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Abstract 

In a recent provocative paper, Lamport points out “the insubstantiality of processess” by 
proving the equivalence of two different decompositions of the same intuitive algorithm by 
means of temporal formulas. We point out that the correct equivalence of algorithms is itself 
in the eye of the beholder. We discuss a number of related issues and, in particular, whether 
algorithms can be proved equivalent directly. 
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1. Introduction 

This is a reaction to Leslie Lamport’s “Processes are in the Eye of the Beholder” 

[ 131. Lamport writes: 

A concurrent algorithm is traditionally represented as the composition of processes. 

We show by an example that processes are an artifact of how an algorithm is rep- 

resented. The difference between a two-process representation and a four-process 

representation of the same algorithm is no more fundamental than the difference 

between2+2and l+l+l+l. 

To demonstrate his thesis, Lamport uses two different programs for a first-in, first-out 

ring buffer of size N. He represents the two algorithms by temporal formulas and 

proves the equivalence of the two temporal formulas. 

We analyze in what sense the two algorithms are and are not equivalent. There is 

no one notion of equivalence appropriate for all purposes and thus the “insubstantiality 

of processes” may itself be in the eye of the beholder. There are other issues where 

we disagree with Lamport. In particular, we give a direct equivalence proof for two 

programs without representing them by means of temporal formulas. 
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Fig. 1. Moves of the ring-buffer algorithm. 

This paper is self-contained. In the remainder of this section, we explain the two ring 

buffer algorithms and discuss our disagreements with Lamport. In Section 2, we give 

a brief introduction to evolving algebras. In Section 3, we present our formalizations 

of the ring buffer algorithms as evolving algebras. In Section 4, we define a version of 

lock-step equivalence and prove that our formalizations of these algorithms are equiva- 

lent in that sense. Finally, we discuss the inequivalence of these algorithms in Section 5. 

1.1. Ring buffer algorithms 

The ring buffer in question is implemented by means of an array of N elements. 

The ith input (starting with i = 0) is stored in slot i mod N until it is sent out as the 

ith output. Items may be placed in the buffer if and only if the buffer is not full; 

of course, items may be sent from the buffer if and only if the buffer is not empty. 

Input number i cannot occur until (1) all previous inputs have occurred and (2) either 

i < N or else output number i - N has occurred. Output number i cannot occur until 

(1) all previous outputs have occurred and (2) input number i has occurred. These 

dependencies are illustrated pictorially in Fig. 1, where circles represent the actions to 

be taken and arrows represent dependency relationships between actions. 

Lamport writes the two programs in a semi-formal language reminiscent of CSP [9] 

which we call pseudo-CSP. The first program, which we denote by Bpcsp, is shown 

in Fig. 2. It operates the buffer using two processes; one handles input into the buffer 

and the other handles output from the buffer. It gives rise to a rowwise decomposition 

of the graph of moves, as shown in Fig. 3. The second program, which we denote by 

% P-P 2 is shown in Fig. 4. It uses N processes, each managing input and output for one 

particular slot in the buffer. It gives rise to a columnwise decomposition of the graph 

of moves, as shown in Fig. 5. 

In pseudo-CSP, the semicolon represents sequential composition, 11 represents parallel 

composition, and * represents iteration. The general meanings of ? and ! are more 

complicated; they indicate synchronization. In the context of gpcsp and Lepcsp, “in ?” 

is essentially a command to place the current input into the given slot, and “out !” 
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in, out : channel of Value 

buf: array O...N - 1 of Value 

p,g : internal Natural initially 0 

Receiver :: * 
[ 

p - g # N -+ in ?buf [p mod N]; 

p:=p+l I 

II 

Sender :: * 
[ 

p-g # 0 + out !buf [gmodN]; 

g:=g+l I 

Fig. 2. A two-process ring buffer WpcSp, in pseudo-CSP. 

Fig. 3. Moves of 5&,,. 

in, out : channel of Value 

buf: array O...N - 1 of Value 

pp, gg : internal array 0. . . N - 

BufSer(i: O...N - 1) :: 

1 

empty : IsNext(pp,i) + 

* 
full : IsNext(gg, i) + 

1 of (0, 1) initially 0 

in ?buf [i]; 

pp[i] := (pp[i] + 1) mod 2; 

out !buf [i]; 

gg[i] := (gg[i] + 1) mod 2; J 

ZsNext(r, i) f if i = 0 then r[O] = r[N - l] 

else r[i] # r[i - l] 

1 

Fig. 4. An N process ring buffer WpS,,, in pseudo-CSP. 
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is essentially a command to send out the datum in 

Section 3, we will give a more complete explanation 

evolving algebras. 

the given slot as an output. In 

of the two programs in terms of 

After presenting the two algorithms in pseudo-CSP, Lamport describes them by 

means of formulas in TLA, the temporal logic of actions [ 121, and proves the equiv- 

alence of the two formulas in TLA. He does not prove that the TLA formulas are 

equivalent to the corresponding pseudo-CSP programs. The pseudo-CSP presentations 

are there only to guide the reader’s intuition. As we have mentioned, pseudo-CSP is 

only semi-formal; neither the syntax nor the semantics of it is given precisely. 

However, Lamport provides a hint as to why the two programs themselves are 

equivalent. There is a close correspondence of values between p and pp, and between 

g and yg. Fig. 6, taken from [13], illustrates the correspondence between p and pp for 

N = 4. The nth row describes the values of variables p and pp after n inputs. The 

predicate IsNext(pp,i) is intended to be true only for one array position i at any state 

(the position that is going to be active); the box indicates that position. 

1.2. Discussion 

There are three issues where we disagree with Lamport. 

Issue 1 (The notion of equivalence). What does it mean that two programs are equiv- 

alent? In our opinion, the answer to the question depends on the desired abstraction 

[4]. There are many reasonable definitions of equivalence. Here are some examples. 
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Fig. 6. The correspondence between values of pp and p, for N = 4. 

(i) The two programs produce the same output on the same input. 

(ii) The two programs produce the same output on the same input, and the two 

programs are of the same time complexity (with respect to your favorite definition of 

time complexity). 

(iii) Given the same input, the two programs produce the same output and take 

precisely the same amount of time. 

(iv) No observer of the execution of the two programs can detect any difference. 

The reader will be able to suggest numerous other reasonable definitions for equiv- 

alence. For example, one could substitute space for time in conditions (ii) and (iii) 

above. The nature of an “observer” in condition (iv) admits different plausible inter- 

pretations, depending upon what aspects of the execution the observer is allowed to 

observe. 

Let us stress that we do not promote any particular notion of equivalence or any 

particular class of such notions. We only note that there are different reasonable notions 

of equivalence and there is no one notion of equivalence that is best for all purposes. 

The two ring-buffer programs are indeed “strongly equivalent”; in particular, they are 

equivalent in the sense of definition (iii) above. However, they are not equivalent in the 

sense of definition (iv) for certain observers, or in the sense of some space-complexity 

versions of definitions (ii) and (iii); see Section 5 in this connection. 

Issue 2 (Representing programs as formulas). Again, we quote Lamport [ 131: 

We will not attempt to give a rigorous meaning to the program text. Programming 

languages evolved as a method of describing algorithms to compilers, not as a 

method for reasoning about them. We do not know how to write a completely 
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formal proof that two programming language representations of the ring buffer are 

equivalent. In Section 2, we represent the program formally in TLA, the Temporal 

Logic of Actions [ 121. 

