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(L l n U o d u c t i o n  

in 1970, the most discussed qtii~Stiorts ~!:i tile the~),'t'y- ,O~ ta.rgo ......... o;" t .4.t <.~b-.,.~ ,. cODcgr[ e<[ 

the relationship of measurable, strong compact, and sur~erc0r~pac{ cm-diqah. ::(31y 
h ~a. now the .majo:r question s have been solved, t i e  0~l~.conte being ...... stro~L~ 5 

Compactness is not a natural notion for set-theoristS while .for mode}-~.heo~'ists i{ i:~ 
measurability and: supercompactness whicl a waver, since fo~; '...d,,.,,,,, ...... t s~.V:,!:..=ose~ t~.~:~ 

notion of strong compactness is constant i n  the  above }2 am, 0f cour~;~.::: ic<?seiy 
paraphrasing ane referm~, to the results of Magid0r that it is c.on~;ister.,t to have th<:; 
first measurable stt:0ngly eotnpact and that it is also co~asistent to: .1ave the  first 
strongly comPact cardinal supercompact (and thus large~: t~iar~ the :first mea~ura.- 
ble). In 1970 we did i~ot know :l~is but  we Coutd ask wha~ was the s~gmfica.~?ce ,,~:.:*! 

these questions for model theory.  Strong compacb~ess is deft,ted ~""4tm,..e.'.,- 
theoretically and measurability has some :fairly natural modet-the0r :,' ic charar:ter~- 
.auo~,= a. Welt . . . . . . . .  ...... \~,.<. 1~,., .~;-X~*C4S~ "~.,~.v~ L J. tt~ vd~az-a.'.a'-*~i; I-]"Je-!TI~'CA7'8:, ',;'~;:,'~I tO 

characterize SupercompactneSs whicti 1'did (see Ttieoliem 1.1 be!owl, bi:t i dki r<;..: 
like the solution a t  the; time; Bu t  since the motive was recentty repeated ~ ,~ome 

[-..b and Magidor (see [4]) 1 looked in this direction o~?c~:: a rguments  of Sil, er (se e S" . . . . . . . .  
m o r e  knowing: !~0w b: he lped: them to have things :countable a~.d fO~:md m~r<: 
interest :in it, Thc ~'csult i s a  :kind of. compactness for. omitting 0f  types° 

sectioi  1. Contains a diaracterization of Sur~ercompactne~s in terms of orr~2td~'~.~:~ 
a :type in '~ an infinitar~, t a n g u a g e l  : = :  : 

Section 2 intr0duees the:notion of partiat algebras and ak~ebraic :~etS, The;e: 
:turn out to have a cl0se C6nnectkm witil normality :of, filters N~t a r e  e::zt,,re:r}::,eiy 

interesting bY themSelVeS. The definlti0nl of itiie iinNg{.~I coi~tpiem:c~?{s the defk~b 
ti0n of derivative in 6ur work On niodeloidS: andmaV eveim~aiiv be ci::,mbii~i>] Wi~h 
tneasures or ultmfilters at least We pave two defimtions 0f these notiO~s w~ }<::~ 
Show tha t they::are A~ ,(in ZF);  ::= . : : :  ~ ~ : ~ : 
: :=S~Ction 3 uses :the :preceding:: secti0n: m: define.i Sampl:imis of  sets° S:~;m,;:,'~i~:~>; 
provide a unifieation:todifferent: n0fiofis '~fo:r almost aIi" :xpiored a n d  ~:ffecik<:.b/ 

used by Barwise{ Kuekei;  Sh¢lah and mherS (see[6] f.,~-r VeferenCes)~ : : 
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~eetton 4 re la tMzes the notions introduced to admissible sets. The  relativiza- 
tion is very natural, most  notions turn out  ~ o r  better~ 

Section 5 discusses the parad igm whieti e m e r g e d  i~'~ Section I and rases the 
preceeding sections to prove  an omit t ing of t}qpes result discussed above.  

Section 6 uses the result to p rov ide  the setbup ,~eeded for  getting ls<mnds for 
powers of singular cardinals. The  section a~so comains  discussion of the notions 
witl~ respect to models of set theory. 

t .  Characterlz'~tion of supercompactne~ 

Let  us recall what  a supercompact  cardinal is. I t  is a cardinat t; such !:hat for  any 
A > ~:, there is a K-complete ultraii!ter on P~(h)( = i s  ~ A :is i < ~<}) which contains 
{s~P~(X):a~s} for each ¢~<A and is normat, that  is if f : f ~ ( A ) - ~ A  is such that  
,~ 'V.  \ x :  0 t • - j ts; ~ s t~ r almost ali s ,,wlm respect  to the uttrafilter), then for  some a < A f(s)  = a 
for almost aiI s. 

The  characterization troths out  to be  in terms of realizing a ~ e  of a theory and 
simultaneously omitting another  type. PrecNety, let T be a the0ry in the language 
L ...... 0<-~ w), and let N(N y) be  its type. We shall deal with types in two variables 
but all the results generalize to types with x and y standing for less than k 
variables. We sha!t assume throughout  that the type is closed under  conjunctions 
of Jess than n formulas but we do not assume that it is compIete.  Saying we want  
reaiize x and omit  y means that  we seek a m o d ~  of 

( ~ x ) [ A ( ~ y ) £ A  "7 (3y )A23  ( * )  

where (3y )X={ (By )~ r : c r~Y j }  and A<fi is a conjunction of all forinulas of <b. A 
model for (*) will contain a c such that (3y)X(c, y), that  is c realizes t he  
projectiort of X onto x and the second conjunct  in (*) says that  the type X(G y) 
(a type in y) is omitted.  .As we shalt see below, (*)  is a paradigm for  many  
~:,rob!ems ha model  t h e o w  and we shatl refer  to it somet imes as the paradigm. 

