COMPACTNESS GOR OMITTNG OL TYLES

Miroslay BENDA

Rective 17 Augus 1976

0. Miroduction

In 1970 , the most discussed questions in the theory of large chaimats concernot the relatonship of measuable, strong compact, and smperompact cardmats, Dy now the major questions have been solved, the outcome being that strong compacthess is not a natural notion for set-theorists while for model-theorists it is measurability and supercompactness which waver, since for them, I suppose, the notion of strong compactness is constant. In the above I am, of course, hovely paraphrasing and refering to the results of Magidor that it is consistent to have the first measurable strongly compact and that it is also consistent to have the fuxt strongly compact carinal supercompact (and thus larget than the fivt measuxable). In 1970 we did not know this but we could ask what was the signifeanoc of these questions for model theory. Strong compactness is defined modeltheoretically and measarability has some fairly natural model-theoretic character:zations as well (see eg. [1, Exercise 4.2.6]). The question, therefore, what to characterize supercompactness which I did (see Theorem 1.1 below), but I did pot like the solution at the time But since the motive was recently repeated in some arguments of Silver (see [5]) and Magidor (see 44) I looked in this direction once more knowing how it helped them to haye things countable and found more interest in it. The result is a kind of compactness for omitting of types.

Section 1 contains a characterization of supercompactness in terms of omitheg a type in an infinitary language.

Section 2 introduces the notion of partial algebras and algebraic sets. These turn out to have a close connection with normality of flters but are extrernely interesting by themselves. The definition of the integral complements the defrem tion of derivative in our work on modeloids and may eventually be conbinied twith measures or ultrafiters at least. We give two defmitions of these notions which show that they are 4 (in $Z F)$.

Section 3 uses the preceding section to define samplings of seta Samplogs provide a unfication to different notions for almost all" explored and effectyely used by Barwise, Kueker, Shelah and others (see [6] for veterences).

[^0]Section 4 relativizes the notions introduced to admissible sets. The relativization is very natural, most notions turn out Σ or better.

Section 5 ciscusses the paradign which emerged in Section 1 and uses the preceeding sections to prove an omitting of types result discussed above.

Section 6 uses the result to provide the set-up needed for getting bounds for powers of singular cardinals. The section aiso contains discussion of the notions with respect to models of set theory.

1. Characterization of supercompactness

Let us recall what a supercompact cardial is. It is a cardinal κ such that for any $\lambda \geqslant \kappa$, there is a κ-complete ultratiter on $P_{\kappa}(\lambda)(=\{s \subseteq \lambda:|s|<\kappa])$ which contains $\left\{s \in P_{*}(\lambda): \alpha \in s\right\}$ for each $\alpha<\lambda$ and is normal, that is if $f: P_{*}(\lambda) \rightarrow \lambda$ is such that $f(s) \in s$ for almost all s (with respect to the ultrafilter), then for some $\alpha<\lambda f(s)=\alpha$ for almost all s.

The characterization turns out to be in terms of realizing a type of a theory and simultaneously omitting another type. Precisely, let T be a theory in the language $L_{k, \kappa}(\kappa \geqslant w)$, and let $\Sigma(x, y)$ be its type. We shall deal with types in two variables but all the results generalize to types with x and y standing for less than k variables. We shall assume throughout that the type is closed under conjunctions of less than κ formulas but we do not assume that it is complete. Saying we want realize x and omit y means that we seek a mode of

$$
\begin{equation*}
(\exists x)[\wedge(\exists y) \Sigma \wedge 7(\exists y) \wedge \Sigma] \tag{*}
\end{equation*}
$$

where $(\exists y) \Sigma=\{(\exists y) \sigma: \sigma \in \Sigma\}$ and $A \phi$ is a conjunction of all formulas of ϕ. A model for (*) will sontain a c such that $(\exists y) \Sigma(c, y)$, that is c realizes the projection of Σ onto x and the second conjunct in (*) says that the type $\Sigma(c, y)$ (a type in y) is omitted. As we shall see below, (*) is a paradigm for many problems in model theory and we shall refer to it sometimes as the paradigm.

Now given $\Delta \subseteq \Sigma$ we denote by $\alpha_{\Delta}(x)$ the formula

$$
\wedge(e y) \Delta A \neg(\exists y) \wedge \Delta
$$

The paradigm is theis equivalent to $(\exists x) \alpha_{\Sigma}(x)$.
Before going to the characterzation let us recall the notion of closed unbounded subsets of $P_{\kappa}(X)=\left\{\leq X:\{s \mid<\kappa\}\right.$ (see [2]). A set $C \subseteq P_{\lambda}(X)$ is called closed if for any \leq chain $\left\{s_{\alpha}: \alpha<\mu\right\} \leq C, \bigcup\left\{s_{s_{x}}: \alpha<\mu\right\} \in C(\mu<\kappa)$. It is unbounded if for any $s \in P_{k}(X)$, there is $r \in C$ such that $s \leq r$ It is known that the closed unbounded subsets on X generate a κ-onplete fiter which is normal, i.e. if $Y \subseteq X$ and $\left\{C_{y}: y \in Y\right\}$ are members of the filter then

$$
\left\{s: y \in s \rightarrow s \in C_{y}\right\}
$$

is also a member of the filter (see [2] for details; it is assumed that $\kappa>$ of segular and $\kappa<|X|$. We denote this filter by $F_{\kappa}(X)$.

Theorem 1.1. The following are equivalent.
(i) κ is supecompact;
 $(\exists x) \alpha_{\Delta}(x)$ has a modet is in $P_{1}(x)$, then $T+(J x) a(x)$ has a model

Remark 1.2. (i), bosely speaking; says that fomot all small paradigns have a solution then the whole paradign has a solution. Thes sis wh we callet in "a dind of compactness" If (a) were phased "it for at lare enough (\mid a $>$) mant $(|A|<x) \Delta ' s \leq \Sigma$ ve bave solutions for $(A x)\left(\mu_{A}(x)\right.$, her . . " the erwhalence wond be also tue but a fis not the nature or the problem to put it so (see the dicusion below).

