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A duality theory is derived for minimizing the maximum of a finite set of convex 
functions subject to a convex constraint set generated by both linear and nonlinear 
inequalities. The development uses the theory of generalised geometric 
programming. Further, a particular class of minmax program which has some prac- 
tical significance is considered and a particularly simple dual program is obtained. 

1. INTRODUCTION 

We consider minmax programs of the form 

P,: Minimize iVa_;irni;e {A(x)) (1) 

subject to the constraints 

x E c, (2) 

gjtx> < O3 j = I,..., J. (3) 

Ax>b, (4) 

Here L( e ), i = I,..., I are closed convex functions with domain C, a closed 
convex set. gj(.) are closed convex functions defined over the same domain 
and A and b are given matrices. It is well known that the maximum of a 
finite set of closed convex functions is both closed and convex. Hence 
program P, is a convex program. 

Minmax optimization problems arise in a variety of settings as, for 
example, in planning production to meet a stochastic demand when the 
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distribution function of demand is unknown [3] and in the location of a 
critical facility such as an ambulance base [ l]. 

In this paper, we derive a complete duality theory for minmax programs of 
the type Pi. This development uses the theory of generalised geometric 
programming which is summarised in Section 2. In Section 4, we further 
particularise the form of program P, to a subset which contains location 
problems of practical significance and for which the dual program is 
particularly simple. 

2. CONJUGATE DUALITY THEORY 

The approach to duality presented in this paper uses the concepts of 
conjugate functions due to Fenchel [2] and further developed by Rockafellar 
[4]. Due to its great flexibility, we use the generalised geometric 
programming version of conjugate duality theory which was developed by 
Peterson [5]. The theory of generalised geometric programming pairs the 
following two programs. 

P: Minimize g,(x’) 

subject to explicit constraints 

gi(xi> < O, i E I, 

implicit constraints 

x0 E co, xi E ci, i E I, 

and cone condition 

xExcR” 

D (the geometric programming dual of P): 

Minimize gz(x”*) +x gji’+(x’*; A:) 
I 

subject to implicit constraints 

x0* E q, (xi”; A:) E c: *, i E I, 

and cone condition xx E x* c R” 

The relations between programs P and D are as follows: x is a closed 
convex cone. x * is the dual cone of x, i.e., x* = {x* ] (x*,x) > 0 Vx E x}. I 
is the index set of explicit constraints in program P. x = (x0,x’) is the 
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Cartesian product of vectors x0 and x’. x* = (x0 *, x’*) is similarly defined. 
x’ is the Cartesian product of vectors xi, i E I. XI* is similarly defined. (., .) 
denotes a finite dimensional inner product. 

[ g,(x’), C,], i E (0) U Z is a pair of closed convex function gi defined over 
a convex set Ci c R”i. [gT(x’*), CF], i E (0) UZ is a pair of closed convex 
function g; defined over the convex set CT and is the conjugate transform of 
[ g’(x’), C,], i.e., 

gi”(x’*) G sup ((xi*, xi) - g,(x’)) 
X’EC; 

and 

CT = {xi* / ZLll. ((xi*, xi) - gi(x’)) < co }. 
, 

[gi”‘(x’*; AT), CT + 1, i E Z is the positive homogeneous extension of 
]g,*(x’*), C,?] with 

xi) if 27 = 0 and sup (xi*, xi) < co 
liCCi 

Cf + = ((XT ; AT) ) A? = 0 and sup (xi*, xi) < co } 
XiECi 

U {(x,?;A~)]A,? > 0 and x:/ATE C,}. 

It is interesting to note that all the explicit constraints in the primal 
(program P) are transferred to the objective function in the dual (program 
0). Under mild conditions concerning feasibility and relative interiors [S], 
the primal and dual programs are related at optimality in the following 
manner: 

g,(xO) + g$(x”*) + x gi” + (xi”; Ai”) = 0, 

x0 * E ago( 

xi*/y E agi(x’), Ai > 0, i E I. 

These optimality conditions allow an optimal point for one program to be 
calculated from an optimal point of the other. Here ago denotes the sub- 
gradient set of go at the point x0, i.e., 

agi(x’) e {xi* 1 g,(x’) + (xi*, zi -xi) < g,(z’), vz’ E Ci}. 
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3. MINMAX DUALITY 

Our original minmax program P, may be written in the equivalent form 

P,: Minimize CI, 
x.a (5) 

s.t. 

x E c, (6) 

gj(x) < OY j = 1) 2 )...) J, (7) 

L(x) < a, i = 1, 2 ,..., I, (8) 

Ax>b, (9) 

where the functions fi(.), i = l,..., I are transferred from the objective to the 
constraint set. A new scalar variable GI becomes the objective. In order to 
invoke the duality theory of generalised geometric programming as presented 
in Section 2, the variables in program P, must be separated. This results in 
the following equivalent program: 

P,: Minimize a (10) 

subject to explicit constraints 

gj(d) < O, j = 1) 2 ,...) J, (11) 

fi(X’) + CLi < 0, i=J+ l,...,J+Z, (12) 

implicit constraints 

x E c, (13) 

d E c, j = l,..., J, (14) 

xi E c, i = J + l,..., J + I, (15) 

aER, (16) 

PE PJ, (17) 

and cone condition 

Ax>P, 
x=x’= . . . zx J+I ) 

a=-ai, i = J + l,..., J + 1. 

