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0. Introduction

.Lé C‘;ﬁ qnf‘m in hf; i’i’;ﬂ(ﬁ}xy of 1a

now the major quet‘i’ians have been mivﬁsﬁ tuc, onicome be
x:umpacmms is not a natural notion for m,t thecrists whm 1O M

notion of strong compactness is constant. In the abov
paraphtasing and mfﬁtﬁna m the results of Magidm *i;ijfxr it is consiste ”«%
first measurable strong 3
strongly compact 4}"@3&& supf:rcompact {and thu larger ! han tha ﬁm mes
ble). In 1970 we did not know this but we could ask what was the significance ¢
these questions for model theory. Strong compactness  is d{,fma(
theoretically and measurability has some Tairly natural model-theorati
zations as-well (see e.g. [1, Exercise 4.2 ;
characterize. supercompactness which I did {see Theorem 1.1
like the solution at the time. But since the motive was recently repeated 1 son
arguments of Silver (see [5]) and Magidor {see [4]) 1 looked in this dire:
more Lnowmg how it helped them to have things countable and fou
interest in it. The result is a kind of compactness for omitting of t} DEE.
Section 1 contains.a’ L,haractanzatmn of »uncrmmp aciness m ierms

a type-in an infinitary ianamge
Section 2 introduces the. notion of parnai aigehm& and ﬂff@bm:v €
“turn-out to have a close cannwtmn with. nﬂrmﬂm of filters bt are &
interesting by themselves. The dehnmcm of the mtegtaﬁ complemen
tmn of derivimc in mxr work on ‘modeloids and may eventually b
measures or ultrafilters: at least. We give. two definitions of 11
i} qhow that thzy are A QZ'F)». : , :
1 Section” 3 -uses slings of sets.
;wewde a umﬁcatkm 10, mﬁerem notmﬁ S *‘f@r aimm? ai sxplored 2
: med by Barwme Kueke;. Shelah and: é)t‘ners {see [ﬁ“‘ fu:re:tc.,mnc; ) |

ij}. The que
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Section 4 relativizes the notions mtmduu.d 1o admissible sets. Ti}a relativiza-
tion is very natural, most notions turn-out 2 or better. ‘

Section 5 discusses the paradigm which emerged in Section 1 and uses the
preceeding sections to prove an omiiting of types result discussed above.

Section 6 uses the result to provide the set-up needed for getting bounds for
powers of singular cardinals. The section aiso contains dzscusw;-n of the notions
with respect to models of set theory.

1. Characterization of supercompaciness

Let us recall what a supercompact cardinal is. It is a cardinal x such that for any
=k, there is a x-complete ultrafitter on F (A} ={s ¢ A :Isj< &} which coniains
seP.(A}:aess for each e <<X and is normal, that is if f: P (A)—>A is such that
f{s)e s for almost all s {with respect to the ultrafilter), thm for some a <A fls) =«
r almost all s

he characterization turns out {o be in terms of realizing a type of a theory and
simuit&n ously omitting another type. Precisely, let T be a theory in the language
L. {(k=w), and let 2(x, v) be its type. We shall deal with types in two variables
but all the results generalize to types with x and y standing for less than &
variables. We shall assume throughout that the type is closed under conjunctions
of less than x formulas but we do not assume that it is complete. Saving we want
realize x and omit v means that we seck a modeff of

EAENT A EVAZ] ()

where (3y)E ={{Hylo:0¢ X} and A+ is a conjunction of all forinulas of ¢é. A

model for (=) will \antam a ¢ such that (Fy)3{c y), that is ¢ realizes the

projection of ¥ onto x and the second conjunct in (*) says that the tvpe Z{g v)

{a type in y) is omitted. As we shall see below, () is a paradigm for many

problems in model theory and we shali refer to it sometimes as the paradigm.
Mow given A © ¥ we denote by a,(x) the formula

AEVIA A {EHy)AA

Az

m Sty rten

The paradigin is {hus euuivalent to (JHxdas{x).

Before going to the characierization let us recall the notion of closed un-
bounded subsets of P.(X)=4sg X1jsl <k} {see [2D. A sat Co PAIX) i called
closed If for any =-chain xs(,.af\ 2t O U s e ple Clu<< k), It is up-
bounded if for any s& P (X)), there is Y such that s It is koown that the
closed unbounded subsets on X generate a x-complete filter which is normal, f.e.
if Yo X and {C:ye Y} are members of the filter then

{s:yes—saC}l

is also @ member of the filter (see LE] for dﬁtdﬂm it is-assimed that K >e
and k <|X]). We denote this filter by F.(X).
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Theorem 1.1. The following are equivalert,
)y xis SH{){%’”{;{}!%}‘M@’F:
Giy if Tis a