Proof. In order is prove (i) \rightarrow (i) we assume that is is supercompact, that we the a theory T in L_{s}, and a type $\Sigma(x, y)$ of it. Assume that $\left|\sum\right|=\lambda \equiv$ is and lof M_{α} be a model of $(\exists x) a_{s}(x)$ for Δ from

$$
A=\left\{A: P_{k}(\Sigma): T+(A x) \alpha_{\Delta}(x) \text { has a model }\right\}
$$

Let D be a normen ultrafiter on $P_{\kappa}(\Sigma)$ as guaranteed by the superconapactuess of n. By [2, Theorem] $A \in D$. It thus makes sense to take the ultrapronuct

$$
M=\prod_{A \in A} M_{\Delta} D
$$

Since D is \leqslant-complete $M k T$ Let $f(\Delta) \in M_{A}$ be such that $M_{A}=\alpha_{A}(f(A))\left(\Delta \in A_{0}\right)$. Since $\left\{\Delta \in P_{k}(D): \& \in \Delta\right\} \in D$ for every ocy we have (again using κ completena's of D)

$$
M+\Lambda(\exists y) \leq\left(f_{D}, y\right)
$$

Let us assume that we in fact have

$$
M F(\exists y) \wedge \Sigma\left(f_{0}, y\right)
$$

and let $g f_{p}$ be such element. Then for every $\Delta \in A$ there is $\sigma \in A$ such that $M_{\Delta} F-\sigma\left(f(\Delta), g(\Delta)\right.$ because $M_{d} \vDash \alpha_{A}(f(\Delta))$; call such σ by $h(A)$. Then $M(A) \in A$ on $A \in D$, so for some $\sigma_{0} \in \Sigma, h(A)=\sigma_{0}$ for almost ali Δ (mod D). But that means MF $7 \sigma_{0}\left(f_{D}, g l_{D}\right)$ thus showing $M F(\exists x) \alpha_{A}(x)$.

To prove (ii) $\rightarrow(0$ we let $A \geq \kappa$ and let T be the theory of

$$
M=\left(P_{k}(\lambda) \cup \lambda, \cdots R \cdots\right)
$$

where $\cdots R, \cdots$ is a listing of all elements, all subsets, and all binamy remwoys on the universe $\left(P_{k}(\lambda) \cup \lambda\right)$. Let $\sum(x, y)$ be the type

$$
\{U(x) \wedge \alpha \in x \wedge y \in x \wedge y \neq \alpha: \alpha<\lambda\}
$$

where U is the name of $P_{k}(\lambda)$ and $\alpha<\lambda$ pames itseli. Note that the type consigts of finite fomulas only Now given $\Delta \leq \sum$ with $1<\|\langle<K$, we soe bat $T+(\exists x) \alpha_{A}(x)$ has M as its model by taking for x the sct of $\alpha^{2} s \in x$ when are
mentioned in Δ : As the set of these Δ 's is closed and unbounded in $P_{k}(\Sigma)$ we get, by (ii), a model N of $T+(3 x) \alpha_{s}(x)$ which can be considered an $L_{x ; ~}$ elementary extension of M. Let $a \in N$ be such that $N F \alpha_{s}(a)$ and detine D on $P_{*}(\lambda)$ by

$$
D=\left\{X \subseteq P_{k}(\lambda): N \mid \mathbf{X}(a)\right\}
$$

here \mathbf{X} is the unary predicate naming X. As is well-known D is a κ complete ultrafilter (since $M<N$ in $I_{\kappa, \kappa}$), it contains $\left\{s \in P_{\kappa}(\lambda)\right.$: $\left.\alpha \in s\right\}$ because

$$
a \in\{x: N \notin \alpha \in x\}
$$

and it is normal: let $f: P_{*}(\lambda) \rightarrow A$ such that $f(s)$ es for almost all s. By the definition of $D, N F(a) \in a$ and because the type $\{y \in a \wedge y \neq \alpha: \alpha<\lambda)$ is omitted in N this means that for some $\alpha<\lambda, N=f(a)=\alpha$, consequently $\{s: f(s)=\alpha\} \in D$.

Let us now discuss the chances of proving a theorem in $\mathrm{L}_{\mathrm{w} \times 3}$ suggested by the characterization. The obvious formulation of such a statement is false as w is not supercompact. We can see this on a specific example by considening $\sum(x, y)$ defined by

$$
S(x, y)=\{m<x \wedge y ; m \wedge y<x: m<\omega\}
$$

Σ is a type of Th($\omega,<$) (n is the m th element above the least element). For every finite $\Delta \subseteq \Sigma$ with $|\Delta|>1,(\exists x) \alpha_{\Delta}(x)$ has a model, but $(\exists x) \alpha_{\Sigma}(x)$ does not have one because the linear onder would be elementarily equivalent to $(\omega,<)$.

2. Fantal Xaigebras

In this section, we define certain subsets of X^{*} which we call X-algebraic and which will turn out to have a close connection with normality of filters. In fact, analyzing nomality of certain filters led us naturally to these sets and we found that they were interesting, in their own right, subjects for investigation. Later we learned, thanks to the encyclopedic knowledge of R. Solovay, that we wete not the Girst to use these sets and the functions defined on then. For example, the book of Dubins and Savage, How to Gamble if You Must (McGraw-Hill, 1965, pp. 14-17), is based on this concept (called finitary mappings there). Actually, the concept goes back to Kamar who investigated these mappings in his paper in Colloquium Mathematicmes (1975) 1-5 (with a three lines long title). There are other connections. In coding theory, these sets are called instantaneous codes and in linguistics, prefix-free languages, Hopefully, all these loose ends will be one day cemented together.

The set of all finite sequences of elements of X is denoted by X^{*}, if $t . v \in X^{*}$ then $u v$ denotes the concatenation of u and $v ; 0$ denotes the empty sequence.

Definition 2.1. If $\left\{D_{x}: x \in X\right\} \subseteq X^{*}$ let $D=\left\{D_{x} x \in X=\left\{x w: w \in D_{x}\right\}\right.$, we call D the integration of the sets D_{x}. The X-algebraic sets are those subsets of X which
belong to the least collection of mbects of X contaming for and ctosed under integration.

We chall now show that the X-agebraic sets D may be characterized by we following condition (suggested by the referes, ow onginal was vimplot hat confusing).

> If $s: \omega \rightarrow X$ there is a minue finte nitial segment of s whoh belongs to D.

Note that if D matisfes (w) and $z \in D$ then no proper extencion of t is in D.
In order so tacilitate the proof, we need some defnitions.
Definition 2.2 (i) If $D \subseteq X^{*}$ and $v \in X^{*}$ lot

$$
D^{\circ}=\left\{w \in X^{*}-\{0 ;: v, D\}\right.
$$

and

$$
v D=\{v w ; w \in D\}
$$

(ii) For $D, E \leq X^{*}$ defne $D \leq E$ if for some $v \in X^{*}$ bD $E E$
(ii) Let $A l_{x}$ denote the set of $D \leq X^{3}$ satisfying (b),

Propasition 2.3, The relation \leq defned above is a well-founded partal order ont $A l \times$

Proof. If $D \leq E$ because $v D \leq E$, and $E \leq F$ because $w E \subseteq F$, then (wo) $D \leq E$ thus \leqslant is transitive.

