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Abstract

We study the structure-dependent contributions to the radiative bargoécays ofB — BB/y in the standard model. We
show that the decay branching ratiosBi{ B — BB’y) are0(10~7), which are larger than the estimated value©gl0~9)
induced from inner bremsstrahlung effects of the corresponding two-body modes. In particular, we frd Bhat> Apy)
is around 1x 105, which is close to the pole model estimation but smaller than the experimental measurement from Belle.
0 2005 Elsevier B.V. Open access under CC BY license,

The radiative baryoni® decays ofB — BB/;/ are of interest since they are three-body decays with two spin-
1/2 baryons g andB’) and one spin-1 photon in the final states. The rich spin structures allow us to explore various
interesting observables such as triple momentum correlations to investigate CP or T v[dlZfidioreover, since
these radiative decays could dominantly arise from the short-distance electromagnetic penguin trabsiioryof
[3] which has been utilized to place significant constraints on physics beyond the Standard Modd|, $§ ey
then appear to be the potentially applicable probes to new physics.

There are two sources to produce radiative bary@hiecays. One is the inner bremsstrahlung (IB) effect, in
which the radiative baryoni decays ofB — BB'y are from their two-body decay counterpartsBof> BB’ via
the supplementary emitting photon attaching to one of the final baryonic states. Clearly, the radiative decay rates
due to the IB contributions are suppressedagy;, comparing with their counterparts. According to the existing
upper bounds o8 — BB/, given by[6-8]

Br(B® — pp) <2.7x 107 (BaBar) Br(B® > AA) <7.9x 1077 (Belle),

Br(B~ — Ap) <4.6 x 10~/ (Belle), (1)
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Fig. 1. Diagram forB~ — Apy.
one finds that
Br(B — BB'y) < 0(1079). 2)

Unfortunately, the above branching ratios are far from the present accessibility Btfdetories of BaBar and

Belle. However, the other source, which is the structure-dependent (SD), is expected to enhance the decays of
Br(B — BB/y), such asB — Apy arising fromb — sy [1,9,10] With the large branching ratio df — sy

[11,12]in the range of 10* we expect thaBr (B~ — BB'y) could be as large &&r(B~ — BB'). In this Letter,

we shall concentrate on the SD contribution8toB — BB’y).

To start our study, we must tackle the cumbersome transition matrix elemehts:iB B'. As more and more
experimental data on three-body decfy3-15]in recent years, the theoretical progresses are improved to resolve
the transition matrix element problems. One interesting approach is to use the pole[b&#€] through the
intermediated particles and another one is to rely on the QCD counting[fi#e20] by relating the transition
matrix elements with three form factors and fitting with experimental data. In [BefCheng and Yang have
worked out the radiative baryon® decays based on the pole model. In this Letter, we handle the transition matrix
elements according to the QCD counting rules.

We begin with the decay a8~ — Apy. As depicted irFig. 1, in the SM the relevant Hamiltonian due to the
SD contribution forB~ — Apy is

Gr off
HSD = — V b V C 07, 3
W 7 3)
with the tensor operator
07 = B zmbsale“ (1+ ys5)b, 4

whereV;, V% andceff are the CKM matrix elements and Wilson coefficient, respectively, and the decay amplitude
is found to be

_ _ Gr
A(B™ — Apy) =

V2

LV Vb= 52C7 HmZe" (Ap|5y,(1— ys)b|B™) — 2mpps - e(ApIS(1+ y5)b|B7)},
(5)
where we have used the conditiafy > m; such that the terms relating #, are neglected. We note that E§)
is still gauge-invariant.
In order to solve the encountered transition matrix elements {3 qwe write the most general form

8

(Ap|Syub|B™) =ii(pa)|aryuys +azpuys +a3(ps — pa)uys|v(pp).
(Ap|SyuysblB™) =iu(pa)[c1yy + c2ioup” +c3(pp + pa)uJv(pp). (6)
wherep = pp — pa — pjp anda;(¢;) (i =1, ..., 3) are form factors.
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To find out the coefficients; (¢;) in Eq. (6), we invoke the work of Chua, Hou and Tsai in REX0]. In their
analysis, three form facto,, Fp and Fy are used to describe — B B’ transitions based on the QCD counting
rules[18], that require the form factors to behave as inverse powers=ofpp + pB/)z. The detail discussions
can be referred to Reffl9,20]. In this Letter, we shall follow their approach. The representations of the matrix
elements for the8~ — pp transition are given bj20]