Now given A ~ ~ we denote  by an(x)  the formula 

The  paradigm is tb~s equivalent to (3x)a~(.x:)i 
Before going tO the characterization l e t  us recall the notion o f  closed u n -  

bounded subsets of  I~(X)= {x £~ X:  ~s < Kt (see [,@. A set  C G / ~  (X"> is called 
closed if for any G-chain {& : ~ < -'~ ~ ...... ~ . . . .  . ~.,~ ~.~,C, L.j{s,~ : c~ .#?eCt /x< . t , : ) .  t t  is un- 
bounded if for any s c~ Pk(X), there i s  r<~: C' st~ch that  s ,:._: r ) I t  is known that the 
closed unlxmnded subsets on X generate  a K<0n~Nete Nter  which is !iolimal, i.e. 
if Y G  X and {C~; : y e  Y} are members  o f  the filter d~.e~ 

{s:ys S'~+: s'~ G }  

is also a member  of  the filter ( s ee"  t2] for  details: it is assumed that  ~ > w  ~ regular 
and i< < tX})~ We :denot e this filter b y  G ( X ) :  



T h e o r e m  1,1 .  ~17~: 2£gliowh~g are equiva~er~; 
(i) ;~ is supe~,'co;~'pact; 

(Bx)<~a (x) has a ,-;ed,,/}, ~, , . .  is in .P, . . . . . . .  (X), the;-~ T +  (.i:3x)a!:~: (x) ,ha~;'.. a model 

o 

R e m a r k  1 .2 .  (ii), i oose ly  speak ing ;  says  tha t  i.~! . < ~  ....... ~°h~.~,,~,~ a!t: small{ p a r a d G m s  b a r e  a 

so lu t ion  t h e n : t h e  w h o l e  para.diw~t has  a ~1,~"*~ ~ "e'{s ~s why  We ¢--,~.d it ~ ,,,~ ....... 

of c o m p a c t n e s s "  t~ (~). w e r e  ~ml~ased fo r  al.~ !aa'~v..e~ es",o~.~b::, _ (IA]>I).. ,>-':,~,~,...~:,a 

( i a i .<  ~ ) k ' s  c4 Z ', e have  so iu t ions  for  (Bx)(,~a (x),  t hen  . . . .  " the equ iva l eace  wo~fid 
be  a lso  t r ue  b u t  ~ ~s n o t  the  ~atu:re of  the" problem to r:,ut~ it so (sec~... d~e~ c~' ;.:< ~,~;4 .... 

be low) .  

l~r~mI, t~l o M e r  re p r o v e  (i)--.* (ii) we a s sume  tha t  ,.. is s u p e r c o m p a c t ,  tha~ v*,<: ?~-,'a:e 

a t h e o r y  7" in L ..... and  a type  Z(x,  y) of it. Assm:ae  t ha t  t21 = z. >-; ** ar, c~ !et k~L, be 
a m o d e t o : f  * '~' ; "~ t~x~....,a~x; for  ~1 f r o m  

= a d  ~. 23~(N): 1 -~(Bx)a,,.,(x) has  a model}.  

L e t  D be  a nonn;~i tfltrafilte, r on  P . ( X ) a s  g~aaranteed by ;the supe rcompac t r ,  ess of 

,,~. By r2, TheoreJz.~l A ~ D.  I t  thus  m a k e s  ser~se to  t ake  the  u l t r ap rod~ c t  

M =  [I MX/D. 
/3, ~ A ,  

• ., . . . . . . .  j k z a 2 v :  ~ S i 3 C ~ l  ~VJ.A ~ :d*  (~ Z } ' Q  " "~ '~ \ 

- ~ .  g . 

Since  t k  ~r~ ev~ a l . -  cr r-~Z we have  '~,,"-~",'- " . . . . . . . . . . . . . . . . .  

of D) 

L e t  us a s s u m e  tha t  we in fact have  

M ~ : ( ~ y ) A X q T ~ ,  y) 

and le t  g?% be  such e l emen t .  T h e n  for  e v e r y  -4 e A t h e r e  is ,cr~£ A *" ~' 
l}Ia k - - l o ' ( f ( ~ ) ,  g ( A ) )  b ec a u se  .¢ ' /~,~a~(f(a)) ;  call  such o" by  . . . .  l ~ a  " . . . . .  ... 

on  A ~.D, so for  s t ,me  ( r o e X ,  h ( a )  = o'o for  a ln tos t  aR A (roOd D) .  But  **','~' n- ......... 
: , g * x 

M F  -I, ,:to@ n, gJ~ .~ tlhus s l !owing a g  b- (~X)a'a (x)o 
ql\) p r o v e  (ii)-.~.(i) we le t  h > ~ and  le t  T b e  the  t heo ry  of  

M=(P~:(A)UZ, , . .  R . . . )  
w h e r e  . . . .  R ,  . -  i s  a l i s t ing of  Ni e l emen tS ,  a l l  subaets ,  and: al~ b b a ; v  r'e:b.t[o~>; c,;-~ 

the  un iverse  (t~(h)i_.la). L e t  X(x, y) b e  the type  

{Utx .  A ~ * e X A V e X A V # ~ : a : < 2 t }  ::: 

w h e r e  U is t he  n a m e  Of P~(h) and' ~ <  it n a m e s  ifself. N o t e  tha t  the  tv~.;,~:~ ..... v~;,=*o 
of  f i n i t e  f o r m u l a s ;  onlY. N o w  g:lwm a G Z :  With: t. < izii<: ~:, we s e e  th;~t 

T + ( B X ) a ~ ( x ) i m s  M a s :its m o d e  ! b y  tak ing  f0!r x the  Se.t of o:~s-< X: w~m;:a a re  
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mentioned in dr. Asthe set of these A's is Closed and valbounded in P<-(X) we t'.et; 
by (ii), a model N of T ÷  (]~)~x,.(x) which can be co~sidered a n  L~ ~ elemel~.tm'v 
extension Of M. Let a =-N be  such that Nk-:c~,~ (a) and define t )  On P~ (h) by 

~={x~I'~:(~,):N:.~X(a)}; : 

here X is the unary predicate naming Xi As is well-known D is at¢ complete 
ultrafilter (since M <  N in' I~,.~), it  contains {S ~ P,~:(h) : c~-c S} because 

a ~.{x : N ~  a ~::} 

and it is normal: let f:P,:(?t)-~K such that f(s)¢~s for almost all s. By the 
definition ot D, N~f(a)~  a and because !he type {:~ ~ a A y ¢  ~ : ~  < A} is omitted 
in N this means that for some c~ <: )t. N ~ f ( a ) =  ~x, consequentiy~ ~:~.~~" t(s,~" ~ -"- a jr ~,~ D. 