If $D \leq E, E \leq D$, and $D \neq E$ we have v, w with $ט D \leq E$ and wEED. go (wo) $D \subseteq D$. Since at least one of v and w is non-empty we have a $u \neq 0$ guch that $u D \subseteq D$. Because $D \in A l_{x}$ the sequence $s=$ utu $\cdots u \cdots$ has a unicye inital segment t in D which is impossible: if $t \in D$, then $u t \in D$ and is an mital segnent of s as well.

The order is well-founded: let $D_{0}>D_{1}>\cdots>D_{n}>\cdots$ comtradict this. Then, for $n>0$, we have $w_{s} \neq 0$ such that $w_{n} D_{n} \leq D_{n-1}$. Hence $w_{n} w_{2} \cdots w_{n} D_{n} \subseteq D_{0}$. Let t be the initial segment of $w_{1} w_{2} \cdots w_{n} \cdots$ which belongs to D and ket be the least number sumt that t is a proper initial segment of $w_{1} w_{2} \cdots w_{n}$. Becous $w_{1} \cdots w_{n} D_{n} \subseteq D_{0}$ there is an extension u of $w_{1} \cdots w_{n}$ which is in D_{5}. Wat then $f_{\text {, }}$ $u \in D_{0}$ and t is a proper initial segment of u; this is impossible.

Proposition 2.3 enables us to define ranking on the sets m As by:

$$
\begin{aligned}
& r(D)=\text { ost ordinal } \alpha \text { suc that if } E<D, \\
& E \in A l_{x} \text { then } r(E)<\alpha
\end{aligned}
$$

Theorem 2.5. A set is X-algebrat iff it satigies (\%).

Proof. Assume that D is X-atgebraic, The represcntation of D as $\int D_{x}: x \in X$ is unique so we may prove the implication by incuction on the complexity of construction, if $D=\{0,(*)$ is clear, Assume (w) for $D, x \in X$, and let $s: o \rightarrow X$. Express s as $x s^{i}$ and use $(*)$ to get the initial segment v^{i} of s^{r} which is in D_{x}. Then $x v^{\prime} \in D$ and its uniqueness is clear.

We prove the converse by induction on the rank. If $r(D)=0$ then D must be 0 \} as can be easily checked so D is algebraic. If $r(D)>0$ then for every $x \in X$ $D^{x}\left(=\{w ; x w \in D)\right.$ satisfies (**) and since $x D^{x} \subseteq D$ we have $D^{*}<D$. So, by the inductive hypothesis every D^{x} is X-algebraic and because

- $\quad D=\int D^{x}: x \in X$
so is D.

Example 2.5. The only atgebraic sets of rank 0 and 1 are 0, and X. We have, for $n \geqslant 0$

$$
\int X^{n}: x \in X=X^{n+1}
$$

so every X^{n} is X algebraic and has rank γ. If $|X|>1$ then we have sets of rank 2 other than X^{2} : Take $D=\int D_{x}: x \in X$ where $D_{x}=X$ except when $x=x_{0}$ in which case $D_{x}=\{0\}$.

Eroposition 2.6. If X is finte then the X-algebraic sets are precisely the sets D satisfing: D is finte and maximal with reanect to the propery that if v, we D then nether 咅 6 proper intial segmen of the obter.

Troof. For ease in notation, we assume that $X=\{a, b\}$. Assume D_{a} and D_{5} are x-algebraic, satisfy the condition and $D=1 D_{x}: x \in X=a D_{a} U b D_{b}$ Thes, D is fnite. If $v i$ an intial segment of w, then they start with the same letter, say a, $v=a w^{\prime}$. Then v^{\prime} is an initial segment of w^{\prime} so they can't be both in D_{a} hence one of $e_{,} w$ is not in D. To show that D is maximal with this property, lo $w \in X^{*}$ and stars with, say b for a change. Then $w=i w^{\prime}$, w^{\prime} can be compared with a v in D_{b}. so w is comparable with bo $\in D$.

Conversely, ter 7 be a maximal finite set satisfying the condition and let in be the length of the lengest sequence in D. Assume $n>0$. Then D^{a} and D^{0} have sequen es of lengths $\leqslant n-1$ and this enables us to assume inductively that they are X-algebrate and hence, so is D beng $f D^{x}: x \in X$.

It is not difficult to see that 1% is mhate then for any X-algebraic D $r(D)<|X|^{+}$and for any $\alpha<|X|^{+}$there atgebatc d with $r(D)=a$.

Definition 2.7. A partial X-algebra is a function f from $n X$-agebraic set into X. Its rank, $r(f)$, is the rank of its domain. The functions of rank 0 are called basic functions. The set of partial X-algebras is denoted by P^{2}.

Remark 2.8. The partal x-algebas are tuncwons which may be demer on arbitrarly long finite seguences but bohave in maty respects ais farmonts of finitely many argument. This is hent seen in the proof of Theorent 6.1.

The basic functions being $\{(0 . x)\}$ are cssextally chement of x, the partal X-algebras of rank 1 are simply the functions on X into x, etc.

Given partial X-atgebras $f_{0} x \in \mathbb{X}$ we defne.

$$
\int f_{x}: x \in x
$$

as the functon f which at x is $f_{x}(w)$ if wedont (f) and wheh is undonnet elsewhere.

We shall often use the following operation:

$$
f(w)= \begin{cases}f(v w) & \text { ie } f(v w) \text { in defned, } \\ \text { undefned } & \text { otherwise. }\end{cases}
$$

Theorem 2.9. (a) The panial X-algebras form the least set containing the hask functions which is closed under the operation of integration. (b) Defning $f<g$ iff for some $0 \neq 0 . \mathrm{g}^{v}=f$ we obtain a well-founded partal order or F_{x}. The rant of f, (f), is the least α such that if $g<f$ then $r(g)<\alpha$.

Proot. (a) follows from

$$
\operatorname{dom}\left(\int f_{x}: x \in X\right)=\int \operatorname{dom}\left(f_{x}\right): x \in X
$$

(b) follows from Proposition 2.3 and $f<g$ in $\operatorname{dom}(\hat{c})<d o m(g)$.

3. Smprings

The notion of samping generatizes the notion of closed mbounded subest of $P_{*}(X)$.

Defintion 3.1. A sampling of a set X is a collection S of subsets of X (the elements of S are called samples), such that:
(a) $0 \in S$ and $X \in S$;
(b) if $r \in X$ is finite and f is a partai X-algebra then there is an $S \in S$ such that $r \leq s$ and s is closed under f

Example 3.2. If $\omega<\kappa<|X|$ then $S=P_{k}(X)-\{0 \mid$ is a sampling because io we take a partal X-algebra f we use the Skoten-Lowenhem argament fo fod a set of small cardinatity containing any given finite set.
 size< κ. In the case when the algebra on X happens to be Jonston we couth define the sample simply as proper subalgebras.

