 4 Deletion of an element.
bst delete(int x, bst T) {

bst Aux;
if (T == NULL)

return NULL;
if (x < T->key)

T->left = delete(x, T->left);
else if (x > T->key

T->right = delete(x, T->right);
else { /* x == T->key */

Aux = join(T->left, T->right);
free_node(T);
T = Aux;

}
return T;

}

Algorithm 5 Join of two binary search trees.
bst join(bst L, bst R) {

int m, n;
m = L->size; n = R->size;
if (m + n == 0) return NULL;
if (random(0, m + n - 1) < m) {

L->right = join(L->right, R);
return L

}
else {

R->left = join(L, R->left);
return R;

}
}

Assume now that n > 1 and the claim is true for all sizes less than n. With probability n/(n + 1), x is not placed at the
root of T ′ and it will be inserted into the right subtree TR of T , leaving the left subtree TL of T untouched, i.e., T ′

L = TL. Because
T was a random binary search tree, the size of TL is equal to s, for any s ∈ {0, 1, . . . , n − 1} with probability 1/n. Thus,

Pr[size(T ′

L) = s | size(T ′) = n + 1] = (1/n)(n/(n + 1)) = 1/(n + 1),
and inserting x into the right subtree TR will produce a random binary search tree T ′

R by the induction hypothesis. Because
T is a random binary search tree, TL is independent of TR, and thus inserting x into TR leaves TL and TR independent. With
probability 1/(n + 1), x is placed at the root of T ′ having T ′

L = T as the left subtree and an empty tree as the right subtree,
both of which are independent random binary search trees based on Lemma 1. Because

Pr[size(T ′

L) = n | size(T ′) = n + 1] = 1/(n + 1),
we see that the conditional probability has a uniform distribution. �

Lemma 3. Let L and R be two independent random binary search trees such that none of the elements of L is larger than the
elements of R. Subroutine join() with parameters L and R will produce a new random binary search tree T ′ containing the
elements of L and R.
Proof. The lemma is proved by induction on sizes of L and R, that is, onm and n, respectively.When L or R is empty (or both),
the lemma trivially holds: T ′ will be an empty tree or copy of L or R but not both.

Assume now that m > 0 and n > 0 and that the claim is true if the size of L is less than m or the size of R is less than
n. The root of L will be chosen as the root of T ′ with probability m/(m + n), and then the left subtree T ′

L of T ′ will be the
left subtree LL of L and the right subtree of T ′, will be the join of the right subtree LR of L with R producing a random binary
search tree based on induction hypothesis. Moreover, because L is a binary search tree independent of R, then joining LR and
R results in an independent subtree. Now for all s ∈ {0, . . . ,m − 1}

Pr[size(T ′

L) = s | size(T ′) = m + n] = (1/m)(m/(m + n)) = 1/(m + n).
With probability n/(m + n) the root of R will be chosen as the root of T ′, and then the right subtree of T ′ will be the right
subtree of R and the left subtree T ′

L of T
′ will be the join of L with the left subtree RL of R producing a random binary search

tree based on the induction hypothesis. Because R was independent of L, then joining L and RL results in an independent
subtree. Applying the Definition 1 for RL and considering the size of T ′

L we see that for all s ∈ {0, . . . , n − 1}
Pr[size(T ′

L) = m + s | size(T ′) = m + n] = (1/n)(n/(m + n)) = 1/(m + n).
Thus, the conditional probability has a uniform distribution. �
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Fig. 1. Search trees storing set {1, 2, 3, 4} and multiset {7, 7, 7, 7}.

Lemma 4. If T is a random binary search tree storing a monoset H, then delete() with parameters x and T produces a new
random binary search tree T ′ containing elements of multiset difference H \ {x}.

Proof. If x is not equal to the root element of T , then it is not in the tree at all and the theorem holds. When x is in the tree,
it is always found at the root and the new tree T ′ is formed by joining TL and TR. Based on Lemma 3 the resulting tree T ′ is
always a random binary search tree. �

3. Multisets

Lemma 5. If a random binary search tree T stores a multiset M and x is an element that might be equal to some elements of
M, then executing subroutine split() always produces two new independent random binary search trees S ′ and G′ storing
multisets {y ∈ M | y ≤ x} and {y ∈ M | y > x}, respectively.

Proof. The proof is by induction on the size n of T . When n = 0, the lemma trivially holds because S ′ and G′ will be
independent empty binary search trees.