Let us now discuss the chances of c,,,;,,o- pr_ ~ , s  a theorem in L .... suggested by i:h¢~ 
characterization. The obvious form,~Jation of such a statement is false as a.~ is not 
supercompact. We can see this on a ,;pecific example by considering ~2(ir, y) 
defined by 

";(:G v) ~ ' /" 

X is a ts~e of Th(a~, <)  (m is the ruth element alx~.~;e the least element). F'or every 
finite A ~ Z with I~l > 1, ~,Etx)c~a(x~ ha~ a model, but (3x )oes (x )does  not have one 
because the linear order would be elementarily equivalent to (w, <). 

2, Pa~iat X-a|gebras 

m~s section, we define certain subsets of _X ~ which we call X-algebraic and 
wh,~ch wit! turn out to have a close connection with nomaality of filters. In fact, 
analyzh~g t~orrnality of certain filters Ied us naturally to these sets and we foulld 
that they were interesting, in their own righL subjects for investigation. I~ter  we 
iear~~ed, thanks to the encyclopedic knowledg e of R° Sotovay, tha t  we were not 
the first to use these sets an~ the functions defined on tliem. For example, the 
book ~f ©~:~bi~~s and Savage, How to Gamble if You ~,,|ust (McGraw-Hilt, 1965, 
pp. 14---1, i, ~s .~ase~.~ cm this concept (celled finitary mappings thete}. Actually. (he 
concept goes back. to Kaimar who investigated these mappingsiln his paper in 
Colloquiuln Mathematic~,i~rf 5 t t~/>) t -5  (with a three lines king title). There:are 
other connections, In coding tlaeory~ these sets are called instantaiieous codes and 
in linguistics, prolix-free languages. Hopefntly~ all these loose end s will be one day 
cemented together.: 

The set of all finite sequences of elements of X is ~ ~. ,~  V ~ X ~ i ...... le.no,,:d b~;, X"*. if u. 
then uv denotes the concatenation of u and v; 0 de~mtes th e empty sequence. 

DellnRion 2 . 1 ,  If {D~ ?X ~ X}_c X*  let D:=  5D~ !:X: ~ X = {xw :u~ ~D,. L We Ca2I D " 
t h e  int~grationo of the seL,~ D~: The  X~aIoebraic sets are th0Se~ sul.~ets 0 f ix  ~' which :: 
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b e l m m  t o  t h e  ! eas t  ~ .~;~: ", : ' X <" " ~))? 

: i n t e g r a t i o n .  [ : : :: : : : : : 

: w e  sha l l  n o w  s h o w  ~,: ," *" ' . . . . . .  h -- v a L,.a. t h e  A-.a~.geu~:a,.<. "'~¢< D m a y  b~:~ cha~'a.<:~e~'ized b~e '~ihe:~ 

fo ! !owi r~g  c o n d i t i o n  ( s u g g e s t e d  b y  t h e - , ~  : ,-e ~,° .. . . . . .  • ~ .}-..fe~,.,,.., , , = ~  o.i%-i:~a[ w a s  :;u:~?>~c~ b::A 

c o t i f n s i r 1 9 ] ;  : 

. i:[ s :  a > - ~ X  t h e r e  i s  a: u n i q u e  ff.,.,,ite i;J;:i~,d. . . ,  

Note :  t h a t  if  D .~atisfies (!~;) a n d  ~ e_: D ,:i~c~:, ~~o p r o p e r  ,~"":-~-,k -~° of  ~: ;.~ in :~, 

Ir~ o r d e r  m f ac i l i t a t e  the. p r o o f ,  w e  n e e d  s o m e  ,,:iefi~itk>ns. 

and 

(ii) F%r D ,  B ~ X ~: deft;at: D-~.  E i iI  f o r  s o m e  v e X *  v D  !;~ E .  

(ii.0 ]Let A~x. d e ~ o t e  t h e  s e t  of  D ! g X *  sa t i s fy ing  (* ) .  

P r o p o s i i i o ~ ,  2 .3 ,  i ~ e  rots:ion "-'~ deJm<a above is a wei~-j:bsmded par,~iae' o':de., o~.~ 
A ,% 

P r o o f .  I f  D ~ E b e c a u s e  v D  ~ 17, a n d  E ~-re b e c a u s e  w/£ c2- ~; t h e n  ( w v ) F )  <= :~ 

thus  ~ is t r ans i t i ve .  

I f  D-<-v..E, . E ~ L ~  a n d  . D e E  w e  h a v e  v, w w i t h  v.Dfc~E a n d  v : ~ 4 D ~  ~<~ 

( w v ) D  _.c: D .  S i n c e  a t  l ea s t  oi:~e o f  v a n d  w is n o n - e m p t y ,  w e  h a v e  a ~.~ ~~" 0' s~,~.~'~ '~hat 
. . . . .  lat{,~a} t~D g D; B e c a u s e  D e A t x  t h e  s e q u e n c e  s = u u u  u , hac~ a u*' :,~ ~ :' " " '  

s e g m e n t  t in  D w h i c h  is i m p o s s i b l e :  if  t ~'~ 12, t h e n  ut e D arid ~s an  ..n~: ............ >m ..... 

