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We show that a supersymmetric renormalizable theory based on gauge group SO(10) and Higgs system 
10 ⊕ 210 ⊕ 126 ⊕ 126 with no scale supergravity can lead to a Starobinsky kind of potential for inflation. 
Successful inflation is possible in the cases where the potential during inflation corresponds to SU(3)C ×
SU(2)L ×SU(2)R × U (1)B-L , SU(5) × U (1) and flipped SU(5) × U (1) intermediate symmetry with a suitable 
choice of superpotential parameters. The reheating in such a scenario can occur via non-perturbative
decay of inflaton i.e. through “preheating”. After the end of reheating, when universe cools down, the 
finite temperature potential can have a minimum which corresponds to MSSM.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The theory of cosmological inflation [1–3] not only solves the 
problems (flatness, horizon, etc.) of standard big bang theory, but 
also explains the seed fluctuations which can grow via gravita-
tional instability to form the large scale structure of the uni-
verse [4]. There are stringent constraints on inflationary theories 
from CMB observations [5–8] and many of the generic models like 
the quartic potential and quadratic potential are either ruled out 
or disfavored by the bound on the tensor to scalar ratio which 
is r0.05 < 0.12 at 95% CL from joint analysis of BICEP2/Keck ar-
ray and Planck data [9]. Among the generic inflation models which 
survive the stringent constraint on r is the R2 inflation model of 
Starobinsky [1] which predicts ns − 1 = −2/N and r = 12/N2 ∼
0.002–0.004. The theoretical motivation for the Starobinsky model 
is provided in [10] where it has been shown that the Starobinsky 
potential for inflation can be derived from supergravity (SUGRA) 
with a no-scale [11–13] Kähler potential and a Wess Zumino su-
perpotential with specific couplings. Supergravity models of infla-
tion based on the Jordan frame supergravity [14–16] and D-term 
superpotential [17] also give inflationary potential which is iden-
tical to the Starobinsky potential at large field values. The natural 
choice for the inflaton in supergravity models is the Higgs fields 
of the grand unified theories. A no-scale SUGRA model of inflation 
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based on the SU(5) GUT using the 24, 5 and 5 Higgs in the super-
potential has been constructed [18]. The SU(5) symmetry breaks to 
MSSM with the appropriate choice of vev for the 24 and a D-flat 
linear combination of Hu and Hd of MSSM acts as the inflaton [18].

In the present work we study inflation in a renormalizable 
grand unified theory based on the SO(10) gauge group with no 
scale SUGRA. Inflation in the context of SUSY SO(10) has been 
studied earlier in [19–23] with the SO(10) invariant superpotential 
with the minimal Kähler potential which gives polynomial poten-
tials of inflation. In this paper we show that a renormalizable 
Wess–Zumino superpotential of SO(10) GUT along with no-scale 
Kähler potential can give us Starobinsky kind of inflationary po-
tential with specific choice of superpotential parameters. The Higgs 
supermultiplets we consider are 10, 210, 126 (126). Among these, 
the 210 and 126 (126) are responsible for breaking of SO(10)

symmetry down to MSSM. The 210 supermultiplet alone can give 
different intermediate symmetries [24] depending upon which of 
its MSSM singlet fields takes a vev. Then 126 (126) breaks this 
intermediate symmetry to MSSM. We find that successful infla-
tionary potential can be achieved in the case of SU(3)C × SU(2)L ×
SU(2)R × U (1)B-L , SU(5) × U (1) and flipped SU(5) × U (1) sym-
metry. The other possible intermediate symmetries of Pati–Salam 
(SU(4)C × SU(2)L × SU(2)R ) or SU(3)C × SU(2)L × U (1)R × U (1)B-L

gauge groups do not give phenomenologically correct inflationary 
potentials.

At the end of inflation, the reheating can occur via non-
perturbative decay of inflaton to bosons of the intermediate scale 
model. After the end of reheating, when universe cools down, the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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finite temperature potential can have a minimum which corre-
sponds to MSSM and the universe rolls down to this minimum 
at temperature << T R (reheat temperature).