We believe that it is not only possible but also beneficial to give a rigorous meaning 

to one’s programming language and to prove the desired equivalence of programs di- 

rectly. The evolving algebra method has been used to give rigorous meaning to various 

programming languages [ 1, IO]. In a similar way, one may try to give formal seman- 

tics to pseudo-CSP (which is used in fact for describing algorithms to humans, not 

compilers). Taking into account the modesty of our goals in this paper, we do not do 

that and represent Bi,csp and %&, directly as evolving algebra programs Bea and ‘4$, 

and then work with the two evolving algebras. 

One may argue that our translation is not perfectly faithful. Of course, no translation 

from a semi-formal to a formal language can be proved to be faithful. We believe that 

our translation is reasonably faithful; we certainly did not worry about the complexity 

of our proofs as we did our translations. Also, we do not think that Lamport’s TLA 

description of the pseudo-CSP is perfectly faithful (see the discussion in Section 3.2) 

and thus we have two slightly different ideals to which we can be faithful. In fact, 

we do not think that perfect faithfulness is crucially important here. We give two 

programming language representations 9&a and %&, of the ring buffer reflecting different 

decompositions of the buffer into processes. Confirming Lamport’s thesis, we prove 

that the two programs are equivalent in a very strong sense; our equivalence proof is 

direct. Then we point out that our programs are inequivalent according to some natural 

definitions of equivalence. Moreover, the same inequivalence arguments apply to 9%&, 

and Cepcsp as well. 

Issue 3 (The formality of proofs). Continuing, Lamport writes [ 131: 

We now give a hierarchically structured proof that II2 and II, [the TLA trans- 

lations of Brcsp and %‘r,epcsp - GH] are equivalent [ 111. The proof is completely 

formal, meaning that each step is a mathematical formula. English is used only to 

explain the low-level reasoning. The entire proof could be carried down to a level 

at which each step follows from the simple application of formal rules, but such 

a detailed proof is more suitable for machine checking than human reading. Our 

complete proof, with “Q.E.D.” steps and low-level reasoning omitted, appears in 

Appendix A. 

We prefer to separate the process of explaining a proof to people from the process 

of computer-aided verification of the same proof [7]. A human-oriented exposition is 

much easier for humans to read and understand than expositions attempting to satisfy 

both concerns at once. Writing a good human-oriented proof is the art of creating the 

correct images in the mind of the reader. Such a proof is amenable to the traditional 

social process of debugging mathematical proofs. 
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Granted, mathematicians make mistakes and computer-aided verification may be 

desirable, especially in safety-critical applications. In this connection we note that a 

human-oriented proof can be a starting point for mechanical verification. Let us stress 

also that a human-oriented proof need not be less precise than a machine-oriented 

proof; it simply addresses a different audience. 

Revisiting Lamport’s Thesis. These disagreements do not mean that our position on 

“the insubstantiality of processes” is the direct opposite of Lamport’s. We simply point 

out that “the insubstantiality of processes” may itself be in the eye of the beholder. 

The same two programs can be equivalent with respect to some reasonable definitions 

of equivalence and inequivalent with respect to others. 

2. Evolving algebras 

Evolving algebras were introduced in [5]; a more detailed definition has appeared in 

[6]. Since its introduction, this methodology has been used for a wide variety of appli- 

cations: programming language semantics, hardware specification, protocol verification, 

etc. It has been used to show equivalences of various kinds, including equivalences 

across a variety of abstraction levels for various real-world systems, e.g. [3]; see [l, lo] 

for numerous other examples. 

We recall here only as much of evolving algebra definitions [6] as needed in this 

paper. Evolving algebras (often abbreviated edgebras or EA) have many other capa- 

bilities not shown here: for example, creating or destroying agents during the evolution. 

Those already familiar with ealgebras may wish to skip this section. 

2.1. States 

States are essentially logicians’ structures except that relations are treated as special 

functions. They are also called static algebras and indeed they are algebras in the 

sense of the science of universal algebra. 

A vocabulary is a finite collection of function names, each of fixed arity. Every 

vocabulary contains the following logic symbols: nullary function names true, false, 

undef, the equality sign, (the names of) the usual Boolean operations and (for con- 

venience) a unary function name Bool. Some function symbols are tagged as relation 

symbols (or predicates); for example, Boo1 and the equality sign are predicates. 

A state S of vocabulary T is a non-empty set X (the basic set or superuniverse 

of S), together with interpretations of all function symbols in Z- over X (the basic 

functions of S). A function symbol f of arity r is interpreted as an r-ary operation 

over X (if Y = 0, it is interpreted as an element of X). The interpretations of predicates 

(the basic relations) and the logic symbols satisfy the following obvious requirements. 

The elements (more exactly, the interpretations of) true and false are distinct. These 

two elements are the only possible values of any basic relation and the only arguments 

where Boo1 produces true. They are operated upon in the usual way by the Boolean 
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operations. The interpretation of undef is distinct from those of true and false. The 

equality sign is interpreted as the equality relation. We denote the value of a term t 

in state S by ts. 

Domains: Let f be a basic function of arity r and X range over r-tuples of elements 

of S. If f is a basic relation then the domain off at S is {X : f(Z) = true}. Otherwise 

the domain off at S is {X : f (2) # undef}. 

Universes: A basic relation f may be viewed as the set of tnples where it evaluates 

to true. If f is unary it can be viewed as a universe. For example, Boo1 is a universe 

consisting of two elements (named) true and false. Universes allow us to view states 

as many-sorted structures. 

Types: Let f be a basic function of arity r and Uo,. . . , U, be universes. We say that 

f is of type UI x . x U, --+ UO in the given state if the domain of f is U1 x . . . x U,. 

and f(X) E UO for every X in the domain of f. In particular, a nullary f is of type 

UO if (the value of) f belongs to UO. 

Example. Consider a directed ring of nodes with two tokens; each node may be colored 

or uncolored. We formalize this as a state as follows. The superuniverse contains 

a non-empty universe Nodes comprising the nodes of the ring. Also present is the 

obligatory two-element universe Bool, disjoint from Nodes. Finally, there is an element 

(interpreting) undef outside of Boo1 and outside of Nodes. There is nothing else in 

the superuniverse. (Usually, we skip the descriptions of Boo1 and undej) A unary 

function Next indicates the successor to a given node in the ring. Nullary functions 

Token1 and Token2 give the positions of the two tokens. A unary predicate Colored 

indicates whether the given node is colored. 

2.2. Updates 

There is a way to view states which is unusual to logicians. View a state as a sort of 

memory. Define a location of a state S to be a pair e = (f ,X), where f is a function 

name in the vocabulary of S and X is a triple of elements of (the superuniverse of) S 

whose length equals the arity of f. (If f is nullary, e is simply f .) In the two-token 

ring example, let a be any node (that is, any element of the universe Nodes). Then 

the pair (Next,a) is a location. 

An update of a state S is a pair CI = (e, y), where 8 is a location of S and y is an 

element of S. To five a at S, put y into the location 8; that is, if e = (f ,X), redefine S 

to interpret f(i) as y; nothing else (including the superuniverse) is changed. We say 

that an update (8, y) of state S is trivial if y is the content of L in S. In the two-token 

ring example, let a be any node. Then the pair (Tokenl, a) is an update. To fire this 

update, move the first token to the position a. 

Remark to a curious reader. If / = (Next, a), then (e,a) is also an update. To fire 

this update, redefine the successor of a; the new successor is a itself. This update 

destroys the ring (unless the ring had only one node). To guard from such undesirable 

changes, the function Next can be declared static (see [6]) which will make any update 

of Next illegal. 
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An update set over a state S is a set of updates of S. An update set is consistent 

at S if no two updates in the set have the same location but different values. To fire 

a consistent set at S, fire all its members simultaneously; to fire an inconsistent set at 

S, do nothing. In the two-token ring example, let a, b be two nodes. Then the update 

set {(Tokenl,a),(Tokenl,b)} IS consistent if and only if a = b. 