of s as wel! . . . .  
The orde . r  is w e l l - f o u n d e d :  l e t  D , . >  D ,  > .  : > :IZ~I > .  , .  co~:~tradict ~m~s~ Them,  

fo r  n >  0.  w e  h a v e :  w.i ~ 0 s u c h  t h a t  w.D,~. ~ D,~2> H e n c e  w~ v:a" " " w JLL ~ <~ L-. ~ 

t b e  t h e  in i t ia l  . . . . .  s e ~ n l e n t  o f  uq*% " • • w,~ " • • w h i c h  belones~, to  D o n e  . . . . . . .  ~e~ ~. ;~>:e t h e  

l eas t  r i u m b e r  such  t t i a t  t is a . . . .  o r o p e r  in i t i a l  s e g m e n t  ..... o~ ~v~we., o ~ ,~ ,. Bex':'~u~e- 

~% ° •.  w,,D,, ~ 12)o t l i e re  is an  e x t e n s i o n  u of: w~,. ° ,  w,, wb.k:h is in D .  Bu~: t~>:m g, 

u e Do made is a p r o p e r  in i t la t  s e g m e n t  0 f  u ;  th is  is i m p 0 s s i b i <  

P r o p o s i t i o n  2 .3  e n a b l e s  us  t o : d e f i n e  r a n k i n g  o n  t h e  se t s  m. AI>.: bY: 

i r ( D ) = > s t : o r d i n a l o ~  s u c h t h a t  i r E < D ,  

H e  A/x, '~hen r (E) :<~  : : : . . . . .  

Theerem 2i5ai A Set: is X .a lgebra i  ~ : g  it sa*i,v~,e~ :( ~,): : : : : : 
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P~ooL Assum e that D is X-a~.vebra~c."- *~ " The repres.-vntafion of  D a s fD~ : x ~ X is 

m~ique so we may  prove ~ the impiicati0~i by in;:u.cti0n on the coinpiexity o f  
construction. If D ={0} ( , )  is clear. Assume ~"' " 

Expres s  s as xs ~ and use (*) to get the imtiai segmen!: v ~ o f s '  which is  ia D... Then 
xv'~_ D and its uniqueness is clear. 

We prove the converse bY induction o~a the rank. Ii' r (D) = 0 then D mast'' ~:,~,e {0} 
as can be easily checked so D is algebraic. I f  r ( D ) > 0  then for evei:y x ~ X 
D~(  = { w : x w  ~ D}) satisfies (* *) and since x.D :~ g D w e  have D '~ < D. So, by the 
i~.ductive hypothesis ever~ D-" is X.-algebraic and because 

f 
,- D : : j D ' ~ : x c < X  

so is D, 

Example~ 2oS. The  only abzebraic sets of rank 0 and i are {0} a,.M X2 We have, 
for n ~ 0  

F 
X .... ~: X = X '~ + "~ 

so every X ~' is X-aigebraic and t:ms rank ~'~. If iX i > 1 then we have sets of rank 2 
,~,.>:r than Take D = fD~ : x ~ X where D~ := X except wlaer~ x = xo in which 

c a s e  D.~ = {0}. 

l[~ropositlon 2.G i f  X is fini~e ~7~en the X-a lgebra ic  sets a,~e precisely the sets D 
satisfyi'~g: D i.~. y~¢te '~ ~ and  ma:vima~ with re:~mect no' ~*~e' ,:'.~v'r -~,, th~~t i f  t~, u, ~.= I) then 

t:either is a proper initia~ seg~net~' ~f: the other; 

Proof.  For  ease in notation, we assume that X = { a ,  b}. Assume =~ and Oh_.. ,;.re 
J(--algebraic.. "' "~ satisfy the condition and D = J'D~ : x ~ X = aD~ kJ bt2~, The~, D is 
finite. If v i.;, a~, initial segment of  w, then they start with the same letter,  say a, 
v = a w .  't 'he~ is a~_ initial segment of w' so they can' t  be bo~:h in 1;~, hence one 
of v, ~,v is not  in Do To show that D is maximal with this property~ let w <~ X ~= and 
star;>: .,,.,.~, say b for a change. Then w = bu/ ,  w '  can be. compared with a v in D~. 
so w i> c:~>m~:~arab~e With by ¢< D. 

Conversely., 1,~t ~) be a maximal finite set satisfvin, the condi t ion a M  :let n be. 
the length of  the ~c~rq:.,~e~;t S~quence in D~ A s s u m e  n > 0 .  Then D ~ a i i d  D ~' !m',e 
sequen :es of  lengths ~ ; ;  .-o i a~ad ehis enables ns to assume inductively that they 
are X-algebraic and hence, sc~ #~ D bein~ ,1.,~- :x 

It is not ditScult to s e e  thai i f  N iS i~:~f{~ite |h{iit:f0F at!y X2ah;:ebraic D 
• . and fo.t anv ~<.  IX, there ~s a:~ d : : i r( .D)<{X] .... " .... :'~+ " ~:'&zcl,r:'Jc with r ( D ) =  m 

Definith~n 2 .% A partial X-algebra  is a func t ion/ '  from i;2:i~ X-aiaebraiCset  into X.  
Its rank, r(f), is ~¢, rank of its domain, T h e  functions of rank 0 are ca!!ed basic 
functions. The set of  partiat X-a l~ebras is  denoted b y  P_.x, i ii i 



R e m a r k  2 ; 8 .  T h e  pa:rtiai X-a:..,em . . . . .  ~_.. ~vmc-a,~ he, ~:~e <>~ 

finitely mare, argaments, Ti~is is be~;t siren i n t k e  i>roolf o:~ T?:~,::orem 6. i. 
T h e  basic ZU.nctions b e i n g  g(O -r~} are ...... ,,.~n.~..,~,y e~e~rtenz,~ -v~- )-L, !::?e ¢::>artiv~] 

Xcalgebras Of rank t a r e  Simply the  functions o n  .X .~..o~,-,~ .... k'~ dtc. 
Given partial .X-a,>,at:~a~ )% x < X we de.~.m¢ 

as the function f which at xw is f.;(w) {~ w~don*~(j~) and which is unde~qned 
eIsewh.ereo 

..... m.~ o,~c._ use ttte fOllOwing -~"°*>'+'~' 

ff, gw~:=~y(mv) ~ ~tvw~ is defined, 

(um:~efinecI .... ,~ ........ 