Definition 3.3. Let S be a sampling of X. For every partal X-algebra f we denote by $Z_{\text {; }}$ the set

$$
\{s \in S: s \text { is closed under } f\} \text {. }
$$

F_{S} will denote the set of all subsets of S which include Z_{F} for some partial X-algebra $\hat{\text { a }}$.

Theorem 3,4. F_{3} is a mormal fiter on S. In fact it is the least nornal fiter containing the sets $\{s \in S: x \in s\}$ where $x \in X$.

Proof. Normality means that if $C x$ with $x \in X=\bigcup S$ are menbers of the filter then so is the set

$$
C=\left\{s \in S: x \in S \rightarrow s \in C_{x}\right\}
$$

We denote the set C by ΔC_{x}. If $D_{x} \subseteq C_{x}$ for each $x \in X$, then $D=\Delta D_{x} \subseteq C=\Delta C_{x}$, thus it is enough to consider the case when $C_{x}=Z_{f_{x}}$ for some partial X-algebra f_{x}. Let f be the partial X-algebra $f_{x}: x \in X$. If $s \in \mathcal{Z}_{\xi}$ then s is closed under every f_{x} with $x \in s$: if $a_{1}, \ldots, a_{n} \in s$ and $f_{x}\left(a_{1}, \ldots, a_{n}\right)$ is defined then $f_{x}\left(a_{1} \cdots a_{n}\right)=$ $f\left(x, a_{1} \cdots a_{n}\right) \in s$. Therefore $Z_{F} \subseteq \Delta C_{x}$ so the diagonal intersection belongs to F_{s}.

Notice that we still do not know whether F_{s} is a filter, i.e, normality is not a property of filters only. That F_{s} is a filter comes from the condition that the samples cover finite sets. As before it is enough to check that if f_{1}, \ldots, f_{n} are partial X-algebras then

$$
Z_{f_{1}} \cap \cdots \cap Z_{f_{n}} \neq 0
$$

Le: x_{1}, \ldots, x_{n} be in X and define $f_{x}=f_{1}$ if $x=x$ and for other x 's, $\left.f_{x}=\{0, x)\right\}$. Let $s \in S$ be a sample containing $\left\{x_{1}, \ldots, x_{n}\right\}$ and closed under $f=\left\{f_{x} ; x \in X\right.$. We have already noticed, that if s is closed under f it is closed under every f_{x}, with $x \in s$, so the s chosen above is in $Z_{f_{1}} \cap \cdots \cap Z_{f_{1}}$.

The biter is non-principal since $\cap\left\{Z_{f}: f\right.$ partial X-algebra $\}=0$; if $s \in S$ were in the intersection, $s \neq 0$, from condition (a); let $x \in s$. As there is a $y \in X-s$ and a partial X-algebra mapping X onto y we see that s camot be closed under all partial X-agebras.

Finally assume we wat to construct a normal filter containing $\hat{x}=\{s \in S: x \in s\}$ for every $x \in X$. That means, that every $x \in S$ must be covered by some $s \in S$ which can be phrased that s is closed under the basic function $\{(0, x)\}$. Why shoutd there be samples closed under a given inary function $f: X \rightarrow X$. The reason is if we define $C_{x}=\overparen{f}(x)$ then the members of the divgonal intersection

$$
\left\{s: x \in S \rightarrow s \in C_{\mathrm{x}}\right\}
$$

are closed under f In fact $Z_{f}=\Delta f(x)$. By induction, if we need to put into the filter $Z_{f_{x}}$ to make it normal we also have to put in Z_{f} where $f=f_{x}$ tex becase

$$
Z_{f}=\left\{s: x \in s \rightarrow s \in Z_{f}\right\} .
$$

 reason for that is that condtion (b) holds tor these smaphus in the fom, "fer
 f and containing r^{37}. This is muedately geen fon the troof of "fay chocd under finte intersections". The converse of this revat is also thes if for is countably complete then the sampling S contains for each comebie $r=\%$ tot extension $s \in S$.

The next theoren tells us that overy sampling has this property.
Proposition 3.5. (i) If s is a sampling of an infuthe set X then Prs is comtably complete.
(ii) S is a sampling of X iff ewery conwable stathete on X, has an elonuntay swbstructure in S.

Proof. Let $r \subseteq X$ be comtable, $r=\left\{x_{n}: n<\omega\right\}$. Let $f: X \rightarrow X$ be function such that $f\left(x_{n}\right)=x_{n+1}$. A set $s \in S$ which contans x_{0} and is closed wnter f inclutes ? so all countable sets are covered and this means F_{s} is countably complete.

One direction of (ii) is trivial and the other follows from Skotemiong the stucture and then taking a comable intersection of sets of the fom 2 In $f: X^{n} \rightarrow x$

Remark 3.6. The defintion of a sampling suggested by this resut is simpler that the official defnition. Howewer, the official defnition is of much more absohne character. In Section 6 we define a set and prove that it is a samplug uning the partial X-algebras and that proof reveals even better the fintary proporties of these algebras. We have no idea how we conld accomplish this via propostion $3.5(i i)$.

Remark 3.7. Let S be

$$
\left\{s \subseteq \kappa^{+} \text {. order type of } s=\lambda^{+}\right\}
$$

where $\omega \leqslant \lambda<\kappa$. Then by [1, Proposition 7.3.4(ii) S is a sampling of m^{+}wa Chang's conjecture holds for the pair $\left(\kappa^{+}, k\right),\left(d^{+}, \lambda\right)$.

Shelah defues (see [6]) certan filters on subsets of a set A anu ask for a boter understanding of their interrelations. Although we shall not go into detels of it we think that a better understanding may be reached via the notion of samplatys. Let us take the filter $\mathbf{E}_{\mathrm{k}}^{1}(\mathrm{~A})$. In our set-up we first define samples, whoh can tee read off the Definition 3.1. The set A is in a set M which contans sets of cardinality less than some fixed cardinal heredtarily. A sample of A is constructed as follows: we form a continuous chain of clementay subnodels of some expansion of $M,\left(N_{\alpha}|\alpha<\kappa\rangle\right.$ with the property that $\left.\left.\left\langle N_{\infty}\right\} \& \beta\right\rangle \in N_{c}\right\} a s t h c t y$
increasing chain) and take as a sample $A \cap U \mid N_{x}: x<k$) (that s how A looks in $U\left(N_{\alpha}: \alpha<k\right)$). This way every sample has power κ (we assume $\kappa<|A|$) and this is a sampling of A in our sense since we are allowec to take the expansions of M. Caling S the resulting sampling we find that F_{s} is not $\mathbf{E}_{k}(A)$, mainly because $\mathbf{E}_{\mathrm{K}}^{1}(A)$ is κ^{+}complete. Sut if we define F_{S}^{*} by taking as generators
$\{s \in S: s$ is closed under $f \in P\}$
where $P \subseteq P_{A}$ is a set of cardinality $\leqslant \kappa$ we get the same flter. The genemars ate non-empty since the expansions are allowed to be of size κ. The filter F_{s}^{s} may not be nomal but one sees that some rennants of normality remain.