2.3. Basic transition rules 

We introduce rules for changing states. The semantics for each rule should be obvi- 

ous. At a given state S whose vocabulary includes that of a rule R, R gives rise to an 

update set US(R,S); to execute R at S, one fires US(R,S). We say that R is enabled 

at S if US(R,S) is consistent and contains a non-trivial update. We suppose below that 

a state of discourse S has a sufficiently rich vocabulary. 

An update instruction R has the form 

f(t1, . . ..tr).=to 

where f is a function name of arity r and each t, is a term. (If r = 0 we write 
"f := to" rather than “f():= to”.) The update set US(R,S) contains a single element 

(e,~), where y is the value (to)s of to at S and d=(f,(xl,. . ,x,)) with xi = (ti)s. 

In other words, to execute R at S, set f ((tl)s,. . .,(t,)s) to (to)s and leave the rest 

of the state unchanged. In the two-token ring example, “Token1 := Next(Token2)” 

is an update instruction. To execute it, move token 1 to the successor of (the current 

position of) token 2. 

A block rule R is a sequence RI,. , R, of transition rules. To execute R at S, execute 

all the constituent rules at S simultaneously. More formally, US(R, S) = l_lzL, US(Ri, S). 

(One is supposed to write “block” and “endblock” to denote the scope of a block rule; 

we often omit them for brevity.) In the two-token ring example, consider the following 

block rule: 

Token1 := Token2 

Token2 := Token1 

To execute this rule, exchange the tokens. The new position of Token1 is the old 

position of Token2, and the new position of Token2 is the old position of Tokenl. 

A conditional rule R has the form 

if g then Ro endif 

where g (the guard) is a term and Ro is a rule. If g holds (that is, has the same value 

as true) in S then US(R, S) = US(Ro, S); otherwise US(R, S) = 0. (A more general form 

is “if g then Ro else RI endif”, but we do not use it in this paper.) In the two-token 

ring example, consider the following conditional rule: 

if Token1 = Token2 then 

Colored( Token 1) : = true 

endif 

Its meaning is the following: if the two tokens are at the same node, then color that 

node. 
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2.4. Rules with variables 

Basic rules are sufficient for many purposes, e.g. to give operational semantics for the 

C programming language [8], but in this paper we need two additional rule constructors. 

The new rules use variables. Formal treatment of variables requires some care but the 

semantics of the new rules is quite obvious, especially because we do not need to nest 

constructors with variables here. Thus we skip the formalities and refer the reader to 

[6]. As above S is a state of sufficiently rich vocabulary. 

A parallel synchronous rule (or declaration rule, as in [6]) R has the form: 

var x ranges over U 

R(x) 
endvar 

where x is a variable name, U is a universe name, and R(x) can be viewed as a 

rule template with free variable x. To execute R at S, execute simultaneously all rules 

R(u) where u ranges over U. In the two-token ring example, (the execution of) the 

following rule colors all nodes except for the nodes occupied by the tokens. 

var x ranges over Nodes 

if x # Token1 and x # Token2 then 

Colored(x) := true 

endif 

endvar 

A choice rule R has the form 

choose x in U 

R(x) 
endchoose 

where x, U and R(x) are as above. It is nondeterministic. To execute the choice rule, 

choose arbitrarily one element u in U and execute the rule R(u). In the two-token 

ring example, each execution of the following rule either colors an unoccupied node 

or does nothing. 

choose x in Nodes 

if x # Token1 and x # Token2 then 

Colored(x) := true 

endif 

endchoose 

2.5. Distributed evolving algebra programs 

Let r be a vocabulary that contains the universe Agents, the unary function Mod 

and the nullary function Me. A distributed EA program ll of vocabulary Yr consists 

of a finite set of modules, each of which is a transition rule with function names 

from r. Each module is assigned a different name; these names are nullary function 
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names from r different from Me. Intuitively, a module is the program to be executed 

by one or more agents. 

A (global) state of II is a structure S of vocabulary T-{Me} where different module 

names are interpreted as different elements of S and the function Mod assigns (the 

interpretations of) module names to elements of Agents; Mod is undefined (that is, 

produces undef) otherwise. If Mod maps an element cx to a module name M, we say 

that TX is an agent with program M. 

For each agent a, View,(S) is the reduct of S to the collection of functions men- 

tioned in the module Mod(a), expanded by interpreting Me as X. Think about View,(S) 

as the local state of agent CI corresponding to the global state S. We say that an agent 

c( is enabled at S if Mod(a) is enabled at View,(S); that is, if the update set generated 

by Mod(M) at View,(S) is consistent and contains a non-trivial update. This update set 

is also an update set over S. To fire cx at S, execute that update set. 

2.6. Runs 

In this paper, agents are not created or destroyed. Taking this into account, we give 

a slightly simplified definition of runs. 

A run p of a distributed ealgebra program Il of vocabulary LY from the initial state 

So is a triple (M,A, a) satisfying the following conditions. 

1. M, the set of moues of p, is a partially ordered set where every {v: v 6~) is finite. 

Intuitively, v < p means that move v completes before move ,U begins. If M is 

totally ordered, we say that p is a sequential run. 

2. A assigns agents (of So) to moves in such a way that every non-empty set {cl: A(p) 

= CX} is linearly ordered. 

Intuitively, A(p) is the agent performing move p; every agent acts sequentially. 

3. o maps finite initial segments of M (including 8) to states of 17. 

Intuitively, o(X) is the result of performing all moves of X; o(0) is the initial 

state So. States a(X) are the states of p. 

4. Coherence. If p is a maximal element of a finite initial segment Y of M, and 

X = Y - {,u}, then A(p) is enabled at o(X) and o(Y) is obtained by firing A(,u) at 

GO. 
It may be convenient to associate particular states with single moves. We define 

n(p) = .({v: v < #LL}). 

The definition of runs above allows no interaction between the agents on the one 

side and the external world on the other. In such a case, a distributed evolving algebra 

is given by a program and the collection of initial states. In a more general case, the 

environment can influence the evolution. Here is a simple way to handle interaction 

with the environment which suffices for this paper. 

Declare some basic functions (more precisely, some function names) external. In- 

tuitively, only the outside world can change them. If S is a state of Li’ let S- be 

the reduct of S to (the vocabulary of) non-external functions. Replace the coherence 

condition with the following: 
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4’. Coherence. If ,u is a maximal element of a finite initial segment Y of hrl, and 

X = Y - {,u}, then A@) is enabled in a(X) and G(Y)- is obtained by firing A(p) 

at o(X) and forgetting the external functions. 

In applications, external functions usually satisfy certain constraints. For example, 

a nullary external function Input may produce only integers. To reflect such constraints, 

we define regular runs in applications. A distributed evolving algebra is given by a 

program, the collection of initial states and the collection of regular runs. (Of course, 

regular runs define the initial states, but it may be convenient to specify the initial 

states separately.) 

3. The ring buffer evolving algebras 

The evolving algebras & and %&, our “official” representations of %&, and $,pcsp, 

are given in Sections 3.3 and 3.4; see Figs. 9 and 10. The reader may proceed there 

directly and ignore the preceding subsections where we do the following. We first 

present in Section 3.1 an elaborate ealgebra Rl that formalizes grcsp together with its 

environment; Rl expresses our understanding of how gi,csp works, how it communi- 

cates with the environment and what the environment is supposed to do. Notice that 

the environment and the synchronization magic of CSP are explicit in Rl. In Sec- 

tion 3.2, we then transform Rl into another ealgebra R2 that performs synchronization 

implicitly. We transform R2 into gea by parallelizing the rules slightly and making 

the environment implicit; the result is shown in Section 3.3. (In a sense, Rl, R2, and 

Bea are all equivalent to one another, but we will not formalize this.) We performed a 

similar analysis and transformation to create G&, from Cepcsp; we omit the intermediate 

stages and present G$,, directly in Section 3.4. 