Th(~ rem  2.9. (a) 77~e vanial X-atgebra~; form tke ieost se~ ~o.~#td/~i~g ~/~.e b~:*sic 
~.anct~b>~s which is closed under the owration of_ b~tegratio,~, to: ~' ' D~4~%i.~zg f '< g (ff jb~- 
so~ne v ¢  0 g~'.. =.f  we ~d~tain a well-founded par~ia~ order o~_ l:}a.. "~'~.~r,*~ ror~k el .... L r( 
is the !east a: s~ch that if g < f the~ r(g) < ,:~. 

P r o o f .  (a) follows from 

dom([;'~:xcs, ' ( "'~' " X ) = .  dora LJ'.~ J :,x ~ ,X. 

(b) fotiows l:m~q Proposit ioa 2 ~ and j~-. ....... g h!: d,.,,~ (() </~c,,> ~.,,;: 

3. Samplings 

The uotion of sa:mplin~ ge~eralizes the -,*" ", of ' . ° 
e~( .x? i  

Definition 3 .1 .  A s a m p l i n g : o f  a s e t  X is a co~,~ect~on*t ~ S Of subsets of ;d I ,  .... 
eieme;~tS of SI are ca|ied: samples). ~tmh *hat" 

t ~,a) 0e  s and X~_ S; . . . .  
(b) if r g21 X is firfite and f i s  a partia.i X--algebra then t h e r e  iS a~ e ~-:: ~ aucb that 

r~:~ s ~md S is closed m~der ]i 
[ : : , , 2 

E x a m p l e  3 .2 ,  i f  ~,, < K < IX[ then S:=  P~ (_32)Z{0} i s  a Samp)i~f~ beCau:~e if v/e tak<.~ 
a partial Xra!gebra f we use the Sko!em~-LSwenheim arg~a.~i~eiit ~:o fi~!i " ........... f 
sma!t Cardina!ity Containing ally given f in i te  set..: : :. 

. . . .  2 

o r  We Can start with a n a l g e b r a  o n  X and define the samph.s as Suba!e~:xbr~s; of 
s i z e <  In the :c~se ?when the aigebra::on : X happens: tO b e  J6nssor( we  coi)~:i 
define: the: sample~ Simply as.p:roper s u b a i e e b r a s l /  : : ) :  . 



4.6 * ! ' ' 

Defini | ion ~,3, Le~ S be a saJnpting of .X: For every partiat  X.:algebra f w e  denote  
by __7~- the s~t 

{s ~= S:  s is closed under  t). 

Fs will denote  the set  of all subsets of S which inclnde. Ze for: s o m e  part iN 
X--algebra ;~. 

Theorem 3o4, Fs is a normal  fiUer o,~ S. .b~ fac t  it is the ~eas~' " norma~ .,,L~:~.L: ~ .... 
conta in#N the sets {s ~ S': x ~ s} ~vhe~e x ~ Xi 

Proof. Normali ty means that if Q~ with x ~ X =  L)S are member s  of  the fi~ter 
then so is the set 

C = { s ~ S : x s S - + s ~ C . : } .  

We denote the set C by AC~.. If D~ c: C'~, for each x E 2k, then D = A D ~  C = ,siC,:, 
thus it is enough to consider the case when t2~, = )-S~y~ for  some partiat  X-aIgebra  t~. 
Let  f be the partial X-a lgebra  5f, :x ~ Xi If s ~ Z}, then s is closed under  every f~ 
with x ~ s :  if a~ . . . .  , a , ~ . s  and f.~(a~ . . . . .  a,,) is defined then f .~(a~--,  a , : )=  
f (x ,  a~ ° o • a , ) ~  s. Therefore  Z,  ~ ACx so the diagonN intersection belongs tO F.,.. 

Nmice  that we still do not know whether  Fs is a filter, i.e. ~lommIity is not a 
proper ty  of filters only. That  Fs is a filter comes f rom the condition that  the 
samples cover finite sets. As before  it is enough to check that  if 1],. : . ,  f,,, are 
partial X-algebras  then 

z j - , n  - - • ~~ Z , ; / -  o .  

Se'c x~ . . . . .  ~;, be in X and define j(, =.-- ]~ if x = ;~: and for o ther  x's,  [ ,  ={(0, x)}. Let  
s ~ S be a sample containing {x~ . . . . .  N,} and closed under  f = 5~;~: x ~  ~X2 We have 
already ,aoticed, that if s 'is closed under  f it is closed under  every ¢~., with x ~ s, so 
the s Chosen a b o v e  is in ~ N . . ,  NZ~.  

T~qe filter is non-principal since n { z e  :_f partial  X-algebra}=~0: if s e S were in 
the intersection, s ¢  0, f rom condition (a); let x ~z s, As there is a 3' ~ X- . -s  a n d  a 
partial X=a!gebra mapping X ronto y we see that s cammt  be closed under all 
partial ~ . . . . . . .  X-,age 0las. : 

Finally assume we want to const ruct  a normal  filter Containing 2 = { s ~  S: x ~. s} 
for every x ~ X .  ]Na t  ;a?ea~s, that  eve ry  ~ s  must  be  covered b y  some s o s  

which can be phrased that S is dosed  m~det- the bas ic  function {(0, x)}. Why sI~ou!d 
there be samples ctosed under  a gwe~ m~my fui~ctioii .f:X,..-,~.X~ The  reason is if 
we define C-~ '= ~ }  then lhe: ll!eIlf~bers ©f I'!IC. di~gol~N in te rsec t ion  

are closed under 1~ I n  f a c t  Z f =  ~f( 'x) .  BY induct ion,  :it" we ,iced to put: into:  the 
filt,,r Ze= to make  it n0rmai  we also have to p u t i n  Z t, where f =  5.f., i x  <~; X because 