{Hx)as(x) has a mwo

Remark 1.2. (i), oosely speakin
sohition then the whelé‘ para dﬁn
of compaciness” (i) were phyas
HEI RNV W= havr: solutions for (Hx }(
m also true but ¢ B not the nature of the
below),

Proof. In order ‘¢ prove (i)~ (i} we assume thai « Is supes
atheory Tin L., and a type Z(x, y) of it. Assurne that ‘})w
a model of (Fxia,x) for 4 from

“3. == i..‘}\ P \E) “P{E‘L\?"Ll {3,,‘ }}“ﬁl a JH:}»G‘} Ein

Let D be a norned ultrafilter on P.(2) as gnaranteed by the superco
#. By [2, Theorain] AeD. It thus makes sense to iske the uli

M=

Asd

Since B is r-co
Since {4 & P.(Z):
of I3}

A P £ A W I oy i & A m
= ME=T, Let ;{u}ifﬁaﬁ be such that M, =

Y

o
AYe D for every o ¥ we have {again using «-

MEAGEVIE({ D, )
Let us assume that we in fact have

ME@EVAZ o, v)

and let g/p be such element. Then for every 4<€A there Is ved @
M, E-1o(f(4), g(4)) because Mika, M\Lf(/j}) call such o by A{A). Then }
on A €D, so for some o€ 3, h(A)= ey for almost all 4 (moed D), But the
ME =06(flm &/p) thus showing ME{Fx) . (x).

To prove (ii)—{i) we let Az« ard let T be the theory of

M=(P,(A)UA, +- R} .
whete -+« R« -~ is & listing of all elements, all subsets, and all b
the universe (P{(A)UA) Let 2(x, y) be the type

&
Z

{U{x)myexz\vex/\v#wa»i}ﬂ

where U is the name of P(A) and @ <A names itself. I
of - finite formulas - only. Now given 4 & - 3 with
T+ (Fx)es(x) has M as its mods ? by Wka;g oy X the
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mentioned in 4. As the set of these A’s is closed Jnd vnbounded in P (2) we get,
by (i), 2 model N of T+{Fx)ax{x) which can be considered an L. elementary
extension Qt M. Let ae N be such that Nrag(a) and define D on P.(A) b}

D= 1g&a;-Pk(;\i,j\ =X(a);

here X is the unary predicate naming X. As i well- known 2 is a & complete
ultrafilter (since M <N in' 1.}, it contairs {sc P(A):ae s} becauge

aseix:Nraex}

and it is normal: let f:P.(A}~>A such that f(s)es for almost all 5. By the
definition of D, Nrf(a)e a and because the type {v€ a y» o a <A} is omitted
in N this means that for some a <A, NEf{a)= o, consequently {s:f{s)}=a}e D,

Let us now discuss the chances of proving a theorem in L, suggested by the
characterization. The obvious formulation of such a statement is false as w Is not
supercompact. We can see this on a specific example by considering 2(x, v}
defined by

S, yy={m<iayEmav<x:m<w}

¥ is a type of Thie, <) (m is the mth element above the least element). For every
finite 4 © X with |41> 1, {3x)aa(x) has a model, but (Fx)ax{x) does not have one
because the linear order would be elementarily equivalent to {w, <),

"

2. Fariial X-gigebras

In this section, we define cerlain subsets of X™® which we call X-algebraic and
which will turn out to have & close connection with normality of filters. In fact,
analyzing normality of certain filters Jed us naturally to these sets and we found
that they were interesting, in their own right, subjects for investigation. Later we
d, thanks 1o the encvclopedic knowledge of R. Solovay, that we were not
to use these sets and the functions defined on them. For cxmnpla, the
Diabins and Savage, How to Gamble i You Must (McGraw-Hill, 1963,
pp. M-173 i based oo 1111:, concept {called finitary mappings thcre) Actually, the
concept goes back o K r who investigated thése mappingé i his paper in -
Colloquinm Mathemati {1975) 1-5 (with a three lines Jong title). There ate
other connections. In cadiﬁs, theory, these sets are called instantancous codes and
in linguistics, prefix-free languages, Hopefully, all these loose ends will be one day
cemented together, k

The set of ali finite sequences of c]cmems of X is denoted by XF, if w. ve e X*¥
then uv denotes the concaienatmn of w and v; 0 d *watca the emptv h,equence
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“belong to the least oo ‘?L;“:s: on of s
Sintegration.

“We shall now show i at the X-algebraic sefy

feagiav

following - condition ;;uage«ft ) kby the refe
“cotifusing).

CH osimes Y there is.z
searnent of ¢ which |

Note that if I} satisfies (=)

N

In order o facilitate théi‘ pro

'z{}emmmn 2.0 ¥ DX and e X* lot
D =lpe X5 {0 owe I}

ol ={vw:we DL

() For D, BEgoX* dcﬁm.
if

Proposition 2.3, The relazion = defin

wed above is n well-founded pastial ord
x‘{‘ié};:

Proof. If D= F because vD = F, and E<sF because wH o F, then (
thus < is transitive.