3.1. RI: The jirst of the row evolving algebras 

The program for Rl, given in Fig. 7, contains six modules. The names of the modules 

reflect the intended meanings. In particular, modules BulTFrontEnd and BufR3ackEnd 

correspond to the two processes Receiver and Sender of gpcsp. 

Comment for ealgebraists: In terms of [6], the InputChannel agent is a two-member 

team comprising the InputEnvironment and the BulTFrontEnd agents; functions Sender 

and Receiver are similar to functions Member, and Memberz. Similarly the Out- 

putchannel agent is a team. This case is very simple and one can get rid of unary func- 

tions Sender and Receiver by introducing names for the sending and receiving agents. 

Comment for CSP experts: Synchronization is implicit in CSP. It is a built-in magic 

of CSP. We have doers of synchronization. (In this connection, the reader may want to 

see the EA treatment of Occam in [2].) Nevertheless, synchronization remains abstract. 

In a sense the abstraction level is even higher: similar agents can synchronize more 

than two processes. 

Comment: The nondeterministic formalizations of the input and output environments 

are abstract and may be refined in many ways. 
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Module InputEnvironment 

if Mode(Me) = Work then 

choose u in Data 

InputDatum := u 

endchoose 

Mode(Me) := Ready 

endif 

Module OutputEnvironment 

if Mode(Me) = Work then Mode(Me) := Ready endif 

Module InputChannel 

if Mode(Sender(Me)) = Ready and Mode(Receiver(Me)) = Ready then 

Buffer( p mod N) := InputDatum 

Mode( Sender( Me)) : = Work 

Mode( Receiver( Me)) : = Work 

endif 

Module OutputChannel 

if Mode(Sender(Me)) = Ready and Mode(Receiver(Me)) = Ready then 

OutputDatum := Buffer(g mod N) 

Mode(Sender(Me)) := Work 

Mode( Receiver( Me)) : = Work 

endif 

Module BufIFrontEnd 

Rule FrontWait 

if Mode(Me) = Wait and p - g # N then Mode(Me) := Ready endif 

Rule FrontWork 

if Mode(Me) = Work then p := p + 1, Mode(Me) := Wait endif 

Module BullBackEnd 

Rule BackWait 

if Mode(Me) = Wait and p - g # 0 then Mode(Me) := Ready endif 

Rule BackWork 

if Mode(Me) = Work then g := g + 1, Mode(Me) := Wait endif 

Fig. 7. The program for Rl 
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Initial states: In addition to the function names mentioned in the program (and the 

logic names), the vocabulary of RI contains universe names Data, Integers, 2~~ 32, 

Modes and a subuniverse Senders-and-Receivers of Agents. Initial states of Rl satisfy 

the following requirements. 

(i) The universe Integers and the arithmetical function names mentioned in the pro- 

gram have their usual meanings. The universe 2~ consists of integers modulo N 

identified with the integers 0,. . . , N - 1. The universe 27~ is similar. p = g = 0. Buffer 

is of type 2~ 4 Data; InputDatum and OutputDatum take values in Data. 

(ii) The universe Agents contains six elements to which Mod assigns different module 

names. We could have special nullary functions to name the six agents but we don’t; 

we will call them with respect to their programs: the input environment, the output 

environment, the input channel, the output channel, buffer’s front end and buffer’s back 

end respectively. Sender(the input channel) = the input environment, Receiver(the input 

channel) = buffer’s front end, Sender(the output channel) = buffer’s back end, and 

Receiver(the output channel) = the output environment. The universe Senders-and- 

Receivers consists of the two buffer agents and the two environment agents. Nullary 

functions Ready, Wait and Work are distinct elements of the universe Modes. The func- 

tion Mode is defined only over Senders-and-Receivers. For the sake of simplicity of 

exposition, we assign particular initial values to Mode: it assigns Wait to either buffer 

agent, Work to the input environment agent, and Ready to the output environment 

agent. 

Analysis: In the rest of this subsection, we prove that Rl has the intended properties. 

Lemma 1 (Typing Lemma for Rl). In every state of any run of Rl, the dynamic 

functions have the following (intended) types. 

(i) Mode: Senders-and-Receivers -+ Modes. 

(ii) InputDatum, OutputDatum: Data. 

(iii) p, g: Integers. 

(iv) Buffer: 2Tj,~ --f Data. 

Proof. By induction over states. 0 

Lemma 2 (The p and g Lemma for Rl). Let p be an arbitrary run ofR1. In every 

state of p, 0 < p - g < N. Furthermore, tf p - g = 0 then Mode(buffer’s back end) = 

Wait, and if p - g = N then Mode(bufSer’s front end) = Wait. 

Proof. An obvious induction; see Lemma 11 in this regard. 0 

Lemma 3 (Ordering Lemma for RI). In any run of Rl, we have the following. 

(i) If p is a move of the input channel and v is a move of bufSer’s front end then 

either u < v or v < ,u. 

(ii) If ,a is a move of the output channel and v is a move of bufSer’s back end 

then either u < v or v < u. 

(iii) For any buffer slot k, tf u is a move of the input channel involving slot k and 

v is a move of the output channel involving slot k then either u < v or v < u. 
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Proof. Let p=(M,A,a) be a run of Rl. 

(i) Suppose by contradiction that p and v are incomparable and let X = {rr: 71 < 

p V TC < v} so that, by the coherence requirements on the run, both agents are enabled 

at g(X), which is impossible because their guards are contradictory. 

Since the input channel is enabled, the mode of buffer’s front end is Ready at X. 

But then buffer’s front end is disabled at X, which gives the desired contradiction. 

(ii) Similar to part (i). 

(iii) Suppose by contradiction that p and v are incomparable and let X = {n: rt < 

p V n < v} so that both agents are enabled at a(X). Since p involves k, p = k mod N 

in o(X). Similarly, g = k modN in o(X). Hence p - g = OmodN in a(X). By the p 

and g lemma, either p - g = 0 or p - g = N in o(X). In the first case, the mode of 

buffer’s back end is Wait and therefore the output channel is disabled. In the second 

case, the mode of buffer’s front end is Wait and therefore the input channel is disabled. 

In either case, we have a contradiction. 0 

Recall that the state of move p is n(p) = ~({v: v < p}). By the coherence require- 

ment, the agent A(p) is enabled in /i(p). 

Consider a run of Rl. Let pLi (respectively, Vi) be the ith move of the input channel 

(respectively, the output channel). The value ai of InputDatum in /l&) (that is the 

datum to be transmitted during pi) is the ith input datum, and the sequence a~, al,. . . 

is the input dutu sequence. (It is convenient to start counting from 0 rather than 1.) 

Similarly, the value b, of OutputDatum in z4(vj) is the jth output datum of R and the 

sequence bo, bl, . . . is the output data sequence. 

Lamport writes: 

To make the example more interesting, we assume no liveness properties for sending 

values on the in channel, but we require that every value received in the buffer be 

eventually sent on the out channel. 

With this in mind, we call a run regular if the output sequence is exactly as long 

as the input sequence. 

Theorem 4. For a regular run, the output sequence is identical with the input se- 

quence. 