I1i the examples  of  samplfi~gs we aave,  the .......... : . . . . .  " . . . . .  ~ .... 
: reason for  that: is  that  cond{don., tb}'" ' . . . . . .  bolas _~-or "~'mese . . . .  sa.~v._~a~-~gs'" i~... tN?e {o:rm.: ~'~<:i? 
every countable r >: X and every pardai X°algebra £ ,a~; .-, 
f and conta in in[  , . ' ' .  This is inlmediate]v seen .e~i.~.,~{{e. - the" r~_ro<ff <.,;r ~.~;v JS CaOSe<~ 
trader finite mterseeaons o 7 5 e  converse o f  this :rema~"k {s ..... ' <~, , : ,  t r u e :  f f  < :i~?~ 

e 5 ~ .... countably complete then the sampling S contab~ .~,or ,.ac~t comr~tabb ,~-,::: )# {t~ 
extension a <~ & 

The  ~ext theorem tetis us that every ~"-'.*,~ ~{~,c~ '<  

comp~.ete. 

Proof.  Let  . r G X  be countable, r =  {&~ : ~ < ~}o Let  f :  X<->X be a fu~edo~!~ s:~cb 

all coum.m.~e, sets are covered and this means .Fs is eo-mxtabiy compbt<< 
O n e  direction of  (it) is trivial and  the 0ttier follows f:'om Sko]emb:fi-~g the 

structure and the~l taking a cmmtable :-,~-, ..... +:"~ acts r . .~. ..... ~ -.. 

f : X  - X: 

R e t o o k  3,6, The defiaition Of a sampling suggested o~ this re,,~'a~ ~: sb~pler ~fmr~ 
tile official de[i~ition. However,  the official defmitio~ is of much mere .,_,o~o ,,~v. 
character° in  Section 6 we define a set and prove that it is a sa.u~piing u,~fi:g ~> 

y partial X-algebras and that proof  reveals even better the finitary propcrdea of 
t h e s e  algebras° w e  have n o  idea how we cmfld accomplish this Via Proposition? 
3:5(ii). 

R e m a r k  3 ,7 ,  Let  S be  

¢ "c- ~÷ :order  type o f  s = it +} - tS  . =  

where t 0 ~ X < ; .  Then: by [ ! ,  Proposit ion 7.3.4(ii)3 S is a samolm~ of ;< .... 
I t <  ~ nc .h  Chang  s conlectttre holds for the pair I " + " (), +~, it)~ 
i 

Shelah defines (see [6]) certain filters o n  subsets o f  a set A and ask:~ f<w a bct~::r 
understanding o f  their interrelationsl Aithough we shat! u0t go ir_ao details of it 
we thiuk that a: better: understanding may  be reached via the notkm of ~,.-,..~;,~ ...... 

L e t  us take the filter El (A) .  :In:: our  se t -u  p , ,vefirst define samples, which c :a~ ~:~c 
read off t h e  Definitio~i 3:1.: The  :set A is: in a s e t  ~%,/ wh ich  corJtains s e t s  of : 
cardinaiity: l ess  than  s0me fixed eardii,al: hereditarily. A sample 0.f :A {S C0; iJ  
s t rucma as f01tows: we form a continuous chain of elemekltarv s,.~bmod,e!s bf s<m~e 
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increasin~ chain) and take as a sample :A ~ U{N~ :~x < ~-~ tthat . . . .  s ht:~w ~ A looks: "m 
U{~N~ : c~ < K}). Tt£ts waY every Sample has power ~: (,;re .assume ~: < [Ai) and this 
is a smnpting o f  A in ore  sense since we are allowec to take -the: expai'isio~!s of .M. 

~Ca[iing S the resulting sampling w e  find that Us: is n0t E~(.A), mainly because  
E~(A) is K%complete. ~u t  if we define F } b y  taking as g e n e r a t o r s  

{S~:,S:s is Closed under f s P }  : :  

'where P ~ PA is a set of cardinatky ~ we get the same filter. The ge~erai:ors are 
non-empty since the expansions are aflowed t o  be of  size ~<, The filter .t:~ m a y  not 
be normal bu t  one sees that some remnants of  normality remain, 

4o R e l a f i v i z a f i o n  

The :esults of the last sectima imply that there are no samplings of countable 
se~. B~t if a set appears uncountable in some :model of  set theory it has a sampling 
Ln k and it wilt suffice for the purposes we have in mind. W e  shalt therefore 
i~vestigate wtmt happens to the notion of partial X.-algebras and samplings when 
we consider them in an admissible set. 

[r~, the next proposition we assume that A is an admissible set which contains a). 
We also ~x ~ X ~ A aT~.d assume that it ~s welt~ordered i~ A. We shall als0 
assume that A satisfies the .~Lchoice, i.e~ if R _<;A is X and for some ~ c~ A ~ye 
have 

(V:: s a)(~y)R(x, y), 

then :for some ~unction f e  A defined on a, we have R(x, f(x)) for each x-~ a. 
The~e assumptions are satisfied in all L~'s which happen to be admissible as well 
a::: ira ai~ co ,  hi:able transitive models of ZFC (with or w~thout the power set 
axior~)o 

then Sf~. : x ~ -X  is in A~ 

Proof.  The fux~ctk.m {(n, ""~*" ........... ~~ " ~ , .,~ /.  ~', ......... ~ i.~. m A and X ~ is a A~osubset Of its range, 
This pro:yes (t). (2): :is true because: j~f.; :~;::.~ .~;;~d,,~ X ~: a n d i s  A;definable t 'rom 

Let u s  n.ow denote  by: P ~  ' " : ~ ~ - " t h e  pama l  X,..algebras w:h~cl~ are: m A, P~ --= A C) f~,,:. 
B y  an A;'~ampling o f  X w e  Sha l l  m e a n  a s e t  a . . . .  ~ . . . . .  s ~ A :of= subsets ot X such that for 
every f:~P~: and everY:finite r~X there : i san lS :eSwh ich  is:closed ',:~der f~ 