(18) 

(19) 

(20) 
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programs P and D in Section 2, the dual 

where 

x fF+(Xi*; ai”) + c gj* + (x’“; a,i*) + (p*, b), 
i=J+ I j=l 

x*=0 3 

a* = 1, 

(2 *; a;> E c,f+, j = I,..., J, 

(xi*; ai”) E c:, i = J + l,..., .Z + I. 

The dual cone corresponding to the cone generated by (IS), (19) and (20) 
is defined by 

J JtI 

x*=ATU+ K' I vjf y vi 

j= I i=J+ 1 

x’i* - +j  
3 j = l,..., .Z, 

xi* = -vi 1 i = J + l,..., J + I, 

Ji I 

a* = \‘ w. 
1) 

i=.Jtl 

(ri* = wi, i = J + l,..., .Z + Z, 

p* = -u, 

u > 0. 

Here u, v and w are dual vector variables associated with (18), (19) and 
(20), respectively. 

Combining the above results gives the following dual to program P, and 
hence to program P,. 

J JtI 

D,(or 4): Minimize 1 gt *(-22; a?) + 1 fj’ *(-Vi; wi) - brU 
j- 1 i=Jt1 

subject to implicit constraints 

(-21’; a:) E Cj’ *, j= l,...,.Z, 

(-vi; Wi) E c; *, i = J + l,..., J + Z, 
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and the cone condition 

4. A PARTICULAR CLASS 

Consider the following minmax program 

P,: Miniimize Maximize (aif + (bi, x) + c,}, (21) 

where f(x) is a closed convex function defined on a closed convex set C. 
ai > 0, b, and ci are given. A special case of the above formulation arises in 
the location of a facility to minimize the maximum weighted distance from a 
finite number of fixed points. In this case, program P, assumes the form 

P,: Minimize Maxfmize wi(x - a,, x - a,), 
x 

where wi > 0 are weights and a, are fixed locations. It has been shown that 
the dual approach to program P, is computationally more efficient than the 
primal. The theory given in Section 3 allows the extension of minmax 
location theory to location within a constrained region. 

Returning to program P,, it may be written in the equivalent form 

P,: Minimize a over x E C (22) x , rr 

s.t. 

ai f(X) + (bi, x, + ci < O1. 

Inequality (23) may be further written as 

f(x)+P<O, 

/3-(8i,x)-~Yi+u;'a-~i=0 Vi, 

~3~20, Vi, 

Yi E ic’il. 

Here zi= u;‘b, and Fi = u;‘ci. 

(23) 

(24) 

(25) 

(26) 

(27) 
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Identifying, the nonlinear inequality (24) as an explicit constraint, (27) as 
an implicit constraint and (25), (26) as generating a cone, we may use the 
prescription of program D to generate a dual to program P, and hence of 
program P,. The dual objective function will be 

f’ *(x*;P*) + (Y*, c’> 

with 
(x*;p*) E c+ * and a* = 1. 

The dual cone of (25) and (26) is shown to be given by 

p* =\’ u;, (28) 

a* = y a,Y’u,, 

x* = B’u, 

y* = -u, 

a* = -24 + w, 

w > 0, 

where B = (8,) & ,...). Here u and w are dual variables corresponding to the 
cone constraints (25) and (26), respectively. It is further noted, that since p* 
is the dual variable associated with the nonlinear inequality (24) which arises 
from the minmax objective function, it follows that p* > 0 and the dual 
objective function becomes 

with 

P*f(x*/P*) + cv*, c> 

x*/p* E c* and a* = 1, a*=o. 

It should be noted that the nonlinear inequality will always be active since it 
prevents the objective function from tending to minus infinity. 

Combining the above gives the dual program 

D,(or D,): Minimize x uif* (B’u/y ui,) - (~3 U) 

s.t. 
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B=u 
Ii 
x ui E C”. 

Generally C* will be R ’ or R: and hence the latter constraint will present 
no computational diffkulty. Further /?* > 0, implies that Ci ui > 0 and D, is 
a straightforward finite dimensional convex program over a linear space. 

Finally the primal and dual variables are related by 

B=u 
i 
1 ui E Q-(x). 
i 
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