Proof. Let po, pl,. . . be the moves of the input channel and vc, ~1,. . be the moves of 

the output channel. A simple induction shows that pi stores the ith input datum aj at 

slot i mod N and p = i at A@,). Similarly, Vj sends out the jth output datum bj from 

slot j mod N and g =j at A. If pi < vi < pi+N, then ai = bi. We show that, for all 

1, Pi < Vi < h+N. 

By the p and g lemma, p -g > 0 in /l(vj) for any j, and p - g <N in /l(pj) for 

any j. 

(i) Suppose Vi < pi. Taking into account the monotonicity of p, we have the 

following at n(vi): p <i, g = i and therefore p - g < 0 which is impossible. 
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(ii) Suppose pi+N < Vi. Taking into account the monotonicity of g, we have the 

following at ~(,Q+N): p = i + N, g < i, and therefore p - g >,N which is impossible. 

By the ordering lemma, vi is order-comparable with both pj and ,&+N. It follows 

that pi < \ji < pi+N. 0 

3.2. K?: The second of the row evolving algebras 

One obvious difference between 9,,csp and Rl is the following: Rl explicitly 

manages the communication channels between the buffer and the environment, while 

.% rcsp does not. By playing with the modes of senders and receivers, the channel mod- 

ules of Rl provide explicit synchronization between the environment and the buffers. 

This synchronization is implicit in the “?’ and “!” operators of CSP. To remedy this, 

we transform Rl into an ealgebra R2 in which communication occurs implicitly. R2 

must somehow ensure synchronization. There are several options. 

(i) Allow BuIIFrontEnd (respectively, BuflBackEnd) to modify the mode of the 

input environment (respectively, the output environment) to ensure synchronization. 

This approach is feasible but undesirable. It is unfair; the buffer acts as a receiver on 

the input channel and a sender on the output channel but exerts complete control over 

the actions of both channels. Imagine that the output environment represents another 

buffer, which operates as our buffer does; in such a case both agents would try to exert 

complete control over the common channel. 

(ii) Assume that BufIFrontEnd (respectively, BuflBackEnd) does not execute until 

the input environment (respectively, the output environment) is ready. 

This semantical approach reflects the synchronization magic of CSP. It is quite fea- 

sible. Moreover, it is common in the EA literature to make assumptions about the 

environment when necessary. It is not necessary in this case because there are very 

easy programming solutions (see the next two items) to the problem. 

(iii) Use an additional bit for either channel which tells us whether the channel is 

ready for co~unication or not. 

In fact, a state of a channel comprises a datum and an additional bit in the TLA 

part of Lamport’s paper. One can avoid dealing with states of the channel by requiring 

that each sender and receiver across a channel maintains its own bit (a well-known 

trick) which brings us to the following option. 

(iv) Use a boo~eeping bit for every sender and every receiver. 

It does not really matter, technically speaking, which of the four routes is chosen. 

To an extent, the choice is a matter of taste. We choose the fourth approach. The 

resulting ealgebra R2 is shown in Fig. 8. 

Notice that the sender can place data into a channel only when the synchronization 

bits match, and the receiver can read the data in a channel only when the synchroniza- 

tion bits do not match. 

The initial states of R2 satisfy the first condition on the initial states of RI. The 

universe Agents contains four elements to which Mod assigns different module names; 

we will call them with respect to their programs: the input environment, the output 
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Module InputEnvironment 

if InSendBit = InReceiveBit Then 

choose u in Data 

InputDatum := u 

endchoose 

InSendBit := 1 - InSendBit 

endif 

Module OutputEnvironment 

if OutSendBit # OutReceiveBit then 

OutReceiveBit := 1 - OutReceiveBit 

endif 

Module BulTFrontEnd 

Rule FrontWait 

if Mode(Me) = Wait and p - g # N then Mode(Me) := Ready endif 

Rule FrontCommunicate 

if Mode(Me) = Ready and InSendBit # InReceiveBit then 

Buffer( p mod N) := InputDatum 

Mode(Me) := Work 

InReceiveBit := 1 - InReceiveBit 

endif 

Rule FrontWork 

if Mode(Me) = Work then p := p + 1, Mode(Me) := Wait endif 

Module Bul?BackEnd 

Rule BackWait 

if Mode(Me) = Wait and p - g # 0 then Mode(Me) := Ready endif 

Rule BackCommunicate 

if Mode(Me) = Ready and OutSendBit = OutReceiveBit then 

OutputDatum := Buffer(g mod N) 

Mode(Me) := Work 

OutSendBit := 1 - OutSendBit 

endif 

Rule BackWork 

if Mode(Me) = Work then g := g + 1, Mode(Me) := Wait endif 

Fig. 8. The program for R2 
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environment, buffer’s front end, and buffer’s back end, respectively. The universe 

BufferAgents contains the buffer’s front end and buffer’s back end agents. Nullary func- 

tions InSendBit, InReceiveBit, OutSendBit, OutReceiveBit are all equal to 0. Nullary 

functions Ready, Wait and Work are distinct elements of the universe Modes. The 

function Mode is defined only over BufferAgents; it assigns Wait to each buffer agent. 

InputDatum and OutputDatum take values in Data. Define the input and output se- 

quences and regular runs as in RI. 

Let r, be the vocabulary of Rl and ??z be the vocabulary of R2. 

Lemma 5. Every run R=(M,A,a) 0fR1 induces a run p = (J&&z) of R2 where: 
(i) If in. E M and A(p) is not a channel agent, then B(p)=A(p). If A(p)= the 

input channel, then B(p) = bufer’s front end. If A@) = the output channel, then 
B(‘t) = bu~r’s buck end. 

(ii) Let X be a finite initial segment of M. z(X) is the unique state satisfying the 
following conditions: 

(4 +U( Tl n T2)=4mI(C n T2) 

(b) InReceiveBit = p mod 2 if the mode of bufer’s front end is Wait or Ready, 
and 1 - p mod 2 otherwise. 

(c) OutSendB~t = g mod 2 $ the mode of buffer’s back end is Wait or Ready, 
and 1 - g mod 2 otherwise. 

(d) InSendBit = InReceiveBit if the mode of the input environment is Work, and 
I - InReceiveBit otherwise. 

(e) OutRecei~e~it = O~~tSendBit if the mode of the output environment is Ready, 
and 1- OutSend3it other~~ise. 

Proof. We check that p is indeed a run of R2. By the ordering lemma for Rl, the 

moves of every agent of R2 are linearly ordered. It remains to check only the coherence 

condition; the other conditions are obvious. Suppose that Y is a finite initial segment 

of N with a maximal element p and X = Y - {p}_ Using the facts that A(p) is enabled 

in a(X) and a(Y) is the result of executing A(p) in cr(.X), it is easy to check that 

B(J~) is enabled in z(X) and z(Y) is the result of executing B(p) at z(X). 0 

Lemma 6. Conversely, every run of R2 is induced (in the sense of the preceding 
lemma) by a unique run of RI. 

The proof is easy and we skip it. 

3.3. gea: The oficiul row evolving algebra 

After establishing that p - g # N and before executing the FrontCommunicate rule, 

buffer’s front end goes to mode Ready. This corresponds to nothing in .%PcsP which 

calls for merging the FrontWait and FrontCommunicate rules. On the other hand, .3&, 

augments p after performing an act of communication. There is no logical necessity to 

delay the augmentation of p. For aesthetic reasons we merge the FrontWork rule with 
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Module FrontEnd 

if p - g # N and InSendBit # InReceiveBit then 

Buffer(p mod N) := InputDatum 

InReceiveBit := 1 - InReceiveBit 

p:=p+l 

endif 

Module BackEnd 

if p - g # 0 and OutSendBit = OutReceiveBit then 

OutputDatum := Buffer(g mod N) 

OutSendBit := 1 - OutSendBit 

g:=g+l 

endif 

Fig. 9. The program for W,,. 

the other two rules of BuffFrontEnd. Then we do a similar parallelization for Buff- 

BackEnd. Finally we simplify the names BulProntEnd and ButIBackEnd to FrontEnd 

and BackEnd respectively. 