4. Relativization

The results of the last section imply that there are no sampings of countable set. But if a set appears uncountable in some model of set theory it has a sampling in it and it will suffice for the purposes we have in mind. We shall therefore investigate what happens to the notion of partial X-algebras and samplings when we consider them in an admissible set.

In the next proposition we assume that A is an admissible set which contains ω. We also fix an $X \in A$ and assume that it is wellordered in A. We shall also assume that A satisfies the Σ choice, i.e. if $R \leq A$ is $工$ and for some a $\in A$ we have

$$
(\forall x \in a)(\exists y) R(x, y)
$$

then for some function $f \in A$ defined on a, we have $R(x, f(x)$ for each $x \in a$. These assumptions are satisfied in all L_{x} 's which happen to be admissible as well as in all countable transitive models of ZFC (with or without the power set axiony.

Propositien ci. () $X^{*} \in A$. (2) If $\left\{f_{x}: x \in X\right\} \in A$ is a set of parial X-algebras, then $\int_{x}: x \in X$ is in A.

Troof. The function $\left\{\left(n, X^{n}\right\rangle, n<b\right\}$ is in A and $X^{\text {t }}$ is a A_{0} subset of its range. This proves (1). (2) is true because $1 x_{x}+X \leq X$, and is Δ definable from $\{f: x \in X\}$.

Let us now denote by P_{X}^{A} the partial X algebras whict are in $A, P_{X}^{A}=A \cap P_{X}$. By an A-sampling of X we shall mean a set $S \in A$ of subsets of X such that for every $f \in P_{X}$ and every finte $r \subseteq X$ there is an $s \in S$ which is closed tuder f.

As before we denote by Z_{f} the set of $s \in S$ which are closed under f and by F_{s} We denote the collection of $Y \leq S$ which contain Z_{f} for some $f \in P A$.

Proposition 4.2 (1) P* ta E on A

 $S \in S: x \in s \rightarrow s \in C H$ is F_{B}^{a}.

Proof. We define P_{x}^{A} by stipulating: "there ${ }^{\text {s }}$ a sequence (construction) of lenght a whose members are thetions from subset of X^{*} invo X and the seguonce $\xi_{\text {p }}$ $\beta<\alpha$ is such that:
(i) s_{β} is a basic function or
(ii) there is $g: X \rightarrow \beta$ and $s_{\beta}=f_{g(\alpha)}: x \in S$.

It is clear that this is a 2 defnition and that anything in A whoh wathes it ta fathal X-algebra. Let us show the converse. Given $f \in A \cap P_{R}$ wote that $f^{\prime \prime} \in A$ for cvery $x \in X$; we may assume by inductive assumption on the rank of f that $f x$ for $x \in X$ satifies the defmition. We define a relation $\{$ on A by:
$R(x, s)$ iff s is a sequence satisfying (i) and (t) and
its last element is f^{x}

It is clear that R is \sum on A and that $(\forall x \in X)(\exists s) R(x, s)$, Now we use the Echoice to get ($s_{i} \mid x \in X$) such that s_{i} is a construction of f^{x} and uovag the fact that X is well-ordered we combine these into one sequence and top this sequance with f. The result is a construction for f because the function $g(x)$ which copals the length of $s, ~ i s ~ i n ~ A . ~$

We denote a Σ defintion of P^{A} by $A(\cdot)$ and proceed to prove (2). That $F_{S}^{\text {a }}$ is a filter is proved as before, using Proposition 4.2 (2). Let $R \subseteq X \times S$ be 5 on A and such that for every $x \in X$

$$
\{s \in S: R(x, s)\} \in F_{S}^{A}
$$

This set need not be in A but by the definition of F_{s}^{A} it incudes Z, for some $f \in P_{X}^{A}$. Thus if we consider the predicate $T(x, f)$ denned by

$$
\pi(f) \wedge(\forall s \in S)[\text { if } s \text { is closed under } f, \text { then } R(x, s)]
$$

we see that it is Σ on A and that $(\forall x \in X)(\exists f) T(x, f)$; so asing the E-hoice we get $\left.f_{x}: x \in x\right\} A$, with $f^{x} \in P_{x}^{A}$ and $\Sigma_{f^{x}} \subseteq\{s \in S: R(x, s)\}$. Hence $f=f_{f}: x \in X=P_{x}$ and we have, as before

$$
Z_{s} \subseteq\{s \in S: x \in s \rightarrow R(x, s)\}
$$

Remark 4.3. The relativization coud have been done in temm of Thooxem 2.4. Tw that case we would have gotten as A-partial X-algebras sone functoms which really are not partial X-algebras because we would check the algetracty of the domain of the functions for those $s: \omega \rightarrow X$ which are in A. The net ofect wotid be that A-samplings of X might be larger that the A-sampliges we bove, But even if we would end up with the same samplings it s rone pleatant to have pax on A

The fact that F_{X}^{A} is Σ normalis true if S is just Π on A and $P^{A}(X) \in A$ as can be seen by inspecting the proof of (2) under these conditions.

5. The paradigm in $\mathrm{L}_{\text {cow }}$

Throughout this section T denotes a theory in a countable language and $\Gamma(x, y)$ is a type. As before we denote by $\alpha_{a}(x)$ the formula

$$
\wedge(\exists y) \Delta \wedge T(\exists y) \wedge \Delta
$$

which is a fommula of $L_{(s, s, w}$. We call $(\exists x) \alpha_{r}(x)$ the paradign and we say it has a solution if there is a model of $T+(\exists x) \alpha_{r}(x)$. As we mentioned before, the problem of finding a solution for $(\exists x) \alpha_{r}(x)$ patterns quite a few problems in model theory. Let us give some examples:

Example 5.1. Let G_{n} be the free group on n generators ($n<\omega$). Whether $G_{n} \equiv G_{m}$ for $n, m>1$ is still open. This problem can be phrased as asking whether a certain paradigm has a solution. Consider $G_{n} n>1$, and let T be the theory of $\left(G_{n}, g_{1}, \ldots, g_{n}\right)$ where g, \ldots, g_{n} are free generators of G_{n}. Let $\Gamma(x, y)$ be the type containing all formulas

$$
w\left(g_{1}, \ldots, g_{n}, x\right)=c \text { iff } \cdots \wedge y \not z w\left(g_{1} \cdots g_{n}, x\right)
$$

where $w\left(g_{1}, \ldots, g_{3} x\right)$ is a word in $g_{1} \cdots g_{n} x$ (atm) and \cdots is a condition which states when the word is e in such a way that x becomes a new free generator. Now a solution is a group elementarily equivalent to G_{n}, it has $n+1$ free generators and they generate the whole group (because of the choice of Γ), that is the group is G_{i+1}.