2. Inflation in SO(10) with no scale SUGRA

The minimal supersymmetric grand unified theory based on 
SO(10) gauge group [24–28] has 10(Hi), 210(�i jkl) and 126(�i jklm)

(126(�i jklm)) Higgs supermultiplets. The representations: Hi is 
1 index real, �i jklm is complex (5 index, totally-antisymmetric, 
self-dual) and �i jkl is 4 index totally-antisymmetric tensor. Here 
i, j, k, l, m = 1, 2 . . . 10 run over the vector representation of SO(10). 
The renormalizable superpotential for the above mentioned fields 
is given by

W = m�

4! �2 + λ

4!�
3 + m�

5! �� + η

4!��� + mH H2

+ 1

4!�H(γ � + γ̄ �). (1)

The no-scale form of Kähler potential is taken to be

K = −3 ln(T + T ∗ − 1

3
(

1

4!�
†� + 1

5!�
†� + 1

5!�
†� + H† H)).

(2)

Here T is the single modulus field arising due to string compacti-
fication and we are taking M P = 1.

The 10 and 126 are required for Yukawa terms to give masses 
to the fermions while 126 (126) breaks the SO(10) gauge symme-
try to MSSM together with 210-plet. However to have an interme-
diate symmetry rather than MSSM, the 210-plet Higgs is sufficient. 
It can lead to various possible intermediate symmetries depending 
on which components of the 210-plet take vevs. The decomposi-
tion of Higgs supermultiplets required for SO(10) symmetry break-
ing in terms of Pati–Salam gauge group (SU(4)C × SU(2)L × SU(2)R ) 
is given by [29]

210 = (15,1,1) + (1,1,1) + (15,1,3) + (15,3,1)

+ (6,2,2) + (10,2,2) + (1̄0,2,2),

126 = (1̄0,1,3) + (10,3,1) + (6,1,1) + (15,2,2),

126 = (1̄0,3,1) + (10,1,3) + (6,1,1) + (15,2,2). (3)

The field components which will not break the MSSM symmetry 
are allowed to take vevs. In this case they are [28]

p = 〈�(1,1,1)〉, a = 〈�(15,1,1)〉,
ω = 〈�(15,1,3)〉, σ = 〈�(1̄0,3,1)〉,
σ̄ = 〈�̄(10,3,1)〉. (4)

The superpotential in terms of these vevs is

W = m(p2 + 3a2 + 6ω2) + 2λ(a3 + 3pω2 + 6aω2)

+ m�σ σ̄ + ησ σ̄ (p + 3a − 6ω). (5)

The vanishing of D-terms gives the condition |σ | = |σ̄ | [28]. The 
symmetry breaking path of SO(10) is

SO(10)
210−−→ Intermediate symmetry 126−−→ MSSM.

For the first step symmetry breaking one can set |σ | = |σ̄ | = 0. 
Then the possible intermediate symmetries with 210 only are [28]:

1. If a �= 0 and p = ω = 0, it gives SU(3)C × SU(2)L × SU(2)R ×
U (1)B-L symmetry.
2. If p �= 0 and a = ω = 0, this results in SU(4)C ×SU(2)L ×SU(2)R

symmetry.
3. If ω �= 0 and p = a = 0, it gives SU(3)C × SU(2)L × U (1)R ×

U (1)B-L symmetry.
4. If p = a = −ω �= 0, this has SU(5) × U (1) symmetry.
5. If p = a = ω �= 0, SU(5) × U (1) symmetry but with flipped as-

signments for particles.

The superpotential in terms of vevs of 210 is given by

W = m(p2 + 3a2 + 6ω2) + 2λ(a3 + 3pω2 + 6aω2). (6)

Here m = m� . Similarly no-scale Kähler potential is

K = −3 ln(T + T ∗ − 1

3
(|p|2 + 3|a|2 + 6|ω|2)). (7)

The F-term potential has the following form,

V = eG
[

∂G

∂φi
K i

j∗
∂G

∂φ j∗
− 3

]
, (8)

where

G = K + ln W + ln W ∗. (9)

The kinetic term is given as K j∗
i ∂φi∂φ j∗ . Here i runs over different 

fields T , p, a and ω. K i
j∗ is the inverse of Kähler metric K j∗

i given 
by

K j∗
i = 1

�2

⎛
⎜⎝

3 −p∗ −3a∗ −6ω∗
−p � + 1

3 |p|2 a∗ p 2ω∗ p
−3a ap∗ 3� + 3|a|2 6aω∗
−6ω 2ωp∗ 6a∗ω 6� + 12|ω|2

⎞
⎟⎠ ,

(10)

where � = T + T ∗ − 1
3 (|p|2 + 3|a|2 + 6|ω|2). After simplifying, the 

potential given by Eq. (8) has the following form,

V = 1

�2

∣∣∣∣∂W

∂φi

∣∣∣∣
2

. (11)

We assume that the non-perturbative Planck scale dynamics [18,
10,30] fixes the values of T = T ∗ = 1

2 . After fixing the vev for T the 
kinetic terms of T can be neglected. We study all possible cases of 
intermediate symmetries mentioned earlier for inflationary condi-
tions in SO(10) with no-scale SUGRA. For simplicity we assume 
our fields to be real.