A certain disaccord still remains because the environment is implicit in L?%$,~~~. To 

remedy this, we remove the environment modules, asserting that the functions InputDa- 

turn, InSendBit, and OutReceiveBit which were updated by the environment modules 

are now external functions. The result is our official ealgebra 6%Y&, shown in Fig. 9. 

The initial states of &Yea satisfy the first condition on the initial states of Rl: The 

universe Integers and the arithmetical function names mentioned in the program have 

their usual meanings; the universe ZZ’.. consists of integers modulo N identified with 

the integers 0,. . . , N - 1; the universe 32 is similar; p = g = 0; Buffer is of type 5?~ 

+ Data; InputDatum and OutputDatum take values in Data. 

Additionally, the universe Agents contains two elements to which Mod assigns different 

module names. InSendBit, InReceiveBit, OutSendBit, and OutReceiveBit are all equal 

to 0. InputDatum and OutputDatum take values in Data. 

The definition of regular runs of L%& is slightly more complicated, due to the presence 

of the external functions InputDatum, InSendBit, and OutReceiveBit. We require that 

the output sequence is at least as long as the input sequence, InputDatum is of type 

Data, and InSendBit and OutReceiveBit are both of type 572. 

We skip the proof that B’ea is faithful to R2. 

3.4. Ce,,: The oficiul column evolving algebra 

The evolving algebra %&, is shown in Fig. 10. It can be obtained from CePCsP in the 

same way that 6%&, can be obtained from %‘pCsp; for brevity, we omit the intermediate 

stages. 
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Module Slot 

Rule Get 

if Mode(Me)=Get and InputTum(Me) 

and InSendBit # InReceiveBit then 

Buffer(Me) := InputDatum 

InReceiveBit := 1 - InReceiveBit 

pp(Me) := 1 -pp(Me) 

Mode(Me) := Put 

endif 

Rule Put 

if Mode(Me)=Put and OutputTurn 

and OutSendBit = OutReceiveBit then 

OutputDatum := Buffer(Me) 

OutSendBit := 1 - OutSendBit 

gg(Me) := 1 - gg(Me) 

Mode(Me) := Get 

endif 

InputTum(x) abbreviates 

[x = 0 and pp(0) = pp(N - 1 )] or [x # 0 and p&x) # pp(x - 1 )] 

OutputTurn abbreviates 

[x = 0 and gg(0) = gg(N - 1 )] or [x # 0 and gg(x) # gg(x - 1 )] 

Fig. 10. The program for V,, 

Initial states: The initial states of %&, satisfy the following conditions. 

(i) The first condition for the initial states of RI is satisfied except we don’t have 

functions p and g now. Instead we have dynamic functions pp and gg with domain 

2~ andpp(i)=gg(i)=O for all i in 2%. 

(ii) The universe Agents consists of the elements of 2~, which are mapped by Mod 

to the module name Slot. Nullary functions Get and Put are distinct elements of the 

universe Modes. The dynamic function Mode is defined over Agents; Mode(x)=Get for 

every x in 2~. InputDatum and OutputDatum are elements of Data. Nullary functions 

InSendBit, InReceiveBit, OutSendBit, OutReceiveBit are all equal to 0. 

Regular runs are defined similarly to 92’,,; we require that the output sequence is at 

least as long as the input sequence, InputDatum is of type Data, and InSendBit and 

OutReceiveBit take values in 272. 
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4. Equivalence 

We define a strong version of lock-step equivalence for ealgebras which for brevity 

we call lock-step equivalence. We then prove that .G$& and %& are lock-step equivalent. 

We start with an even stronger version of lock-step equivalence which we call strict 

lock-step equivalence. 

For simplicity, we restrict attention to ealgebras with a fixed superuniverse. In other 

words, we suppose that all initial states have the same superuniverse. This assumption 

does not reduce generality because the superuniverse can be always chosen to be 

sufficiently large. 

4.1. Strict lock-step equivalence 

Let d and 23 be ealgebras with the same superuniverse and suppose that h is a 

one-to-one mapping from the states of d onto the states of 28 such that if h(a)= b 

then a and b have identical interpretations of the function names common to A and 

A?. Call a run (M,A,o) of d strictly h-similar to a partially ordered run (N,B,z) of 

3 if there is an isomorphism q : M 4 N such that for every finite initial segment X of 

M, h(o(X))=z(Y), where Y={~(,u): VEX}. Call d and 93 strictly h-similar if every 

run of & is strictly h-similar to a run of &?, and every run of 99 is h-‘-similar to a 

run of d. Finally, call d and 39 strictly lock-step equivalent if there exists an h such 

that they are strictly h-similar. 

Ideally, we would like to prove that &, and %Fee,, are strictly lock-step equivalent. 

Unfortunately this is false, which is especially easy to see if the universe Data is finite. 

In this case, any run of %$, has only finitely many different states; this is not true for 

9&a because p and g may take arbitrarily large integer values. One can rewrite either 

.%‘ea or G&,, to make them strictly lock-step equivalent. For example, %& can be modified 

to perform math on pp and gg over Integers instead of 2~. We will not change either 

ealgebra; instead, we will slightly weaken the notion of strict lock-step equivalence. 

4.2. Lock-step equivalence 

If an agent a of an ealgebra d is enabled at a state a, let Result(a,a) be the result 

of firing CI at a; otherwise let Result(n, a) =a. 

Say that an equivalence relation g on the states of d respects a function name f 
of A if f has the same interpretation in equivalent states. The equivalence classes 

of a will be denoted [a] and called the configuration of a. Call 2 a congruence if 

al CC a2 + Result(a, al ) 2 Result(a, az) for any states al, a2 and any agent CI. 

Let d and 93 be ealgebras with the same superuniverse and congruences E,d and 

g,d respectively. (We will drop the subscripts on ” when no confusion arises.) We 

suppose that either congruence respects the function names common to d and 99. 

Further, let h be a one-to-one mapping of g,d-configurations onto g&-configurations 

such that, for every function name f common to & and 93, if h([a]) = [b], then 

fa=fb. 



374 Y. Gurevich, J. K. Hugginsl Theoretical Computer Science 179 (1997) 353-380 

Call a partially ordered run (M,A, o) of & h-similar to a partially ordered run 

(N,B, z) of @ if there is an isomo~hism q : M +N such that, for every finite initial 

segment X of M, h([~(~)])=[~(Y)], w h ere Y = {v(p) : p E X}. Call & and 9 h-s~?~iZar 
if every run of &’ is h-similar to a run of g’, and every run of g is h-‘-similar to a 

run of ,d. Call &’ and ,@ lock-step equivalent (with respect to E.d and Eg) if there 

exists an h such that d and G9 are h-similar. 

Note that strict lock-step equivalence is a special case of lock-step equivalence, 

where 2-4 and E:s are both the identity relation. 

Assuming that 9?& and Vee,, have the same superuniverse, we will show that 9&, is 

lock-step equivalent to we’,, with respect to the congruences defined below. 

Remark. The assumption that W,, and ?$?,, have the same superuniverse means essen- 

tially that the supe~niverse of %& contains all integers even though most of them are 

not needed. It is possible to remove the assumption. This leads to slight modifications 

in the proof. One cannot require that a common function name f has literally the same 

interpretation in a state of W,, and a state of %&. Instead require that the interpretations 

are essentially the same. For example, if f is a predicate, require that the set of tuples 

where f is true is the same. 