If D=E E<D, and D¥#E we have o, w with oDgE ¢
(wolD & D, Since at least ope of v and w Is non-empty we have :
u#D) & D. Because De Al the sequence s=unuu -+ 4+ has

segment ¢ in [ which is impossible: if re D, then ure 12 and is an injtiaf «
of & as well,

The order is well- foundud let Dmx’ D; DeiI e g
for n> 0, we have w, # 0 such that Wl ¢ I3 . Hence wis

ey Yz

t be the initial segment of wyw, -0« w, - -+ which x}@iaagg o .?3 and et 4
east pumber such that r.s a proper initial segment of wyw, - - w,. |
Wyt Wi, MI“?Q there is-an extension u of wq* - w, which is in I3, B
e Dy and ris a proper initial segment of u; i:hx i3 impossibl
Proposition 2.3 enables us to- define ranking on the seis in Al

o
2.

r(D)=1lest ordinal « aug 1 that if - E<D,
Ee ¢41Xj uhun )"(E}‘(fx.

Thenrem 2.5. A ael is X~a1gebrar z?‘f ir samfrea 35
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Proof. Assume that D is ,X"»;\kr;braic The represontation of D as [DoixeX is
unique so we may prove' the implication by incuction on the sampiexity' of
construction. If D ={0! {s) is clear, Assume D xed and ket st X
Express 3 as xs” and use {+} to get-the initial se gt nent v’ of 8" which is in D, Then
xv'e D and its unique,mas is clear.

We prove the converse by induction-on the rank. If sd’)} L} then D must be {0}
as can be easily checked so D is algebraic. ¥ +{(D)>0 then for every xeX
D*{(={w:xwe D} satisfies (%) and since xI)* < D we have ID* <2 S0, by the
inductive hypothesis every D7 is X-algebraic and because

sois

Examples 2.5, The only aigebraic sets of rank O and 1 are {0} and X We have,
for n=0

JX“:?:@XSX"“
so every X" is X-algebraic and has rank »n. If | X > 1 then we have sets of rank 2

other than X7 Take D =D, :xe X where D, =X except when x = x, in which
case I3, ={0}L

Froposition 2.6, If X is z‘*;x,;@ z?mn f!za X-algebraic sets are precisely the seis D
satisfving: is fini v that if v, we I then
peith

er is a proper initdal segmens o ";*he oifer,

Froof, For ease in notation, we assume that X={q, b‘». Assume 13, and T sre
X-algebraic, satisfy the condition and D=[D,:xe X=al, Uk, The. I3 is
fnite. If v is an initial segment of w, then they start wzih the same letter, say a,
v gw'. Then o' is an initial segment of w' so they can’t be both in D, hence one
of », w is not in I2. To show that IJ is maximal with this property, let we X¥ and
ith, say b fcsr a chfm% Then w=bw', w’ can be x::ampared with a v in 1,

Conversely, |
the lenzth of the It
sequen ves of lengths =
are X-algebraic and hence,

mdnmal finite set satisfying the condman and’ le? n be
suence in D, Assume n> 0. Then D and D® have
s this. enables us to assume mdmixwiv that they

i)eﬁmtmn 2.7. A partial X-algebraisa fumtwn firom
Its rank, r(f), is the: rank of its domain. The f_zmmom ot ;..nk ¢
functions. The set of partial X~algebra,ysws denﬂted by P

jé:fi basqc;



f)«"f‘

Remark 2.8, The partial X-algebrgs are functdons s

arbitrarily Jong finite sequences but be

finitely many arguments, This is
The basic functions being {(0. =)} are

X-algebras of rank 1 are simply the functions on ;:" i

Given partial X-algebras £, x& X we de

fine

{_,1; rye X

o

gs the function f which at xw I fL0w) ¥ wedom{(f)
elsewhere.
We shall often use the following operation:

flow)

oroage
S

{g.;,- } ::ef:
L

{undefined  otherwise.

‘T*lmrem 8. () The parial X-algeb :
Functions which is closec ’f' under the eparation of integratic

some vt 0 g =f we sbtain a wesgw}”:fze*zd ed paridal order or. Py, Th
is the least o such that If g<Cf then #{g)<o.

Proef. (&) follows from

, f N oo .
dom | A;'x:x.eX;x

(b follows from Proposh i?n 2.3 and f<g iff dom (f<dom{g)

3. Samplings

The notion of %ﬂmpimﬂ generalizes the notion of closed unbounded

P (X).