Case I: a �= 0 and p = ω = 0, SU(3)C × SU(2)L × SU(2)R × U (1)B-L

symmetry.
The kinetic and potential energy terms are given by

LK .E. = (1 − a2)(∂μp)2 + 3(∂μa)2 + 6(1 − a2)(∂μω)2

(1 − a2)2
,

V = 36a4λ2 + 72a3λm + 36a2m2

(
1 − a2

)2
. (12)

To get the canonical K.E. terms we need to redefine our fields in 
terms of new fields χ1, χ2, χ3,

a = tanh[ χ1√
3
], p = sech[ χ1√

3
]χ2, ω = 1√

6
sech[ χ1√

3
]χ3. (13)

The potential V(χ1, χ2, χ3) is flat along χ1 direction for χ2 =
χ3 = 0 and is confined in the orthogonal (χ2, χ3) directions as 
shown in Fig. 1.
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Fig. 1. The potential for the SU(3)C × SU(2)L × SU(2)R × U (1)B-L intermediate sym-
metry is shown. The inflation potential is along χ1 direction. In Fig. 1(a) we show 
V(χ1, χ2 = 0, χ3) and in Fig. 1(b) V(χ1, χ2, χ3 = 0). We see that potential is flat 
along χ1 and confined along χ2 and χ3 respectively.

The potential V(χ1) in the limit χ2 = χ3 = 0 is

V =
36λ2 tanh4

[
χ1√

3

]
+ 72mλ tanh3

[
χ1√

3

]
+ 36m2 tanh2

[
χ1√

3

]
(

1 − tanh2
[

χ1√
3

])2
.

(14)

If we take λ = −m, this gives us the Starobinsky type of inflation-
ary potential. The potential in this specific case is

V = 36m2(1 − e
− 2χ1√

3 )2. (15)

This potential is shown in Fig. 2 along with small deviations from 
the relation λ = −m. The slow roll parameters for this potential 
are given by

η = −
8e

−2χ1√
3

(
1 − 2e

−2χ1√
3

)

3

(
1 − e

− 2χ1√
3

)2
; ε = 8e

− 4χ1√
3

3

(
1 − e

− 2χ1√
3

)2
. (16)

Inflation ends when η ≈ 1, which corresponds to field value 
of χ end

1 ≈ 0.5. To have sufficient inflation which corresponds to 
Ne-folds = 55 gives the initial field value of χ1 ≈ 4.35. The power 
spectrum for scalar perturbation P R is

P R = V
2

=
9m2 sinh4

(
χ1√

3

)
2

. (17)

24π ε π
Fig. 2. The potential V /m2 for Case I for different chosen values of λ/m.

The value of P R = (1.610 ± 0.01) × 10−9 given by Planck data [7]
requires value of m = 1.311 × 10−6 in Planck units. The spectral 
index ns = .964 and tensor to scalar perturbation ratio r = .002 for 
Ne-folds = 55. Varying λ/m in the range (from −1.0001 to −0.9999) 
gives ns in the range (0.92–1.0) and r in range (0.002–0.008).

Case II: p �= 0 and a = ω = 0, SU(4)C × SU(2)L × SU(2)R symmetry.
The kinetic and potential energy terms are given by

LK .E. = (∂μp)2 + 3(1 − p2

3 )(∂μa)2 + 6(1 − p2

3 )(∂μω)2

(1 − p2

3 )2
,

V = 4m2 p2

(1 − p2

3 )2
. (18)

The fields transformations which make kinetic energy term canon-
ical are

p = √
3 tanh[ χ1√

3
], a = sech[ χ1√

3
] χ2√

3
, ω = sech[ χ1√

3
] χ3√

6
. (19)

Then the potential V(χ1) in the limit χ2 = χ3 = 0 is

V = 3m2 sinh[2χ1√
3

]2. (20)

This type of potential increases exponentially with χ1 and is too 
steep to obey the slow roll conditions. The spectral index ns has 
negative values over a wide range of field value and hence doesn’t
satisfy the inflationary constraints on scale invariance of scalar per-
turbations from observations.