Trauppe 5.2. We have a countable model of $Z F$ and we want to find an end extension of it. Let T be the theory of the model with names for all elements and let $\Gamma(x, y)$ be he type

$$
\{x \in a \wedge y \in a \wedge y \nLeftarrow b: b E a, a \in M\}
$$

Any solution to $(\exists x) \alpha_{\Gamma}(x)$ 和 an exd extension of M. This example is less typical because the variables x and y are not related, i.e. we have a separation of variables. These paradigms are generally easier to solve. If we consider $I^{\prime}(x, y)$ defined by

$$
\{\alpha \in x \wedge y \in x \wedge y \neq \alpha: \alpha \text { ordinal of } M\}
$$

the variables are not separated and any solution to the paradigm in this case is a very strong form of end extension in that x becomes the first ordinal after the ordinals of M and, therefore, a solution may not exist.

Let us now go into stating and proving a result which gives sufficient conditions
 statement below is not in the stongest possible lomm, bat makng it stanger would result in making it less readabe. Another poim, more myonati, is that the idea of the proof applies in situations outside the framework of the wheorem hat this point shall be illustrated below.

To make the statement of the theorem less bulky, ler ws empherate gome of im conditions separately. T is a theory, T its ype and we have an adnessbie set A which contains ω and T, I is well-ordered in A, A shtufes the E-choce and $T \subseteq A$ is Σ on A.

Theorem 5.3. If there is an A-samplang 5 of T such that $T+(x) e_{\Delta}(x)$ has a solution for each $\Delta \in S$, then $T+(\exists x) a r(x)$ has a solution.

Proof. We adion to the language of T a new constant c and denne a theory in the expanded language:

$$
\phi(c) \in T(c) \text { if }\left\{\Delta \in S: T+\alpha_{A}(c)-\phi(c)\right\} \in F_{S}^{A} .
$$

$\Phi(x)$ is a formula of the language of T, t refers, of couse, to the provabity welation in $L_{a, k}$ and F_{s} is the filter defined in Section 4. We have $T \leq T(c)$ and $T(c)$ is consistent because F_{S} is a filter. Also, if $\sigma_{1}, \ldots, \sigma_{n} \in A$, then

$$
(\exists y)\left(\sigma_{1}(c, y) \wedge \cdots \wedge \sigma_{n}(c, y)\right) \in T(c)
$$

because $\Delta \in S: \sigma_{1}, \ldots, \sigma_{n} \in \Delta \in \in \mathcal{A}$ and if $\sigma_{1}, \ldots, \sigma_{n} \in A_{\text {, then }}$

$$
\alpha_{4}(c) \operatorname{H}(\exists y)\left(\sigma_{1}(c, y) \wedge \cdots \wedge \sigma_{n}(c, y)\right)
$$

Thus, any model of $T(c)$ satisfies the "realizing part" of the paradigm. We have to show that $T(c)$ has a model omitting the type $\Gamma(c, y)$. For this we use the Omitting of Types Theorem (see [1, Theorem 2.2.9]).

We need a criterion for consistency of a formula $\Psi(c, y)$ with $T(c)$. We clain: $\Psi(c, y)$ is consistent with $T(c)$ iff

$$
K=\left\{\Delta \in S: T+\alpha_{\Delta}(c)+(\exists y) \Psi(c, y) \text { consistent }\right\}
$$

 sationary and $\Phi(c) \in T(c)$, thes

$$
K \cap\left\{\Delta \in S: T+\alpha_{\Delta}(c) \mid \Phi(c)\right\} \neq 0
$$

if Δ is in the intersection we have a model of $T+\alpha_{A}(c)+(\exists y) P(c, y)+T(c)$ so ty the compactness the rem $T(c)+(B y) \Psi(c, y)$ is consistent. If K is not statonary, then

$$
\left(\Delta \in S, T+a_{A}(c)+(\exists y) \psi(c, y) \in F_{S}\right.
$$

so $-(\exists y) \Psi(c y) \in T(c)$, ie. $(\exists y) \Psi(c, y)$ is inconsistent with $T(c)$.
Now, let us assume that the assumptions of the Omiting of Types Theoren ate
not fulfilled; we shall reach a contradiction from this. Hence we have a formula $\Psi(c, y)$ consistent with $T(c)$ which has the property that for each $\sigma \in \Gamma(c, y)$

$$
T(c) म(\forall y)(\Psi(c, y) \rightarrow o(c, y))
$$

Therefore

$$
C_{\sigma}=\left\{\Delta \in S: T+\alpha_{\Delta}(c)+(\forall y)(\Psi(c, y) \rightarrow \sigma(c, y))\right\} \in F_{S}^{A}
$$

for every $\sigma \in \Gamma$. The relation $\left\{(\sigma, \Delta): \Delta \in C_{g}\right\}$ is Σ on A because:
(a) the assignment $\sigma \rightarrow(\forall y)(\Psi(c, y) \rightarrow \sigma(c, y))$ is recursive;
(b) since T is \sum on A and $\alpha_{A}(c) \in A$, the provability relation in the defintion of C^{*} is Σ on A (see [3, p. 47, Example 6]).

Because of our assumptions on the admissible set we can use Proposition 4.2 and we find that

$$
C=\left\{\Delta \in S: \in \Delta \in C_{U}\right\} \in F_{S}^{A} .
$$

Because Ψ is consistent witl $T(c)$

$$
O>C \cap\left\{\Delta \in S: T+\alpha_{\Delta}(c)+(\exists y) \Psi(c, y) \text { consistent }\right\},
$$

let Δ be in the intersection. On one hand we have a model M

$$
M=T+\alpha_{a}(c)+(\exists y) \Psi(c, y) .
$$

On the other hand if $\sigma \in \Delta$ then

$$
M \vDash(\forall y)(\Psi(c, y) \rightarrow c(c, y))
$$

But this contradicts the definition of $a_{3}(c)$. The Omitting of Types Theorem is now used to give a solution to $T+(\exists x) \alpha_{r}(x)$.