Deﬁnﬂmn 1. A sampling of a set X is a collection S of subsets of X
elements of § are called samples}, such that:

{a} 0£ 8 and XeS; :

(b it rig X is finite and § is a partial X-algebra then thers is 2
res and s s closed under 7. ‘

'S

&

Emample 2. H << X] then =P (X}wf!}} is a sampling b
a partial X-algebra f we use the Skﬂli:: m-Lowenheim argunent o find
small i.ardnmhtv coutaining any ngen finite set. . '
Or we can start with an algebra on X and define the sampl
size< k. In the ‘crse when the algebra on X hacpom 10 be Jonsson
define the samples sxm;:w as pmpu subahmbma, N :




46 A Boada

Drefinition 1.3, Let S be a sampling of X! For every partial X-algebra f we denote
by Z: the sut '

{s= 85 is closed under fi.

F; will denote the set of all subsets of § which include Z; for some pa mfﬂ
X-algebra 7

Theorem 3.4. Fy is a normal filter on 8 In facr it v the least normal filter
containing the seis {se8:xes} where xe X

Proof. ’\Tarmai;ty means that #f C, with x&e X =118 are members of the filter
then g0 I8 the se

C={seS:xeS—se}

We denote the set Cby AC,. X D, ¢ C, foreach xe X, then D= AD, ¢ C=4AC,,
thas it is enough to consider the case when (. = Z; for some partial X-algebra £,.
Let f be the partial X-algebra {f:xeX Hse Z 1hen s is closed under every f,
with xes: if ay,...,a.€5 and f{gy,....a,) is defined then fila, - a,)=
flx,a, - a,es T mrefme Zy < AC, so the diagonal intersection belongs to F.

Notice that we still do not know whether F; is a filter, l.e. normality is not a
property of filters only. That Fy is a filter comes from the condition that the
samples cover finite sets. As before it is enough to check that if f,....f, are
partial X-algebras then

Zf‘ N amnr # 0,

Let xy, .. .,x, bein X and define £, = §, if x =x. and for other x’s, £, ={(0, x)}. Let

s € § be a sample containing {x4, .. ., x,,} and closed under f=§f,: x € X. We have

already noticed, that i 5 is closed under f it is closed under every f,, with x e 5, 50

the s chosen above is in ?};ﬂ* Ny

filter is non-principal since "{7 f partial X-algebra}=0: if s¢ § were in
section, 55 0, from condition (a); let xes As there is a ye X~y and'a

bra mapping X onto y we see that § cannot be closed under all

ihe

Finally assume £ to construct a normal filter containing £ “{v €S8:xes}
for every xe X, That means, that every. v€S must be covered by some se§
which can be phrased that s is closed under the basic function {(() X} Why should
there be samples closed under a given tnary function £: X-+ X, The reason is if

e,
we deﬁm C,= f(x} then the members of the diagonal intersection

{s:¥e8—seC}

are closed under f. In fact Zr=y Aj(vc) By mdmtmn 11 we need w pnt mm the ~
filter Z; 1o make it normal we also ha\t to put in Zf where f = if,‘ xe X because

Z ~~{$ yeEs *ser}



In the examples of sz
reason for that is “iha; oY
every sountable r & X and evary nai;'
f and containing +7. This is immediak
under finite intersections”. The converss of
uDUntﬂb}}’ complete then the sampling & cont
extc nsion s 8.

ely st

13

The next theorem f?’i us that every

Proposition 3.5. (I} If £ &5 a sampling
domplete.
(1 8 is a sampling of X §f every couns

N g R S
P ds covnin

it

fure o X, has an ele

Proof. Lei ro X be countable, r={x,1n<Coh Let f1 X=X be g
that f{x,)= %4 ,. A set 3= 5 which contains x,; and is ¢lo e
all countable sets are covered and this means Fy is countably <o

One divection of (i) is trivial and the other follows frow
structure and then tahnw a countable intersection of et of
f1 X" X

Remark 3.6. The definition of a sampling susxggsied by this resuit |
{ht, Dfﬁ nial {M}}ﬂﬁ@ﬁ. Hm& % the ﬂfﬁma definition i of mz‘ﬁh

these als,ebras W&- have no zdu how we could acmmph sh thr« via ‘i’m DOSHHn
3.50).