AS b e f o r e w e  denote by Zf t he  set :Of s c S which are Closed under  f anL~I by f :")  
w e denote the :collection Of: Y ~  S whicli Contain Zf for Some: f~  P:i~<. : : 



(1) P~ is 2~,9,,~:_a: : : :~: : 
(2) f f ' S  is: a~,t A~so ,  m p h n g  the.,~ I:';: Lr a: .:;.o.~wre~cff ; '  ' ,[dte~" o},~ :>, ';Y,*ffc?g ~>~.ee~yT:: 

{ s ~ S : x ~ s - < , s ~  h" a 

P r o o L  W e  def ine  P;~ b y  stipuia!:b-~g: -i-, . . . .  ;;,-~v ........ ~,.:~-..:,-~ .-.:' *-~ ~<.~., 

,'*; , " s  ~ { subset  o f  X *  ~m:o X ;~-~,{ tSe ..... ~>~" "~-' 

g¢~ <. cx is such ti~at: 

(i) s~ is a bas ic  func t ion  or  
(ii) t he re  is g:X,=~>~ a n d  ~ =j's~::c~,,::~:eS. 

" , . . . . . . . .  " . . . .  " W~i!C}? 5;~U3?;~3~Z; ?S I t  is clea.r tha t  this ~s a X-,definit:ion a~.an' tb~'~' anv~f?mg m A . . . . . .  it " a 
:iartial X - a l g e b r a .  ]Let us "~ . . . .  

f o r  eve ry  x e X ;  w e  m a y  a s s e m e  by induc t ive  a s su mpt ion  o~ th.s "ra,,,~.*.:- .A" .;e that  ';< 

~o..' :v ~ X saa~aes*°s ~" the. ~ def in i t ion .  W e  def ine  a r e l a t i on  ¢7 on A by: 

R ( x ,  . . . . .  s} i f f  s is a s e q u e n c e  sa~,~,~:~.vm~.: .... ;>,. and  (ii). . ae#{ 
its ~, ~q e "~/:~. .ast  ~ . e m . n t ~ o  

= 

t t  i~ c lear  t ha t  R is Z on: A and  * ( ~ . . . .  ~a- e.. :.-~J~., we  

~. . i x e X )  suc~, t ha t  S.~ is a cons t ruc t ion  of f f  and  ' /  ...... {he ~a:~t 
t ha t  X is w e l l - o r d e r e d  we  c o m b i n e  these  in to  o n e  s e q u e n c e  a~d  to> this ~ ~:,<~,~,--c,~ 
wi th  ¢ T h e  r e s u l t  is a c o n s ~ u c t i o n  fo r  f b ec a u se  tl:,.e f imct ion  g(x)  - a" ~.- * W~ACt~  e Q  LKI[S 

the  le.t, g th  of  sk iS in A. 

W e  d e n o t e  a Z. -def in i t ion  of  l ~  by  ' " =~ . . . .  ~ . . . . . .  ~:':' ' cr(o) an~, p r o c e e d  t o  p r o v e  (z/.  ~ ~;~a~: r, ~; ~s a 

filter is p r o v e d  as before.~ us_~4qo~ Propos i f icm 4.2 (27_...Let .R ~ X × S' be  Z o~? A ar~d 
= : 

such  tha t  for  e v e r y  x ~ X  

{S~S:R(x, s)} ~ . f g  

This  set  need  no t  be  in A b u t  by  the  def in i t ion  of  F'72? it ~-~.h,, 4 .... 2% {'c,r ~¢oc~?e . . . . . .  i 

¢~ P:~. Thus  if we  cons ide r  the  p r e d i c a t e  T ( x ,  f ) d e f t : n e d  by 

"u(f)A(VS & S)[if  s is c t0sed u n d e r  f. t h e n  R(x ,  ~j_,-,'~ 

we  see t ha t  it  is N: on  A and  tha t  (Vx <~. X ) ( B f ) T ( x ,  f ) ;  so ~sir.~. ...... ~' '"- '~ .... 

,,.get ~L : x ~ x}A,  wi th  f" ~ P~.~- a n d  v~t~ ~ {s  ~ S :  R ( x ,  s)}.. ~ v n c e  .~ -~: j / , :  : ,~: e/~. fs , .;~ 

and  w e  b a r e .  as b e f o r e  

R e n l ~ r k  4 .3 .  T h e  ye ta t iv iza t lon  could  have  been  d o n e  L, ,.~ m;, o~ ~. h.::o~,;:;~.~ ;.,.•-. 

t ha t  ease  w e  w o u l d  have  g o t t e n  a s  A - p a r t i a l  X . a t g e b r a s  s o m e  fc~nCfions whk:b 

r e a l l y  a re  n o t  p a r t i a l  X,:algeb:ras b e c a u s e  we won id  Check t h e  aigeb,~aiciw 0f the  
domain: of tim f u n c t i o m  fo r  t hose  s :  o - -+ ,Xwl i ic .h  m 'o  in A 'gl~C *ie~ e f fec t  v/ou~d 

: b e  t h a t  A4sa rap! ings  o f  X *night: be  : la rger  . h a a  & e  A,:~aiapi£~gs ~a:e ~2_ave.i Ba= 

eve.,, if:we woi)dd e n d  :,ip w i t h  f h e  Same Sampii'~{g s i t  is m o r e  pieasa  r, t t 0 have:  P> Z 



The  fact that  F ~  is Nznormat  is true if S is iust J r /on A a a d  pA(L~, c~ A: as Cm~: 
be seeu by i~pec t ing  the pro, of of (2) under  these Conditionsi : : 

5. "Ihe paradigm in L , ~  

Throughout  this sectio~ T deaotes  a theory i~ a countable laag~!age and I)'a', v) 

is a type. As before we  denote  by " '~ q . <:,~x. the foil;rata 

A(By)~  A - X ~ y ) A ~  

which is a formula of L . . . .  . We cali (Nx)~,~(x) the paradigm and we say it has a 
solution if there is a model  of T+(3x)c~r(x) .  As we ment ioned before,  the 
problew of finding a sotution for (3x)c~c(x) pat terns  quite a few problems in 
model theery. Let  t~ give some examples:  