Now let n > 0 and assume that the lemma is true for values smaller than n. The multiset M consists of two multisets
Ms = {y ∈ M | y ≤ x}, and Mg = {y ∈ M | y > x} having sizes ns and ng , respectively. Let r be the root element of T .

If x ≥ r , the left subtree TL will be left untouched and S ′

L = TL. Splitting TR produce two trees S ′

R and G′, which are
independent random binary search trees by induction hypothesis: S ′

R includes elements {y ∈ M | r ≤ y ≤ x} and G′

elements {y ∈ M | y > x}. Subtree S ′

L will be independent of S ′

R because T is a random binary search tree, and therefore TL
is independent of TR. Based on induction hypothesis the conditional probability of size(TL) has a uniform distribution and
the size of TL is now at most ns − 1. Therefore, we have that the size of S ′

L is equal to s, for any s ∈ {0, 1, . . . , ns − 1} with
probability 1/ns. Thus,

Pr[size(S ′

L) = s | size(S ′) = ns] = 1/ns.

If x < r , the right subtree TR will be left untouched and G′

R = TR. Splitting TL produce two trees S ′ and G′

L, which are
independent random binary search trees by the induction hypothesis: S ′ includes elements {y ∈ M | y ≤ x} and G′

L elements
{y ∈ M | x < y ≤ r}. Subtree G′

R will be independent of G′

L because T is a random binary search tree, and therefore TR is
independent of TL. Based on induction hypothesis the conditional probability of size(TR) has a uniform distribution and the
size of TR is now at most ng − 1. Therefore, we have that the size of G′

R is equal to s, for any s ∈ {0, 1, . . . , ng − 1} with
probability 1/ng . Considering the whole G, we have

Pr[size(G′

L) = s | size(G′) = ng ] = 1/ng .

In both cases new trees S ′ and G′ are independent random binary search trees storing multisets {y ∈ M | y ≤ x} and
{y ∈ M | y > x}, respectively. �

Lemma 6. If a random binary search tree T stores a multiset M and x is an element that might be equal to some elements of M,
then insert() produces a random binary search tree T ′ storing the multiset union of M and {x}.

Proof. In a tree T of size n storing a multiset M having k different element, the ith smallest element appears ni times, and
thus

∑k
i=1 ni = n. Note that n cannot be smaller than k. The proof is by induction on two variables: first on the number of

different elements k, and second on the size n of T . The induction base k = 1 and n ≥ 1 is proved in Lemma 2.
The induction hypothesis is that the theorem is true for all values smaller than k with all permitted values of n. The

multiset M consists of two multisets Ms = {y ∈ M | y ≤ x}, and Mg = {y ∈ M | y > x} having sizes ns and ng , respectively.
To prove the theorem with a value kwe set n = k.

With probability 1/(n + 1), x is placed at the root of T ′ and T ′

L will contain all smaller and equal elements; thus

Pr[size(T ′

L) = ns | size(T ′) = n + 1] = 1/(n + 1)

or

Pr[size(T ′

R) = ng | size(T ′) = n + 1] = 1/(n + 1). (1)

By Lemma 5 the resulting trees T ′

L and T ′

R will be independent random search trees, and, therefore, T ′ is also a random binary
search tree.
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Let r be the root element of T . With probability n/(n + 1), x is not placed at the root of T ′ and it will be inserted into the
right or left subtree of T depending on whether it is smaller or not than r .

When x ≥ r , x will be inserted into the right subtree of T , leaving the left subtree TL of T untouched, i.e., T ′

L = TL. Based
on induction hypothesis the conditional probability of size(TL) has a uniform distribution and the size of TL is now at most
ns − 1 because x ≥ r . Therefore, for any s ∈ {0, 1, . . . , ns − 1}

Pr[size(T ′

L) = s | size(T ′) = n + 1] = (1/n)(n/(n + 1)) = 1/(n + 1).

By induction hypothesis insertion of x into the right subtree TR having less different keys than k produces a random binary
search tree T ′

R which is independent of T ′

L based on induction hypothesis.
When x < r , x will be inserted into the left subtree of T leaving the right subtree TR untouched, i.e., T ′

R = TR. Based on
induction hypothesis of the conditional probability of the left subtree, the right subtree has also a conditional probability
having a uniform distribution and it is now at most ng − 1 because x < r . Therefore, for any s ∈ {0, 1, . . . , ng − 1}

Pr[size(T ′

R) = s | size(T ′) = n + 1] = (1/n)(n/(n + 1)) = 1/(n + 1).