Definition 7. For states c, d of Q&, c E d if c=d. 

Since each configuration of %Z& has only one element, we identify a state of Ce,, 

with its configuration. Let e, denote the value of an expression e at a state a. 

Definition 8. For states a,b of Bea, a Z b if 

_ gn = gb mod 2N, 

- (P - g),=(P - g)b> 

- fa = f b for all other function names f. 

Let div represent integer division: i div j = [i/j]. 

Lemma 9. If a E.g b then we have the following module 2: 

_ pn div N = pb div N, 
_ g, div N = gb div N. 

Proof. We prove the desired property for p; the proof for g is similar. 

By the definition of %, we have the following module 2N: pn =ga +(p - g)a =gb+ 
(p - g)b =pb. Thus, there are non-negative integers x1,x2,x3, y such that po=2Nx1 + 

NXZ +x3, pb=2N_Y+Nxz +x3, x;!dl, and x3<N. Hence, p,divN=2xt +x3 and 

pb divN=2y +x2, which are equal modulo 2. 0 

We define a mapping h from configurations of 9&, onto configurations of %&. 
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Definition 10. If a is a state of %&, then h([a]) is the state c of %& such that 

pp(iL = 
pa div N mod 2 if iap, mod N, 

1 -(p,divN)mod2 otherwise, 

ss(+ = 
ga div N mod 2 if i>g, mod N, 

1 - (ga div N) mod 2 otherwise, 

and for all common function names f, fc = fa. 

Thus, h relates the counters p,g used in &a and the counters pp,gg used in %$,,. 

(Notice that by Lemma 9, h is well-defined.) We have not said anything about Mode 

because Mode is uniquely defined by the rest of the state (see Lemma 16 in Sec- 

tion 4.3) and is redundant. 

We now prove that W,, and G& are h-similar. 

4.3. Properties of Bea 

We say that a is a state of a run (M,A, o) if a = a(X) for some finite initial segment 

X OfM. 

Lemma 11. For any state b of any run of &, 0 <(p - g)b <N. 

Proof. By induction. Initially, p = g = 0. 

Let (M,A,o) be a run of Bea. Let X be a finite initial segment of A4 with maximal 

element ,u, such that 0 d p - g <N holds in a= a(X - {p}). Let b= o(X). 

~ If A(p) is the front end agent and is enabled in a, then 0 <(p - g)a < N. The front 

end agent increments p but does not alter g; thus, 0 < (p - g)b d N. 
_ If A(p) is the back end agent and is enabled in a, then 0 < (p - g)a <N. The back 

end agent increments g but does not alter p; thus, 0 < (p - g)b < N. 0 

Lemma 12. Fix a non-negative integer k < N. For any run (M, A, a) of ,%&, the k-slot 

moves of M (that is, the moves of M which involve Bugler (k)) are linearly ordered. 

Proof. Similar to Lemma 3. 0 

4.4. Properties of V&, 

Lemma 13. For any run of %&, there is a mapping In from states of %$a to 3~ such 

that if In(c) = k, then: 

_ InputTurn(A4e) is true for agent k and for no other agent. 

- For all i < k, pp(i)C = 1 - pp(k),. 

- For all k d i < N, pp(i)C =pp(k),. 
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Proof. By induction. Initially, agent 0 (and no other) satisfies InputTurn and 

pp(i) = 0 holds for every agent i. Thus, if c is an initial state, m(c)=O. 

Let (M,A,a) be a run of %&. Let Y be a finite initial segment of A4 with maximal 

element p, such that the requirements hold in c = (T( Y - {,n}). Let d = g( Y). 

If A(p) executes rule Put, pp is not modified and Zn(d)=Zn(c). Otherwise, if rule 

Get is enabled for A(p), executing rule Get increments pp; the desired Zn(d)=m(c) + 

1 mod N. This is obvious if In(c) <N - 1. If In(c)=N - 1, then all values of pp are 

equal in d and In(d) = 0 satisfies the requirements. 0 

Lemma 14. For any run of gCa, there is a mapping Out from states of %?,, to s?,,, 

such that if Out(c)= k, then: 

~ OutputTurn is true for agent k und no other agent. 

~ For all i <k, qq(i)C= 1 - gg(k),. 

~ For ull k <i <N, gq(i)C =qq(k),. 

Proof. Parallel to that of the last lemma. 0 

It is easy to see that every move p of %& involves an execution of rule Get or rule 

Put but not both. (More precisely, consider finite initial segments Y of moves where ,n 

is a maximal element of Y. Any such Y is obtained from Y - {p} either by executing 

Get in state (T( Y - {cl}), or executing Put in state cr(Y - {p}).) In the first case, call 

p a Get move. In the second case, call p a Put move. 

Lemma 15. In any run (M,A, a) of gee,,, all Get moves are linearly ordered and all 

Put moves are linearly ordered. 

Proof. We prove the claim for rule Get; the proof for rule Put is similar. By contra- 

diction, suppose that are two incomparable Get moves p and v. By the coherence con- 

dition for runs, both rules are enabled in state X = {z : 71 < p V n < v}. By Lemma 13, 

A(p)= A(v). But all moves of the same agent are ordered; this gives the desired con- 

tradiction. 0 

Lemma 16. In any state d of any run of %&, for any agent k, 

Get iJ’PP(k)d =qq(k)d, 
Mode( = 

Put ifPP(k)d = 1 - Ydkhi. 

Proof. We fix a k and do induction over runs. Initially, Mode(k) = Get and pp(k)= 

gg(k)=O for every agent k. 

Let Y be a finite initial segment of a run with maximal element ~1 such that (by the 

induction hypothesis) the required condition holds in c = a( Y - {p}). Let d = a( Y). 
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If A(p) # k, none of Mode(k), pp(k), and gg(k) are affected by executing A(p) in 

c, so the condition holds in d. If A(p) = k, we have two cases. 

_ If agent k executes rule Get in state c, we must have Mode(k), = Get (from rule Get) 

and pp(k)C =gg(k), (by the induction hypothesis). Firing rule Get yields Mode(k 

Put and pp(k)d = 1 -pp(k), = 1 - gg(k)d. 
_ If agent k executes rule Put in state c, we must have Mode(k),=Put (from rule 

Put) and pp(k)C = 1 - gg(k)C (by the induction hypothesis). Firing rule Get yields 

Mode(k)d=Get and gg(k)d= 1 - gg(k), = pp(k)d. 0 

Remark. This lemma shows that function Mode is indeed redundant. 

4.5. Proof of Equivalence 

Lemma 17. Zf h([a])=c, then In(c)= pa mod N and Out(c) =gu mod N. 

Proof. Recall that In(c) is the agent k for which ZnputTurn(k), holds. Lemma 13 

asserts that pp(i)C has one value for i < k and another for i3 k. By the definition of 

h, this “switch-point” in pp occurs at pa mod N. The proof for Out(c) is similar. 0 

Lemma 18. Module FrontEnd is enabled in state a of 9&a iff rule Get is enabled in 

state c=h([a]) of %& for agent In(c). 

Proof. Let k=Zn(c), so that InputTurn(k holds. Both FrontEnd and Get have 

ZnSendBit # ZnReceiveBit in their guards. It thus suffices to show that (p-g), # N iff 

Mode(k), =Get. By Lemma 16, it suffices to show that (p-g)a # N iff pp(k)C =gg(k),. 

Suppose (p-g) #N. There exist non-negative integers xi ,x2,x3,x4 such that pa =x1 N 

+x3, ga=x2N +x4, and x3,x4 <N. (Note that by Lemma 17, k=pa mod N=x3.) 