(ppla(L = ys)b|B™) = iu(pp)[(Fapys £ Fyp) + (Fpys % Fs)]v(pp), (7)
with a derived relatiorFs = Fp. In terms of the approach ¢19,20] those of theB~™ — A p transition are given
by

(APISL+ys)b|B) = iii(pa)[(FATpys = Fy"p) + (Fpvs £ F{'7)u(pp), (8)
where the form factors related to those”Rf — pp in Eq.(7) are shown as
5 33 5 33 5 33
Ap Ap Ap
F," =, =—=Fy — Fa), F, " =—| =—(Fy — Fa), F =,/=-Fp. 9
A \[210( v —Fa) v \[210( Y P($) \/;4 P ©
The three form factor$’y, Fy and Fp can be simply presented H®,20]
Cayv Cp
FA,v=t—3, FP=I—4, (10)

whereC; (i = A, V, P) are new parametrized form factors, which are taking to be real.

From the relationp” (A p|sy,. (1 — y5)b|B~) = mp{Ap|s(1 — y5)b|B~) in the heavyb quark limit, the para-
metersa; (¢;) in EqQ. (6) are associated with the scalar and pseudo-scalar matrix elements defined8h Bg.a
result, we get that

Ap Ap
= F = F
alzmeAp, a3=mb—P, clzmeAp, cg:mb—P. (12)
P-(Pp—pa) p-(pp+pa)
The amplitude in Eq(5) then becomes
_ _ Gr e i 3 .- Ap ap. (Pp—PM)u Ap
AB™ — Apy) = —7=VipVji =25 {m ehu(pa)| Fp " vuys + Fp' ys————— = F, "y,
\/z t 1s g2 7 b A K P p(pﬁ—PA) v ru
5 (P5+DpA)
_ F;‘PM v(pp)
p-(ps+pa)
— 2my,pp - FAP FAPys+ F2Pp + F27 lo(p; 12
bpB - eu(p)| Fy"pys+ Fpys+ F,"p+ Fp" [v(pp) 1, (12)

with three unknown form factorsf”, F‘j"’ and F,ﬁ"’. We note that the terms correspondingifadisappear due
to the fact ofe - p = 0. Even thougho can only be determined by experimental data, according to QCD counting
rules,cz needs an additional/1 thanc; to flip the helicity, so that it is guaranteed to give a small contribution and
can be neglected.

After summing over the photon polarizations and baryon spins, fron{12}.the decay rate of" is given by
the integration of

6
1 mp

I'= G2
3 3
(27)° AM G E2

< [VIERT|" + A[ELT )" 4 PIFRT |+ v o Re(FYTFR ™) + Lap RE(FLT F ™) [ dm? s dm3,

(13)



70 C.Q. Geng, Y.K. Hsiao / Physics Letters B 610 (2005) 6773

where

o i o _ Gr . €
may=pa+pp, Mpy = pj+ Py, Ct—ﬁthstQ
V(A)=pa-p(EFEy, —ps-p)+ Ey(Eapp - p £ Eymamp),

_EV(EA +Ep)mams —pa-pp) n (mi ~|—m%+2p/1 “pp)mamp —pa-pp)

P =
PA P+ DD 2(pa-p+pp-p)?
N E (Ex—Ep)(mamy—pa-pp) (mi-i-m% —2pA-pp)mamp+pa-pp)
- — DA Pps
PA-P—D5 D 2(pa-p—pj-p)? b

IVP(AP) = ZEﬁEymA — Pppma + EAEy(mA _mﬁ) imﬁp/\ 4

L Ey(EpEEnmatmppa-p- EZ(ma—mp)(pa-ppEmamp)
paA-PEPs-P '

It is important to note that, since the penguin-induced radiaivkecays are associated with axial-vector currents
shown in Eq(5), we have use{l1]

*A A phy +Kony wKy
§ — , 15
; 12(‘,‘“ &, 8uv .- & -n)2 (15)

(14)

wheren = (1, 0, 0, 0), to sum over the photon polarizations instead of the direct replacem@;\g{’ze;*sﬁ —
—g,v Which is valid in the QED-like theory due to the Ward identity.