Case III: ω �= 0 and p = a = 0, SU(3)C × SU(2)L × U (1)R × U (1)B-L

symmetry.
The kinetic and potential energy terms are given by

LK .E. = (1 − 2ω2)(∂μp)2 + 3(1 − 2ω2)(∂μa)2 + 6(∂μω)2

(1 − 2ω2)2
,

V = 144m2 w2 + 180λ2 w4

(
1 − 2w2

)2
. (21)

The fields transformations which make kinetic energy term canon-
ical are

ω = 1√ tanh[ χ1√ ], p = sech[ χ1√ ]χ2, a = sech[ χ1√ ] χ3√ . (22)

2 3 3 3 3
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Then the potential V(χ1) in the limit χ2 = χ3 = 0 is

V = 72m2 sinh[ χ1√
3
]2(cosh[ χ1√

3
]2 + α sinh[ χ1√

3
]2). (23)

Here α = 5λ2/8m2. In this case for α ≥ −1 potential increases ex-
ponentially with χ1 and hence gives similar results as in Case II. 
For α < −1 potential energy becomes negative for χ1 � 1 and 
grows with large values of χ1. Therefore this intermediate sym-
metry doesn’t give successful inflation.

Case IV: If p = a = ±ω �= 0, SU(5) × U (1) symmetry.
In this case we take p = a = ±ω = x, then the K.E. term and 

potential are given by

LK .E. = 90(∂μx)2

(
3 − 10x2

)2
,

V = 184m2x2 + 1104λmx3 + 1656λ2x4

(
1 − 10x2

3

)2
. (24)

The field redefinition x =
√

3
10 tanh[ χ1√

3
] which makes kinetic en-

ergy term canonical gives the form of potential,

V = 55.2m2(1 − e
− 2χ1√

3 )2, (25)

for λ = − 1
3

√
10
3 m. This is a Starobinsky inflationary potential but 

with different relation among superpotential parameters m and λ
in comparison to the Case I. In this case value of m = 1.06 × 10−6

is required to satisfy the constraints from CMB observations. Small 
variations from the relation λ = − 1

3

√
10
3 m gives the same types of 

deviations in the Starobinsky potential as shown in Fig. 2.
At the end of inflation the inflaton χ1 can decay to scalar 

bosons which have a trilinear term with � in superpotential e.g. 
�H(γ� + γ̄ �̄). Then the K �∗

� |W� |2 and K �̄∗
�̄

|W �̄ |2 type of terms 
gives

V ⊃ ((|γ |2 + |γ̄ |2)|H|2 + |γ |2|�|2 + |γ̄ |2|�̄|2)| sinh[ χ1√
3
]|2.

(26)

Near the origin sinh[ χ1√
3
] ≈ χ1√

3
, so

V ⊃ ((|γ |2 + |γ̄ |2)|H|2 + |γ |2|�|2 + |γ̄ |2|�̄|2)| χ1√
3
|2. (27)

In our case the perturbative decay of inflaton to scalars is not effi-
cient for typical values of γ , γ̄ ∼ O(.1–1.0) [31]. However inflaton 
χ1 can decay non-perturbatively to scalar bosons leading to pre-
heating. In [32] the mechanism of preheating in broad resonance 
regime has been worked out. There is another efficient way of pre-
heating called “instant preheating” [33]. This mechanism is based 
upon the non-perturbative decay of inflaton to scalar bosons (in 
this case) when it is close to the minimum of the potential (at 
χ1 = 0). The particles thus produced (having mass directly pro-
portional to the instantaneous vev of inflaton) decay further when 
inflaton rolls uphill, to the modes which are not directly coupled 
to inflaton. This happens because at the time of their produc-
tion, their mass is zero since χ1 = 0, but as inflaton rolls back 
to its maximum value they become heavy so their decay width 
increases. In our case, every time inflaton crosses the origin it pro-
duces the H , � and �̄ . These decay further into the SM fermions 
and the right-handed neutrinos through Yukawa couplings. With 
this kind of chain reaction we can have an efficient way to trans-
fer the whole energy of inflaton into relativistic particles within 
few oscillations. This whole process leads to a radiation dominated 
universe with reheat temperature,

T R ∼ V 1/4
0 ∼ (m2χ2

1 )1/4 ∼ (10−18M4
P )1/4 ∼ 1014 GeV. (28)