Remark 3.7. Let S be

{ss k™ :order type of s =A"}

whers w=A<x Then by {1, Proposition 7.3 4{}*}3 IS 8 Samp
Chang’s conjecture holds for the pair (¥, «), (37

Shelal defices (see [6]) certain filters on subsets of a set A and
understanding of théir interrelations. Althouﬂh we b’*i'ﬁ! not go into fl»zv
we thirk that a better unduatandnm may be reached via the notion of s
Let us take the filter EL(A). In our set-up we first define samples, which
read off the Definition 3.1, The set A is'in a ‘set- M which contains s
cardinality less th&n some fixed carditial hcrcdmmiy A sample 0l A4 i
\truuted as follows: we form a continuous chain of elementary sub
e\pamvon of M (’\‘x,a«:x} with. thr, property that (N, za s Bhe
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mc*ea&mct chain) and take as a sample’ ANU AN, v <Cwl athat }mw A io@l\s in
U{N, < k}). This way every.sample has power x {we assume x <[A]} and this
is a sampling of A in ow sense since we arc allowed fo take the expansions of M.
‘Caliing § the resulting sampling we find that Fs is not EMA), w mamly because
EL(A) is x*-complete. But if we-defiie Fj§ by taking as generators o

Ise Sr¢is clossd under fe P}

where P g Py is a set of cardinality =x we get the same filter, The generaions are
non-empty since the expansions are atlowed to be of size . The filter F§ may not
be normal but one sees that some remnants of normality remain.

4. Relativization

The results of the last section imply that there are no samplings of countable
set. But if a set appears uncountable in some model of set theory it has a sampling
in it and it will suffice for the purposes we have in mind. ‘We shall therefore
investigate what happens to the notion of partial X »R}Qﬁbre& and samplings when
we consider them in an adinissible set. ‘

In the next proposition we assume that A is an admxsxibip set Which contains w.
We alse fix an Xe A and assume that it is well-ordered in A, We shall ako
assume that A satisfies the X-choice, Le. if R A s X and for some v e A we
have

¥xe aXEy}R{x, ¥

E%}?ﬂ for some function fe A defined on a, we have R(x, f{x)) for each xga
Fhese assumptions are samxﬁed in alt L,’s which happen to be admissible as well
ail countable transitive models o’f ZFC (with or without the power set

Propositien <, L. {1} )

A (2Y If {f.:xeXte A is a set of partial X-algebras,
then §foxeX isin A

Proof. The fanction {{n, X" n<wl i in A and X% & a Ag-subset of its range.
This proves (1) (2) is troe becauwse {7, ™ and is- A-definable from
}“ X E X} :

Let us now denote by PYothe partia} X’malgebrzis which arein A, P =AnN P
By an A-sampling of X we shall mean a set S€ A of subsets of X such that for
every fe P% and every finite rg X there is an se§ which is closed yader f. -

As bf;fore we denote by ?} the set of s €S whmh are closed under f. and by Fé
we dcxmtn the collection of Y= § which contain'Z; for'some fe




Compe

, i’fﬁmﬁiﬁm 4% {h
(%

‘)SCDfA‘QES—%’Sc

Proof. We define P32 bﬂ; st {:‘1 at
« whose members are functions i
B I8 such thau
(i} 55 is a basic function or
(i) there is g: X— 8 @ Lci
It is clear that this is ¢
sartial X-algebra, L«;&f’ us x;@
for ewry xE X We Imay assun

for xe X es the definition.
Rix,s)ifsisas
it
It is clear that R s 2 on A and *ha'z {kf’ g XI5 R{x, 5).
X.choics to get (5. e e XD such that 5, 18 a construction of j‘“‘*

t}mi X is well-ordered we combine these mm one sequence and op
with f. The result s a a:('mmruc:ﬂon for f because the function g(x) which
the length of g, is mn A, '

We denote a I-definition of P£ by () and proceed to prove (20
flter is proved as before, using ?mpm;tmn 'i 22N Let R X8 e
such that for every xe X

{se 8. R{x, site Fa.

Y]
4

This set need not be in A but by the definition of F§ it includes 2 ic
fe Py Thus if we copsider the predicate T(x, f) defined by

L3

s
g
=
&
Sk
D

A

'}'rff‘b/\(‘da )it s is closed under f, then R{x, s).

bk

we see-that it is X on A and that (Vx & X )it
get forxextA, with e PYand Spcise S
and we have, as before

Remark 4.3. The miatmzatmn couid he ave been done is
that case we would have “gotten as A -partial X-algebras s |
really are not partial \'wakgebrax because we would check the algebs
domain of the tunctios for those 53— X w hich are in’ A The e

be that A-sarplings- of X mightbe larger than the A-samplings - 7.
en if we would end np with the's same mmnlmﬂs At is. raore. mmmm{ iy have

01 A4,

aicity of the




50 - M. Benda

E‘hc f’act that FX i8 wnmmal is tme if §is just t [Ton. & i’(’ix, Asas con.
':j .

be seen by inspecting the proof of (2) un fi se umdztmm. .