For the numerical analysis of the branching ratios, we take the effective Wilson coefﬂ?ﬂeﬂt—O.SM [22],
the running quark mass; = 4.88 GeV and CKM matrix elementg,, V,; = —0.0402. Even though there are no
theoretical calculations to the unknowihy, Cy andCp. By virtue of the approach of ReR0], these form factors
are related to the present experimental data, sudré8~ — ppn~), Br(B® — ppK©), Br(B~ — ppK~)
[15] andBr(B~ — AAK ™) [23], characterized by an emitted pseudoscalar meson. For a rejiéiting, we
need 2 degrees of freedom (DOF) by ignoring the term since its contribution is always associated with one
more 1/t overC4 andCy ones, as seen in E(L0). We will take a consistent check in the next paragraph to this
simplification. To illustrate our results, we fix the color numBér = 3 and weak phasg = 54.8°. The input
experimental data and numerical values are summarizéahte 1

Using the fitted values of 4 andCy, we findBr(B~ — Apy) = (0.92+ 0.20) x 10~-% which is larger than
its two-body decay partner as expected and it is close to the resul2 of 10~° in the pole mode]9]. However,
our predicted value oB~ — Apy is smaller than(2.167925 + 0.20) x 10~° [24] measured by Belle. If we
put this new observed value into our fitting, we can further inclageignored previously. The fitted values are
Ca=-733+9.1GeV, Cy =437+ 121 GeV* andCp = 1343+ 327.0 GeV' with x2/DOF = 3.65 which is
about two times bigger than previous one. Clearly, it presents an inferior fitting with épallchanges. When
putting back these three fitted valuesB(B~ — Apy) for a consistency check, we get.16+ 0.31) x 1076
regardless of inputting larger experimental value, which explains the large valy&/BIOF. The insensitivity

Table 1

Fits of C4, Cy in units of GeV#

Input Experimental data Fit result Best fit (witlr Brror)
Br(B~ — ppr ™) [15] 3.06+0.82 o —683+5.1

Br(B° — ppkO) [15] 1.8840.80 Cy 351+9.0

Br(B~ — ppK~)[15] 5.66+0.91 x2/DOF 185

Br(B~ — AAK ™) [23] 2914098
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Fig. 2.dBr(B~ — Apy)/dm 4 vs.m 5. The solid line stands for the input values(6fs, Cy) = (—68.3, 35.1) while the dash line stands
for those of(C 4, Cy,Cp) = (—73.3,43.7,134.3).

of Cp on the decay branching ratio justifies our early simplification of ignoring its contribution besideg the 1
argument.

In Ref.[1], it was suggested that the reduced energy release can make the branching ratios of three-body de-
cays as significant as their counterparts of two-body modes or even larger, and one of the signatures would be
baryon pair threshold effe§t,20]. In Fig. 2, from Eq.(13)we show the differential branching ratio @Br (B~ —
Apy)/dm 4 vs.m 45 representing the threshold enhancement around the invarianiimass 2.05 GeV, which
is consistent with Fig. 2 in Ref24] of the Belle result. Around the threshold, the baryon pair contains half of the
B meson energy while the phone emitting back to the baryon pair with another half of energy which explains the
peak atE, ~ 2 GeV in Fig. 3 of Ref[24]. Such mechanism is similar to the two-body decays so that factorization
method workg1] even in the three-body decays.

To discuss other radiative baryorBc decays, we give form factors by relating thenFip 4 p intheB~ — pp
transition similar to the case &~ — Apy as follows:

0- 11F 9F 0 OF 11F 05 F,

B~ — X%y FEP =V A I A e Fyl=—L
10/2 102 10/2 102 32
_ - - 11Fy  9F, - 9Fy 9F,4 --  Fp
B > iy: FZai__——V _~ 4 R _ T _ 4 Frn=""
e v 10 10 A 10 11’ P 4
PEEN "‘_/_l)/' FE_A:_ZJ‘FV _ 9F 4 FE_A:— 9Fy _ 21F 4 FE—A:F_
' v 1006  10V6’ 4 10/6 106 P 4°

_ =0 5 Fy 9Fy4 =0 5 OFy  Fyu 05— OSFp

B z0% FEY =—— - — < Fi¥ =—"2 -2 Fp ¥ ==~

- Y v 10 10° A 10  10° P 4

_ _ = oy Fy 9F 4 == 50 9Fy Fa -—50 DSFp

B~ —E3%: FZF—_ - . FE =TV . FE P ==L

4 4 10v2 1042 A 102 1042 P 442

(16)