At the end of reheating, the universe has a finite temperature 
potential and after cooling from T R = 1014 GeV to temperature 
<< T R , we assume that universe settles to the minimum of po-
tential corresponding to MSSM symmetry. The main requirement 
of this new minimum is zero cosmological constant which can be 
achieved if the fields a, p, ω, σ(σ̄ ) take values such that the scalar 
potential V = |Wφi |2/�′2 = 0 (where �′ = T + T ∗ − 1

3 (|p|2 +3|a|2 +
6|ω|2 + |σ |2 + |σ̄ |2)). The condition Wφi = 0 required to have zero 
cosmological constant with broken SUSY (from the vev of the mod-
uli fields T and T ∗) in no-scale SUGRA is algebraically same as the 
condition for unbroken global supersymmetry in SUSY-SO(10) [24]. 
The field values a, p, ω, σ(σ̄ ) which give Wφi = 0 in SUSY SO(10)

have been worked out in [24] and are given by

a = m

λ

x2 + 2x − 1

1 − x
; p = m

λ

x(5x2 − 1)

(1 − x)2
;

σσ = 2m2

ηλ

x(1 − 3x)(1 + x2)

η(1 − x)2
; ω = −m

λ
x (29)

where x is the solution of following cubic equation,

8x3 − 15x2 + 14x − 3 = −λm�

ηm
(1 − x)2. (30)

The soft SUSY breaking masses are proportional to the gravitino 
mass, which in no-scale SUGRA models with V = 0 is given [34,35]
by

m2
3/2 = eG = eK |W |2. (31)

In our case visible sector also contributes to gravitino mass as all 
the vevs are in units of m/λ so they can be of O(M P ) from the 
inflationary conditions. However visible sector contribution can be 
made zero or negligible with field values of a, p, ω, σ(σ̄ ) given by 
Eq. (29) and tuning |W | ≈ 0. In that case only hidden sector and 
moduli fields determine the gravitino mass.

Also we need a pair of light Higgs doublets in MSSM. In the 
present scenario we have a 4 × 4 mass matrix H of MSSM Higgs 
doublets [36]. The form of mass matrix remains same as given 
in [36] with an extra factor of 1/�′ ,

H = 1

�′

×
⎛
⎜⎝

−mH γ̄
√

3(ω−a) −γ
√

3(ω+a) −γ̄ σ̄

−γ̄
√

3(ω+a) 0 −(2m�+4η(a+ω)) 0

γ
√

3(ω−a) −(2m�+4η(a−ω)) 0 −2ησ̄
√

3

−σγ −2ησ
√

3 0 −2m+6λ(ω−a)

⎞
⎟⎠ .

(32)

One out of the four Higgs doublets can be made light with the 
fine tuning condition of DetH = 0. For fixed values of p, a, w , 
m, λ, it can be solved for mH in terms of other free parameters of 
superpotential. For fixed real value of x = −0.3471 from |W | ≈ 0
in the cases of successful inflation, mH is given by

mH = −0.887γ̄ γ

η
(case I); mH = −1.458γ̄ γ

η
(case IV). (33)

For this mH , one eigenvalue can be made light and the eigenvec-
tors (left and right) corresponding to that eigenvalue can act as 
MSSM Higgs doublets.
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3. Conclusions

In this work we show that the Starobinsky model of inflation 
can be derived from no-scale SUGRA SO(10) GUT for the specific 
intermediate symmetries of SU(3)C × SU(2)L × SU(2)R × U (1)B-L , 
SU(5) × U (1) and flipped SU(5) × U (1) gauge groups. The other 
intermediate symmetries SU(4)C × SU(2)L × SU(2)R or SU(3)C ×
SU(2)L × U (1)R × U (1)B-L do not give the slow-roll potential re-
quired for inflation. In the course of symmetry breaking topological 
defects like monopoles and cosmic strings can form. The defects 
formed in the first stage of symmetry breaking SO(10) → interme-
diate scale takes place during inflation and will be diluted away. 
After reheating when intermediate symmetry breaks to MSSM 
topological defects may form once again. The flipped SU(5) × U (1)

and SU(3)C × SU(2)L × SU(2)R × U (1)B-L breaking down to MSSM 
produces the cosmic strings [37] type of defect which is accept-
able. However SU(5) × U (1) gives rise to monopoles after inflation 
and this case therefore can be ruled out from the consideration 
of topological defects in the cosmological evolution. The param-
eters of the SO(10) invariant superpotential are restricted by the 
requirement that the Starobinsky potential is obtained. These re-
lations at the GUT scale can have testable consequences in the 
particle spectrum at low energy.
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