5. The paradigny in L.,

T hmuszham thm section: F danmgg theory in a countable i’mﬂm% and ! {x, v}
is a tyne, As before we denote by ey () the formula

A@y)an—(E@yA4

which is a formula of L . We call (Hx)er{x) the paradigm and we say it has a
solution  if there is a model of T+EHx)ar{x). As we mentioned before, the
problem of finding a solution for (Fx)ar(x) patterns quite a few problems in
mode! theory. Let us give some examples:

Exmmple 5.1, Let G, be the free group on n generators {n<\w)., Whether
G, =G, for n, m>1 is still open. This gmb}cm can be phrased as asking whether
2 certain paradigm has a sotution. Consider G, n> 1, and let T be the theory of
(G 8150 .., &) where gy, ..., g, are free generators of G,. Let I'(x, v) be the
type containing all formulas

Wign . o gmX)=c I o AyEw(g - g, X)
where w{gy, .. .. 8.%) B awoerd In £ &, & (& term) and -~ - is a condition

‘},.mh states when the word I8 ¢ in such a way that x becomes a new free
generator. Now a solution is a group elementarily equivalent to G, ithas n+1 free
generators and they generate the whole group (because of the choice of I'), that is
the group is G, ‘ '

wmpie 5.2, We have a countable model of ZF and we want to find an end
1 6f it Let T be the theory of the mode! with names for all elements and
et I'(x, v) be the type

EXiens

{xdanveanry#h:bEa acM\.

Any solution to (Fx)ar(x) is an wt? extension of M. This examph, is less o«pm‘al
because the variables x and ¥ are not related, iL.e. we have a separation of
varfables. These pamdlgzm are gr::m sigr torsolve, If we'consider IV(x, v):
defined by : :

1cxcx/\){:w\\u‘“a « ordmal ‘of M}

the variables are not separated and any solu’tmn to the' pamdigm in ﬂm case is a
very sirong form of end extension in-that x becomes the hrst ordinat af tlw
ordinals of M and, tiierefore, a solution may not exist. Bl :

Let t us now 50 mtc stating dnd proving a resul It whuh gives Quﬁmfzm couditions




}m the existence-of a solution
statement below ‘is pot in the str
‘ wm&.td result in making it less readable. Am} herp
idea of the proof applies in situations outside t .1{ f
“this point shall be illustrated below. '
To make the statement of the theore :
conditions separately: T is a theory, f 1
which contains @ and I, I" is well- is
To Al 2on A ‘

G

Theorem 5.3. If there is an A-sampling !
ion for each A e 8, then T-+H{2xap(x) ha

Proof. We adjoin 1o the language of 7 a new constant ¢ and define a theory in
the expanded language:

d(cye Tle) iH{deS: THau(c)-Ploje Fy.
Px} s a formula of the language of T, F vefers, of coune,

relation in L, ,, and F§ is the filter defined in Seciion 4. \M: have To T and
T{c) is consistent because F2 is a filter. Also, if o, ., 0, € 4, then

@yiode via aoleyne Te)
because {AeS:io, ..., 0,5 Ale FL and if o, ..., o, € 4, then
(I Ey)ade yya- - Aoule v).

Thus, any model of T{c) satisfics the “realizing part” of the paradigm
show that T(¢) has a model omitting the type I'{c, v). For this
Omitting of Types Theorem {see {1, Theorem 2.2.9).

We need a criterion for consistency of a formula W{c, y} with T{c}
Ur{c, v) is consistent with T(c) i

K={4€8:T+ay(c)+@y)¥(c, y) consistent}

is stationary, that is K has a non-empty infersection with every set in I
siationary and ®{cye T{c), thea

K{AeS: T+as(e)-dle)}#

~if 4 isin the intérsection we have a meﬂd cﬂ’ THwp{eit (::l vyWis, yit+ @
the compactngss thesrem F(c}+(3 y}*ll,{a, y} is consistent. If K .ds-not stationary,
then ‘ - o

{A S T*“cg(c}}-ﬂ{av)\mcn '}’)}& F

50 *‘z(EV) e v)eT “6), fe. BV Wi, yi is inconsistent wnh Tic
Now, let us assume that the assumptions of the Omitting of Ty
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]
o)

not fulfilled; we shall | reach a contradiction fmm this. Hence “ve-have a formula
¥{¢, v} consistent, with T(¢) which has the pmpezw thaf for each o e e, v)

T{c)F V)W, vy oie, v
Therefore
C,={AeS: T+a()FVyXFlc y)y—olc y)e Fs
for every oe . The relation (o, 4):d e L i X oon A because:
{a) the as sigﬂmun o= (V). yi—ale v)) is recursive;
{b) since T'is X on A and a,{c)& A, the provability relation in the definition of
C, is X on A (see {3, p. 47, Example 6}).
Because of our assumptions on the admissib iq set we can use Proposition 4.2
and we find thar
C={de8:c4 Ty FR
Because ¥ is consistent with T{¢}
#OMN{Ae S THa,(e)+Ev)P(e, y) consistent},
tet A be in the intersection. On one hand we have 2 model M
MeT+adc)+@viF v
On the other hand if e 4 then
MEMYH W (e, v)—ole )

But this contradicts the definition of a,{¢). The Omitting of Types Theorem is
now used to give a solution to T+ Ex)a-(x).