Combining this with Eq. (1) shows that the size of the right subtree T ′

R is equal to s, for any s ∈ {0, 1, . . . , ng}with probability
1/(n + 1). Considering the whole T ′, we see that for all s ∈ {ns, ns + 1, . . . , n}

Pr[size(T ′

L) = s | size(T ′) = n + 1] = (1/n)(n/(n + 1)) = 1/(n + 1).

By induction hypothesis insertion of x into the left subtree TL having less different keys than k produces a random binary
search tree T ′

L which is independent of T ′

R based on induction hypothesis.
Joining both cases shows that when n = k, the size of the left subtree T ′

L of T
′ is equal to s, for any s ∈ {0, . . . , n} with

probability 1/(n+ 1). Fixing k and continuing induction on nwhile keeping n = k as the new induction base, we can finally
prove the theorem as a whole. �

Lemma 7. If T is a random binary search tree storing a multiset M, then delete() with parameters x and T produces a new
random binary search tree T ′ containing elements of multiset difference M \ {x}.

Proof. The proof is by induction on the size n of T . When n = 0, the theorem holds because x cannot be in the tree at all
and the resulting tree T ′ equals to T . Let n > 0, and let us suppose that the theorem is true for all values smaller than n. If x
is equal to the element at the root, then the new tree T ′ is formed by joining TL and TR. Based on Lemma 3 the resulting tree
T ′ is always a random binary search tree. If x is not equal to the element at the root, then delete() procedure is continued
in a subtree producing a new independent random binary tree as a subtree based on the induction hypothesis. �

Corollary 1. Regardless of multiplicities of input elements, the order of input elements, and the order of insertion and deletion
requests, randomized algorithms insert() and delete() always produce a random binary search tree as a result if a random
binary search tree is given as parameter to them.

4. Stable tree

Let us couple an imaginary implicit time stamp to each equal element inserted into a random binary search tree, see
Fig. 2. This is done only for our understanding, and no values are recorded into elements in reality. The stamps are used for
recording the relative age between equal elements: the higher, the older. We use normal integers as time stamps running
from 1; for an element x we use notation t(x) for its time stamp. If an inorder traversal In(T ) = ⟨x1, x2, . . .⟩ of a tree T
produces an increasing time stamp sequence for equal elements, then we say that T preserves the relative order of equal
elements, i.e., it is a stable tree.
Definition 2. A tree T is a stable tree if and only if

(∀i < j) (∀xi, xj ∈ In(T ) = ⟨x1, x2, . . .⟩): xi = xj ⇒ t(xi) < t(xj)

Lemma 8. If a stable tree T is given as input for insert(), the resulting tree T ′ is a stable tree.

Proof. When the initial tree is empty, the inserted element x appears at the root and the claim is true. When the tree is
non-empty x will be inserted either at the root or recursively into a subtree of the root. If x is placed at the root, split()
moves all equal elements into the left subtree which can be interpreted as those having a smaller time stamp; moreover,
the relative order of equal elements already in the tree is preserved by subroutine split(). When x is to be inserted into
a subtree and the element at the root is equal to it, it will be inserted into the right subtree which can be interpreted in as x
always having a larger time stamp than the root element. �

Lemma 9. If a stable tree is given as input for delete(), the resulting tree is a stable tree.

Proof. Code inspection reveals that delete() preserves stability because inorder is maintained during execution of
join(). �

Corollary 2. Even though the algorithms do not know nor use the implicit time stamps of input elements, they behave like all
elements would be composed of a primary key (the real key) and a secondary key (the imaginary time stamp), and the secondary
key is used only if equal primary keys are found. Thus, each element is conceptually unique and so the results presented byMartínez
and Roura [4] can be applied directly.
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Fig. 2. Insertion of fourth equal element 74 into a monoset tree. Near each tree is a small fraction which denotes the probability of producing the tree by
algorithm insert().

5. Concluding remarks

We have considered randomized methods of Martínez and Roura to construct and maintain random search trees and
shown that duplicates among input elements cause no problems. For alternative randomized approaches called treap [6]
and skip list [5], which are quite equivalent, it is easy to see that they have no problems with equal elements and trees
produced by both approaches are stable trees (for a skip list, see [2]).
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