To calculate the branching ratio & — BB'y, we can use the formula in EL3) by replacingA and p by

B and B, respectively. The two sets of predicted values Bor-> BB’)/ with and withoutCp are shown in

Table 2 respectively. As a comparison, we also list the work of the pole model approach by Cheng arjé]Yang

in the table. We note that, ifable 2 the value in the bracket of the third column r(B~ — Apy) is not a
prediction but a consistency comparison with the putting-back form factors, since we have used the observed value
of Br(B~ — Apy) from Belle. We found that, except f@r (B~ — Apy), all predicted values ar€ (10~7). In

terms of inverse sign betweéry andCy, there are constructive effects fﬁf” and F‘f” , which are proportional

to (Fy — F4) as shown in Eq(9), whereas destructive effects make otmﬁ?’}l and F{,“}/ in Eq. (16) small.
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Table 2

Decay branching ratios

Branching ratios Fits Pole mode[9]
(C4,Cy)=(—683+£5.1,350+9.0) (Ca,Cy,Cp)=(—733+9.1,437+121,1343+327.0)

Br(B~ — Apy) (0.924+0.20) x 106 (1.16+0.31) x 106 1.2x 107

Br(B~ — ¥%y) (1L7+15 x1077 (1.2+1.2) x1077 29x 1079

Br(B~ — X iiy) (3.4+£28) x1077 (25+2.4) x 1077 57 x 1079

Br(B~ — £~ Ay) (0.48+0.50) x 10~/ (0.61+0.60) x 10~ 2.4%x 1077

Br(B~ — 50X~y) (33+0.7)x 1077 (387409 x 1077 1.2x 1076

Br(B~ —> 2~ 20%) (1.5+06)x10°7 (1.84+0.6) x 1077 6.0x 107

Consequently, all modes fd@~ radiative baryonic decays are suppressed exce@rid@~ — A py). We remark
that such suppressions exist only in the SM-like theories. Thus, these radiative baryonic decays are useful modes
for testing the new physics.
As seen inTable 2 both our results and those of the pole model satisfy the relatioBs(@~ — X ny) >~
2Br(B~ — X°%y) andBr(B~ — 5°X~y) ~ 2Br(B~ — &~ X%) because of the SU(3) symmetry. In the pole
model, the decay branching ratios Bf — Apy andB~ — 59X~y are found to be large, around?1x 1075,
since they are intermediated througiy and Z,, which correspond to large coupling constagts_, 3-, and
820 p-x+ respectively. However, in our work, the branching ratioBof — Apy is about three times larger

than that ofB~ — Z°X~y, which is 0(10~7). Regardless of these differences, both two methods are within the
experimental data allowed ranges, such as those of

[Br(B~ — Apy)+0.3Br(B~ — ¥%y)] <33x10°°,

E,>20 GeV

[Br(B~ — ¥%5y) +0.4Br(B~ — Apy)] <6.4x 1078,

E,>2.0 GeV
from CLEO[25] andBr (B~ — X%py) < 3.3 x 10-° from Belle[24].

Finally, we relate the8° decays with the correspondi®y” modes in terms of QCD counting rules even though
there are no experimental data on radiative barydSidecays. When neglecting the mass and life time differences,
we obtain

Br(B~ — Apy)=Br(B° — Aiiy), Br(B~ — x%y)=Br(B° — x%y),
Br(B~ — X iiy) =Br(B° — X" py), Br(B~ — &~ Ay)=Br(B° > £%4y),
Br(B~ - & 2%)=8Br(B%—> 5°2%), Br(B~ - E5%°27y)=Br(B° = £ 21y), (17)

which are also guaranteed by the @Usymmetry. From E¢(17), we see thaBr(B° — A7niy) can be as large as
Br(B~ — Apy).

In sum, we have shown that the SD contributions to the radiative baryonic decBy&oBB/y in the SM are
associated with the form factors #f,, Fy and Fp in the matrix elements of thB~ — pp transition. Most of the
predicted values foBr (B — BB’y) are spanning in the order of 16, which are larger than the estimated values
of 0(1079) due to the IB effects of their two-body counterparts. In particular, we have founBthBt — Apy)
is (1.16 + 0.31) x 10° and (0.92+ 0.20) x 10~° with and withoutC», respectively, which are consistent with
the pole model predictiof®] but smaller than the experimental data from B§}é]. More precise measurements
are clearly needed.
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