Hlustration. The reader may find it useful to go through the proof of Theorem 3.3
in a familiar situatian Keisler’s 2-cardinal theorem provides a good p)\’imglc We
have a model (7, k, R, .. .), we adjoin to it the closed unbounded sets of « " and
relation: for wmbﬁrshlp and being a closed unbounded set. Take a countabie
elemeniry substructure, A adjoin to it names for all its elements, and call the
theory ¢f the expansion T, Let

Iz, y)={U

Ab<<x:aelUM be Al

where U{-) is the name of x{g «™).

o 5

We may now join the proof of 5.1, Tz} i defined by

dloyeTle) il {beA:ARp(b)]

where F* is the filter of “closed unbounded subsets™ of A. The rest of the proof
may then be rcad in these terms; it is-easier since ‘we do.pot have to worry about -
things being X. It may also be. found that normahw of the closed. unbounded
subsets need not be invoked leaving a room for-improvements on this 2-cird tinal
result. ‘ R oo
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6. A;np!icaiisins ,

m’

We shall show an applicatic
the method of its proof. ,
Let us first of all look in the context of t

{41 There he assumes C‘hana s conlecture § £
3% L Ly
This can be achieved as follows. Let 7" be the theor v of

fo IR
(St &,...)

where § consists of subsets of w, Wwhoss
elements and subsets of the universe. The
F@xg v} be the tvpe

v of the w8l

o Kt o~ e s
laegxe8ayexrydara<a}

has cardinality w. and we are in no position o apply Theorem 5
collapse &7 10 w, that is if we work in & universe W where «7 Is courd
we have T and T countable and embedded in the admissible get A of
which are of cardinalty <x™ hereditarily. If Chang’s conjecture holds
A-sampling of wa, which s esseptially I, and forevery se8 (U ay, €, 5. ;’ isa
solution for (3xjn, (x). All the other conditions of Theorem 5.3 :ar# %ﬁ ok

its application vields an elementary extension M of (8U s, &, .
an element ¢ such that ¢S and MEacce iff 2 <w, W
Veultrafilter on 8 by

UepD it MU ;
Let V/p be the ultrapower of V using only the functions f: 5~ V which are in ¥,
aml let = be the clcmentar} embedding of 'V into V/p. We want to compute the
order type of w¥. If £, g:8-—>w, then flp < gp iff MEflc)< g{c}‘fiw;{. Mow
order type of @, in M is the same as that of ¢ (we can expr ess this in M) and th
I8 @y, SO wF<w, The other incquality follows from ;,Onsiaiering for o <,
fo(s) = ath elemesit of 5. The set-up of [4] is thus established. The procedure used
here does not give a better resuit hut it gives 2 uniform strategy to follow in o
situations. : o R
. The application using the method of the proot of Theorem 3.3 ‘sm*w
situation when we have a model M of ZFC and an elementary -efnbad
i1 M—> N These models need not be standard. Given X ¢ M there are 1wo s
general different which can be associated. with X Fitst of all we have j(X
which satisfies the same properties in N as in M. Secondly we have
st{X)={j{x): MFx e X} which is merely a subset of N. In the case whe
subset is an elemant of N, meamng thz‘zt for some Y& N end for every a €

N?“afe Y iff amt (X

"“.;.4

g
R,:é :

"we»s‘a‘y that he ~taﬂdard pari of X exists in 7 ‘\i dnd ww dmote the d&m;v}t of
st{X) o ‘c $t(X). ‘ :
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For example if M=V and N= V” where I is a x-complete uitraﬁiter over &
{>w) then st{x) =« (asmmmg N is transitive): IF D is non-principal over 'k =@
the st(x) does not exist and; for that matter, no standard of-any. infinite ardz 1al
exists in N. In the opposite direction we have that « is supercompact iff for every
A =k there is an elementary embeddmg jof ‘V into M such that x is the first
ordinal moved by j and the standard part of X, stg(‘i} exists f&r every set XcM
of cardm&izw A :

Let us now consider X, s& M with MES is a sampling of X, The type of the
sampling § in M is the set

{p(v): ME"{seS:d(s)e 7} ;
This set is a type of the theory of the model M. I M were a set-we could also talk
about the t}pe of the sampling i (M, dlaens: it would then be a type of
Thi{M, a).cns) and the following theorem would be true even with this definition
of the type of 5.

Theorem 6.1. Lot M be a countable model of ZF, fet X, 8 € M be such that ME“S
is a sampling of X”, and let v(v) be the type of § in M. For any type 3(v} of Th{M)
which extends {v) there is an elementary extension N of M which contains the
starndard part of X and

NEZEHLX.