Mustration. The reader may find it useful to go through the proof of Theorem 5.3 in a faniliar situation. Keisler's 2-cardinal theorem provides a good example. We have a model $\left(\kappa^{+}, \kappa, R, \ldots\right)$, we adjoin to it the closed unbounded sets of κ^{+}and relatom: for membership and being a closed unbounded set Take a countable elementry substructure, A adjoin to it names for all its elements, and call the theory of the expansios T. Let

$$
\Gamma(x, y)=\left\{U\left(y, A, a \wedge b<x: a \in U^{A}, b \in A\right\}\right.
$$

where $U(\cdot)$ is the name of $\kappa\left(\leq k^{+}\right)$.
We may now join the proof of $5.2, T(c)$ 睬 defined by

$$
\phi(c) \in T(c) \text { iff } \quad b \in A: A F \phi(b))^{c} P^{A}
$$

where F^{2} " is the filter of "closed unbounded subsets" of A. The rest of the proof may then be read in these terms; it is easier since we do not have to worry about things being Σ It may also be found that normality of the closed mbonnded subsets aeed not be invoked leaving a room for improvements on this 2 -kudinal result.

6. Applications

We shal show an apploation of Theorem 5.3 itself at well as ant appleatom of the method of its proof.

Let us first of all look in the context of this paper at what is Magdor doing int [4]. There he assumes Chatg's conjecture to get a special find of an ututhter. This can be acheved as follows. Let T be the thoory of

$$
\left(S \cup \cos _{2}, \ldots, \ldots\right)
$$

where S consists of subset of ω_{2} whose order type in ω_{1} and • . e enmerates sill elements and subsets of the miverse. The length of the structure $2^{2 m a}=6$. Let $\Gamma(x, y)$ be the type

$$
\{\alpha \in x \in S A y \in x \wedge y z a: \alpha<\omega\}
$$

bas cardinality y_{2} and we are in no position to apply Theorem 5.3. But it we collapse κ^{+}to $\omega_{\text {, }}$, hat is if we work in a unverse W where κ^{*} is conntable, there we have T and Σ countable and conbedded in the admissible set A of set in ψ which are of cardinality $<\kappa^{*}$ hereditanily. If Changs conjecture holds S is an A-sampling of $\omega_{2,}$, which is essentially I, and for every $s \in S\left(S \cup \omega_{2}, \in_{2}, \ldots\right)$ is a solution for ($\exists x) \alpha_{s}(x)$. All the other conditions of Theorem 5.3 are satishen and its application yields an elementary extension M of $\left(S \cup \omega_{2}, \varepsilon_{3} \ldots\right)$ which contans an element c such that $c \in \mathcal{B}^{\mathrm{M}}$ and $M F a \in c$ iff $a<\omega_{2}$. We can now defne a V-uitrafiter on s by

$$
U \in D \text { in } M \in U(c) \text {. }
$$

Let $V /_{D}$ be the ultrapower of V using only the functions $f: S \rightarrow V$ which are in V, and let : be the elementary embedding of V into V_{D}. We want to compute the order type of ω_{1}^{*}. If $f: g: S \rightarrow \omega_{1}$ then $f f_{D}<g g_{D}$ iff $M F f(c)<g(c)<\omega_{i}$. Now the order type of ω_{1} in M is the same as that of c (we can express this in M) and that is ω_{2}, so $\omega_{1}^{*} \leqslant \omega_{2}$. The other inequality follows from considering for $\alpha<\omega_{2}$, $f_{\alpha}(s)=\alpha$ th element of s. The set-up of [4] is thus established. The procedure wed here does not give a better result but it gives a unform strategy to follow thother situations.

The application using the method of the proof of Theorem 3.3 concerns a situation when we have a model M of $Z F C$ and an elementary cmbeddato $j: M \rightarrow N$. These models need not be standard. Given $X \in M$ there are two sets, int general different which can be associated with X. First of all we have $H \mathcal{K}) \in N$ which satisfies the same properties in N as in M. Secondly we have the set $s t_{i}(X)=\{j(x) \cdot M \neq x \in X\}$ which is merely a subset of N. In the case when thets subset is an element of N meaning that for some $Y \in N$ and for every $a \in N$

$$
N k a \in Y \quad \text { iff } a \in \operatorname{st}_{i}(X)
$$

we say that the standard part of X exists in N and we denote the eloment of N by $\operatorname{st}_{3}(X)$ or by $\operatorname{st}(X)$.

For exampie if $M=V$ and $N=V^{\kappa / o}$ where D is a κ-complete ultrafler over κ ($>\omega$) then $s t(\kappa)=\kappa$ (assuming N is transitive), If D is non-principal over $\kappa=\omega$ the st(κ) does not exist and, for that matter, no standard of any infinite ordinat exists in N. In the opposite direction we nave that κ is supercompact iff for every $\lambda \geqslant k$ there is an clementary embedding \boldsymbol{f} of V into M such that κ is the first ordinal moved by j and the standard part of $X, s t_{j}(X)$, exists for every set $X \subseteq M$ of cardinality λ.

Let us now consider $X, s \in M$ with $M F S$ is a sampling of X. The type of the sampling S in M is the set

$$
\left\{\phi(v): M{ }^{"}\{s \in S: \phi(s)\} \in F_{s} "\right\} .
$$

This set is a type of the theory of the model M. If M were a set we could also talk about the type of the sampling in $(M, a)_{a \in M}$; it would then be a type of Th($\left.(M, a)_{a \in M}\right)$ and the following theorem would be true even with this definition of the type of S.

Theorem 6.1. Let M be a countable model of $Z F$, let $X, S \in M$ be such that $M=$ " S is a sampling of X ", and let $\tau(v)$ be the type of S in M. For any type $\Sigma(w)$ of $T h(M)$ which extends $\tau(0)$ there is an elementary cxtension N of M which contains the standard part of X and

$$
N \neq \Sigma(\operatorname{st}(X)) .
$$

Proof. Let $T(c)$ be a theory in the language of M augmented by a new constant c and names for all elenents of M (a names a) whose axioms are:

$$
T(c)=\left\{\phi\left(c a_{1} \cdots a_{n}\right):(s \in S\} M \leqslant \phi\left[s a_{1} \cdots a_{n} \| \in F_{S}^{\mathrm{M}}\right\} .\right.
$$

Here F_{S}^{M} is the filter in M determined by S and the set $\left\{s \in S: M \in \phi\left[s a_{1} \cdots a_{n}\right]\right.$ denotes the element of M satisfying the definition.
$T(c)$ is a consistent theory and any model of it can be considered as an elementary extension of M. We now show that T locally omits the type

$$
\begin{equation*}
\{y \in c \wedge y, R: M \in a \in X \tag{1}
\end{equation*}
$$