By Lemma 11, 0 <(p - g)u < N. There are two cases. 

l x1 =x2 and x3 2x4. By definition of h, we have that, modulo 2, pp(x3), = prr div 

N =x1 and for all i >g, mod N =x4, gg(i)C =ga div N =x2. Since x3 2x4, we have that, 

modulo 2, gg(x3)C =x2 =x1 =pp(xs),, as desired. 

l XI =(x2 + 1) and x3 <x4. By definition of h, we have that, modulo 2, pp(x3), =pa 

div N =x1 and for all i < gu mod N =x4, gs(i)C = 1 - ga div N =x2 + 1. Since x3 -=c x4, 

we have that, modulo 2, gg(x3)C=x2 + 1 =x1 =pp(~3)~, as desired. 

On the other hand, suppose (p - g)a =N. Then pa div N and ga div N differ by 1. 

By definition of h, pp(i)C = 1 - gg(i)C for all i, including k. 0 

Lemma 19. Module BackEnd is enabled in state a tz rule Put is enabled in state 

c-h([a]) for agent Out(c). 

Proof. Similar to that of the last lemma. 0 

Lemma 20. Suppose that module FrontEnd is enabled in a state a of .%& jbr the 

front end agent Z nnd rule Get is enabled in a state c= h([a]) of%& jar agent In(c). 

Let b = ResuZt(Z, a) and d = Result(ln(c), c). Then d = h( [b]). 
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Proof. We check that h([b])=d. 

- Both agents execute InReceiveBit :== 1 ~ InReceiveBit. 

- The front end agent executes Bufir(p mod N) := InputDatum. Agent m(c) executes 

Bz@r(Zn(c)) := InputDatum. By Lemma 17, Zn(c)=p, mod N, so these updates 

are identical. 

- The front end agent executes p := p + 1. Agent In(c) executes pp(Zn(c)) := 1 - 

pp(Zn(c)). The definition of h and the fact that pp(i)c =pp(i)k([,]) for all iES?N imply 

that m(i)d=PP(i)k([h]). 

_ Agent In(c) executes Mode(In(c)) := Put. By Lemma 16, this update is redundant 

and need not have a corresponding update by the front end agent. Cl 

Lemma 21. Suppose that module BackEnd is enabled in a state a of Bea for the back 

end agent 0 and rule Put is enabled in a state c= h([a]) of $a for agent Out(c). 

Let b=Result(O,a) and d=ResuZt(Out(c),c). Then d=h([c]). 

Proof. Parallel to that of the last theorem. 0 

Theorem 22. W,, is lock-step equivalent to $,,, 

Proof. Let n(/~)=n&) and ~‘(U)=&(P). 

We begin by showing that any run (M,A,o) of &a is h-similar to a run of $,,, 

using the definition of h given earlier. Construct a run (M,A’, CT’) of %&, where o’(X) = 

h([a(X)]) and A’ is defined as follows. Let p be a move of A4, a=A(p), and c= h([A 

(p)]). Then A’(p)=Zn(c) if A(p) is the front end agent, and A’(p)=Out(c) if A(p) is 

the back end agent. 

We check that (M,A’, a’) satisfies the four requirements for a run of %& stated in 

Section 2.6. 

(i) Trivial, since (A4, A, 0) is a run. 

(ii) By Lemma 12, it suffices to show that for any p, if A’(p)=k, then A(,u) is 

a k-slot move. By the construction above and Lemma 17, we have modulo N that 

k = In(c)= pa if A(p) is the front end agent and k = Out(c)=g, if A@) is the back 

end agent. In either case, p is a k-slot move. 

(iii) Since 0’ = h o G, (T’ maps finite initial segments of M to states of %&. 

(iv) Coherence. Let Y be a finite initial segment of A4 with a maximal element 

/J, and X=Y - {p}. Thus Result(A(p), o(X))=o(Y). By Lemma 18 or 19, A’@) is 

enabled in g’(X). By Lemma 20 or 21, Result(A’(p), o’(X))= a’(Y). 

Continuing, we must also show that for any run (M,A’, a’) of %$,,, there is a run 

(MA, 0) of %a which is h-similar to it. 

We define A as follows. Consider the action of agent A’(p) at state n’(p). If A’(p) 

executes rule Get, set A(p) to be the front end agent. If A’(p) executes rule Put, set 

A(p) to be the back end agent. 

We check that the moves of the front end agent are linearly ordered. By Lemma 

15, it suffices to show that if A(p) is the front end agent, then A’(p) executes Get in 
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state n’(p) - which is true by construction of A. A similar argument shows that the 

moves of the back end agent are linearly ordered. 

We define cr inductively over finite initial segments of M. a(0) is the unique initial 

state in k’(a’(0)). 
Let Y be a finite initial segment with a maximal element ,U such that cr is defined at 

X=Y - {cl}. Ch oose o(Y) from h-‘(o’(Y)) such that a(Y)- = Result(A(p), a(X)). 

Is it possible to select such a o(Y)? Yes. By Lemma 18 or 19, A(p) is enabled in 

a(X) iff A’@) is enabled in o’(X). By Lemma 20 or 21, Result (A(p), o(X))~h-’ 

(Result(A’(p), o’(p))). It is easy to check that (M,A,o) is a run of .@,, which is 

h-similar to (M, A’, 0’). 0 

5. Inequivalence 

We have proven that our formalizations W,, and %&a of gPcsP and CePcsP are lock- 

step-equivalent. Nevertheless, 3&, and %&sP are inequivalent in various other ways. 

In the following discussion we exhibit some of these inequivalences. The discussion is 

informal, but it is not difficult to prove these inequivalences using appropriate formal- 

izations of gPcsP and %&,. Let .% = 3&, and %?=%&,. 

Magnitude of values: 52 uses unrestricted integers as its counters; in contrast, ?Z 

uses only single bits for the same purpose. We have already used this phenomenon 

to show that .&+ and %Za are not strictly lock-step-equivalent. One can put the same 

argument in a more practical way. Imagine that the universe Data is finite and small, 

and that a computer with limited memory is used to execute 3 and %?. 9’s counters 

may eventually exceed the memory capacity of the computer. V would have no such 

problem. 

Types of sharing: 92 shares access to the buffer between both processes; in contrast, 

each process in V has exclusive access to its portion of the buffer. Conversely, processes 

in % share access to both the input and output channels, while each process in 2 has 

exclusive access to one channel. Imagine an architecture in which processes pay in one 

way or another for acquiring a channel. %? would be more expensive to use on such a 

system. 

Degree of sharing: How many internal locations used by each algorithm must be 

shared between processes? %! shares access to N + 2 locations: the N locations of 

the buffer and 2 counter variables. ?? shares access to 2N locations: the 2N counter 

variables. Sharing locations may not be without cost; some provision must be made 

for handling conflicts (e.g. read/write conflicts) at a given location. Imagine that a user 

must pay for each shared location (but not for private variables, regardless of size). In 

such a scenario, g would be more expensive than 53 to run. 
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These contrasts can be made a little more dramatic. For example, one could construct 

another version of the ring buffer algorithm which uses 2N processes, each of which is 

responsible for an input or output action (but not both) to a particular buffer position. 

All of the locations it uses will be shared. It is lock-step equivalent to 3 and %Y; yet, 

few people would choose to use this version because it exacerbates the disadvantages 

of %?. Alternatively, one could write a single processor (sequential) algorithm which is 

equivalent in a different sense to 9! and ‘g; it would produce the same output as 9 

and V when given the same input but would have the disadvantage of not allowing 

all orderings of actions possible for 9 and $7. 
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