Proof. Let T(c) be a theory in the language of M augmented by a new constant ¢
and pames for all elements of M (a names a} whose axioms are:
Q

T(c)={d(cas -+ a,):{se S|MEP[sa, - - a SeFY.

Here FY'is the filter in M determined by S and xhe‘s:.t selS:M F(b[xa o a
denotes ?he element of M satisfying the denmtmm

consistent theory and any model of it can be mnqdued as an
stension of M. We now show that T locally OIllltb the wpc,

o MEae X). , , W

{vacay
Let ¢l{veay -+ » a,) be such that
T (Y[ dycars -+~ a,)— v & e ny#al
for every ae M satisfying Mbas X, Timn for every such a
(, ={se8: Mk (Vy)[dr(yaaj e a,,)w)v eSav£al

represents an element of M such that Mk G, € F; Moreover the function which
aasxgns to ae™X the set C, is in M, therefere. szme Zif EFS is nmrzimi

M‘F{ssS ass«»zse(“}cPs
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sy for cmditiing

But if s&™8§ is such that for every a €™y we have. 5 s™(
we have '

MEgiysa, -+ @) —>ve w\j;n a
and from this it follows that

ME-(Fylilysay -+ - an)

By the definition of T{¢) this mea
T{ob 1@ @y)iveas - - - a,)-
So there is a modél N omitting the ty
NEE (X))
There is a partial converse to the result. Let j1M— N be - such that si{X) exi
in N and Nest{X)< #(X). Take a- formula bl fla, ..., f{a,;) such that

NESISHX), f(ay), . .., ila)]

‘We may also assume that ¢{v) implies the formula o = jX.
M is standard the ¢lemént § of M satisfying

MEve S@qﬁ{ﬂgi e a,)

is g sampling of X. Let fe M be such that M Bf s X-algebraic. Now in ]
j{(X-algebraic; but j{(X™) may be different from f{(X)* (in N; ihmfzfe are si
N is standard). Fortunately, the nature of partial X-algebras is suc ;

us to prove: if

NEwedom () N{st(X)*,

then w is really finite.

We show this by induction on the rank of f (in M). If the rank is O {of A7) then
the domain of f has one element and the same. is true of j(f). If the rank is >0 then
we have: o

M E(Yw e XH[w e dom (f)«>w' e dom (j(f*)]
where wg is the first Iétterbin wand w = wew'. Hence we have

NE(Vw e j(X*)[wedom ()« w' e dom ((f)}].

o

Therefore, if NEw edom () Nst(X)*, then WQ&"{(X} and w' s dom (G{F)). 5o

wo e j{xg) where xp& X and then w' edom U(f‘ﬂ\} sence by the inductive as
tion w’ is finite and so is w. Having this result if is easy to check that

N b s&gg\} is closed undur Hh. -
Let re X be ﬁmte We have P S , o
N F(Ev)[:b{v. (al}, e ga,i)‘m ;{r\c“ V i; osed under. g’f fil.

35 th?‘t S’ uﬂtmm a samnple

; Tbe sentence (wxm:\ut ;‘ is mm m M w‘1 chi
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under . and including r,. consequently MES is a sampling. The type of this -
sampling in ‘M contains all formulas ¥{v) which are true of st{(X) in N and are
implied by ¢, but we have not been able to get me type of 8§ xm,?ud;d i that of
st(X).

However, the above mmplies

Corollary 6.2. Let M be standard j: M— N elementary, let st{w}?) exist-in N and
let jlwy) and st{wd) have the same order type. Then NEChang’s conjecture for
{02, ©1), {e. ).

Proof. Define a sampling of )’ using the formula “» has order type w A0 & @y
This formula is true of st{ws?) in N so this defines a sampling. We explained in
Section 3 why the existence of such sampling implies Chang’s conjecture. -

The types of samplings limit and outline the properties si{X) can be made o
satisfy. Let us amplify this 2 bit. For 1 set X define Py to be the set of all
formulas @) {of the language of set theory) which satisfy:

-
=N
o
i
73

is a sampling of X then for some €8, &is)

i o {(in the universe).

&
s
g
(4]

Intuitively, @y seams to contain the properties which can not be avoided in
non-trivial extensions. To give some examples we show that @, # @, the
properiy v is a countable ordinal” is in @, because there are structure on w,
whose elementary substructures consist entirely of ordinals, so every samplirg of
@y must contain 2 countable ordinal. The property does not belong o @, becauss
the set of subsets of power w; is a sampling of w..

Added in proof

The main argument in this paper is similar in spirit to the proofl of the
Completeness Theorem for Stationary Logics. See J. Bairwise, M. Kaufmann and
M. Makkai, Stationary Logic, Ann. of Math. Logic 13 (1978) 171-224
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