Let $\psi\left(y c a_{1} \cdots a_{n}\right)$ be such that

$$
T(c) \vdash(\forall y)\left[\psi\left(y \subset a_{1} \cdots a_{n}\right)-y \in c, y \neq a\right]
$$

for every $a \in M$ satisfying $M f a \in X$. Then for every such a

$$
C_{a}=\left\{s \in S: M \vDash(\forall y)\left[\psi\left(y s a_{1} \cdots a_{n}\right) \rightarrow y \in S_{n} y \neq a\right]\right\}
$$

represents an element of M such that $M E C_{a} \in F_{S}$. Moreover the function which assigns to $a \in^{M} X$ the set C_{α} is in M, therefore, since $M=F_{S}$ is nomal

$$
M=\left\{s \in S: a \in s \rightarrow s \in C_{a}\right\} \in F_{s}
$$

But if $s \varepsilon^{M} S$ is such that for every $a \varepsilon^{M} s$ whave $s \varepsilon^{M} C_{n}$ then for every a ϵ^{M} we have

$$
M \neq \psi\left(y s a_{1} \cdot a_{n}\right) \rightarrow y \in s \wedge y, a
$$

and from this it follows that

$$
M=\square(\exists y) d\left(y \operatorname{sa} a_{1} \cdots a_{n}\right) .
$$

By the defintion of $T(c)$ this means trat

$$
T(c)+\square(\exists y) \psi\left(y c a_{1} \cdots a_{n}\right)
$$

So there is a model N omitting the type and therelore contaning $c=S(X)$, whth $N=\Sigma(s t(X))$.

There is a partal converse to the result. Het $j: M \rightarrow N$ be such that st X) extsts in N and $N F s t(X) \subseteq j(X)$. Take a formula $\phi\left(v_{2}, j\left(a_{1}\right), \ldots, j\left(a_{n}\right)\right.$ such that

$$
N \neq \phi\left[\operatorname{st}(X), f\left(a_{1}\right), \ldots, j\left(a_{n}\right)\right]
$$

We may also assume that $\phi(v)$ implies the formula $v \subseteq j(X)$. We now show that it M is standard the element S of M satisfying

$$
M \vDash v \in S \leftrightarrow \phi\left(v a_{1} \cdots a_{n}\right)
$$

is a sampling of X. Let $f \in M$ be such that $M=f$ is X algebraic. Now in N $/ f$ is $j(X)$-algebraic, but $j\left(X^{*}\right)$ may be different from $j(X)^{*}$ (in N; things are simple if N is standard). Fortunately, the nature of partal X-algebras is sect that it enables us to prove: if

$$
N F w \in \operatorname{dom}(j(f)) \cap(\operatorname{st}(X))^{*},
$$

then w is really finite.
We show this by induction on the rank of f (in M). If the wank is 0 (of A) then the domain of f has one element and the same is true of $j(f)$. If the rank is >0 then we have:

$$
M F\left(\forall w \in X^{*}\right)\left[w \in \operatorname{dom}(\theta) \rightarrow w^{\prime} \in \operatorname{dom}\left(j\left(f^{w}\right)\right)\right]
$$

where w_{0} is the first letter in w and $w=w_{0} w^{\prime}$. Hence we have

$$
N k\left(\forall w \in f\left(X^{*}\right)\right)\left[w \in \operatorname{dom}(j(f)) \leftrightarrow w^{*} \in \operatorname{dom}\left(f\left(f f^{w}\right)\right)\right]
$$

Therefore, if NF $w \in \operatorname{dom}\left(G(f) \cap \mathrm{st}(X)^{*}\right.$, then $w_{0} \in \operatorname{st}(X)^{*}$ and $\left.w^{\prime} \in d o m\left(f f^{*}\right)\right)$. So $w_{0}=j\left(x_{0}\right)$ where $x_{0} \in X$ and then w^{\prime} edom $\left(j\left(x_{0}\right)\right.$, sence by the inductive ascimption w is finite and so is w. Having this result it easy to check that
$N F \operatorname{st}(X)$ is closed under $f(f)$.
Let $r \subseteq X$ be finite. We have
$N \vDash(3 v)\left[\phi\left(v, f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) \wedge j(t) \leq V \wedge V\right.$ is closed under $](f]$
The sentence (without j) is true in M which means that S contans a sorple closed
under f and including r consequently $M F S$ is a sampling. The type of this sampling in M contains all formulas $\Psi(v)$ which are true of $s t(X)$ in N and are implied by ϕ, but we have not been able to get the type of S included im that of $\operatorname{st}(X)$.

However, the above implies
Corollary 6.2. Let M be standard $j: M \rightarrow N$ elenentary, let st(ω_{2}^{M}) exist in N and let $j\left(\omega_{1}\right)$ and st $\left(\omega_{2}^{M}\right)$ have the same order type. Then N1FChang's conjecture for $\left(\omega_{2}, \omega_{1}\right),\left(\omega_{1}, \omega\right)$,

Proof. Define a sampling of ω_{2}^{M} using the formula " v has order type $\omega_{1} \wedge v \subseteq \omega_{2}{ }^{7}$. This formula is true of st $\left(\omega_{2}^{M}\right)$ in N so this defnes a sampling, We explained in Section 3 why the existence of such sampling implies Chang's conjecture.

The types of samplings limit and outline the properties st X) can be made to satisfy. Let us amplify this a bit. For a set X define Φ_{x} to be the set of all formulas $\phi(v)$ (of the lnguage of set theory) which satisfy:
if S is a sampling of X then for some $s \in S, \phi(s)$
is true (in the universe).
Intuitively, Φ_{x} seems to contain the properties which can not be avoided in non-trivial extensions. To give some examples we show that $\phi_{\omega_{1}} \neq \phi_{\omega_{2}}$: the property " y is a countable ordinal" is in $\Phi_{\omega_{1}}$ because there are structure on ω_{1} whose elementary substructures consist entirely of ordinals, so every samplirg of ω_{1} must contain a comntable ordinal. The property does not belong to $\boldsymbol{T}_{w_{2}}$ because the set of subsets of power ω_{1} is a sampling of ω_{2}.

Added in proof

The main argument in this paper is similar in spitit to the proof of the Completeness Theorem for Stationary Logics. See J. Bairwise, M. Kaufmann and M. Mokkai, Stationary Logic, Ann. of Math. Logie 13 (1978) 171-224.

References

[1] C.C. Chang and H.J. Kesim, Monter Theory (North Holland, Ansterdam, 1973),
[2] T. Jech, Some combinatorial moblems conceming uncoutable cardinats. Ann Math ousic su (1973) $165-198$.
[3] H.J. Kcister, Model Themy for Infitery Rome (Homh-Holland, Amsterdan, 197).
[4] M. Magtor, Chatg's conjecture and powers of sitghar chatrats, S. Symbolic Logic 42 (2) (197\%) 272-276.
[S] J. Silver, On the singulat cardinal problera, to appear.
[6] S. Shelah, A compactness theorem for singular carcinals, free atebras, ete, to appear.

[^0]: * Research on this paper was partidly suported by EAPESS and ETNEP.