Example  5.1. Let  G~ be the free group on ;.~ generators  (u <~,)). V~lether 
G,, ~ G,,, for n, m > 1 is still open. "ibis p rob lem can be phrased as askir,.g whether  
a certain paradigm has a solutions° Consider G,,, n > 1, and let T be the theory of 
(G,,, g~ . . . . .  g,,) where g ~ , . . . ,  g, are free generators  of  G,,. Le t  F(x,  y) be  the 
type containing all fommlas  

w(g~ . . . . .  g,, x) = e iff . .  • .,'~ y ¢  w ( g ~ . ,  o g,, x )  

where a,(g~ . . . . . .  g,,, _.'.c) is a word i~a g~ o. g,~, x (a ~erm) a;~d . - • is a condition 
which states when the word is e h~ such a way that x becomes a new free 
generator.  Now a solution is a group elementari ly equivalent  to G,,, it has n :+ 1 free 
generators and tt~ey generate  the whole group (because of the choice of  F), that  is 
the group is G:.,+~. 

E > a ~ p ~  5,2. We have a countable model  of  Z F  a n d  we want  to find a~l end 
exteJ.~sio~? -~' h <.,, .°  Let  T be the theory of  the model  with names for all e lements  and 
let F(x, y) be t~e t~l~e 

. [ x~aA y ~ a  y #  b : b E a ,  a e M } .  

Any solution to (3x )a r (x )  is ar~ e~'?xI extension of :M. This example  is  less typical 
because the variables x and y ;~re .aot .related; i..e. we have  a: separat ion ~:f 
variables. These paradigms are ge.net'eJ!y ~:asi::'.r to solve. If  we consider: I b~, Y): 
defined by : : 

[ )  , 

{a e XA y eXA'~,e~X : C~ ordinal :of[M} 

the variaNes are not  separated and any Solution to: the pa r ad igm i-n t h i s  case is  a 
very Strong form of: end extension i n that [X :becomes the  tirSi Ordinal afle:r tlie 
ordinals of M and; tL'erefore; a s0!ution may n o t : e x i s t . . : : . ,  ::; ,: : ,:::: 

L e t  us now go into statina: and p rov ing  :a result which: ~ives suNc ien f  cotiditi.ons 



.[0r tl~e existe'ace:,of ' ' * ~'~ "--" ' ~ ¢ . . . . .  ~-~" ~ '  ..... * ' " 
: ~:;tatement : below :is not in tile str,:mc*eSt ~Tc, ss~bi¢ :fob'm' [:d~:t r~aklng h stni:>~:~cr 

womd ~esmt in making it less readable.  ~,,~,~:l~,~,. ~,~,i ~ ............... ~,...,,,~., :molto impo~ta~r~,  is  t h a !  d,,~:s 

: idea 0f the proof  applies: in situations outside the ~ ;  • -',, a~_ ~;,.tme~ o;~s~ of the d~eerem l~t- 
this point shati be illustrated belowi 

T o  make  the s t a tement  of  the theorem less bulky, L,.~ v .................. ,. ........ ,_,,~.,. ~.s 
conditions separately:  T is a theory,  ,F its type and w e  have a:c~ ~,, h-~c~-.,~-¢e seg A. 
which contains o and .~, f°  is welPordered  in .A, A Satisfies the .Z.;b~oice and 
T'_ A is ~_' on A. 

scJatag~.,, for each, A ~ & "*b~n " "4- ,;,. : ~ h,~.,~,~, 

Proof., We  adjoin to tb.e language of T a new constant  c and dec?he a theor? i~ 
the expanded language: 

<b(c) ~ T(c) iff {~ ~c S : T +  cc.,,(c)i- 4~(c)} c F~q 

@(.r) is a formula  of the language of T ,  }- refers, of cour.~,e, ~o the pro, ,~ao~y 
re ladon in I ............ and F~ is the filter defined in Sect;era 4. We have To_ n-,f,,~ ~.,..J ~'~nd 
T (c )  is consistent because F ~  is a filter, Also, if a ' >  . , ,  o',, .~z A, alien 

( (?y)(cq(C. y )A '  " "AOh ,C, y))~ Z(c) 

because ,~k ~' ~'- S." o0,, . ,  o;, ~. A} e f:~ and if (r~, . .  ; o;~, ~ z3.. then 

a~(c)~(3y)(m(C, y); ' , . . ,  A o,,,(c, y)):. 

Thus, any model  of  T(c)  satisfies the "realizin~ par t "  Of the paradieam We i~ave ~.o 
show that T(c )  has a model  omitt ing the type F(c, y). For  this we use the 
Omit t ing of Types  T h e o r e m  (see [1, Theorem 2.2°9]). 

We  need a criterion for  Consistency of a formula g"(c, y) with T(c)~ We c!aim: 
'/*(c, y) is consistent with T(c) iff 

K ={A ~ S : T ÷  o~X(c) d-:(B y)rgt(C,, y)Consisten t} 

is stationary, t h a t  is K has a non-empty  intersection with every set in F(.-L if K ~s 
siat ionary a n d  @(c)~ T(C); then 

K f~{~ c~ S : T + aa (C)H @(c)} ~O:  

if .,.1 is in the interse.c tion we have a model  of: T + i% (c):~I7 (B Y)gt(c, v )+  ¢;(;i? so by 
the Compactness the)re in  T(c) + (3y)*/~'(c~: y) is Consistent. I f  K is:not statiur}ary 

i 
t h e n :  : : : . : : : i 

/ i : : : : : 

So  ~ (;By)g~(Ci = y) ~ 7"(c), i:e; (3 y) .gt(c; y ) i s  inc, onsisten~: w i t b  T(C).:  := : =i : 

Now,  l e t u s  assun: '. that  t h :  assumptions of the Omit t ing  of Typ~:s :Thv~:;>.eim a ~ e  
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not fulfilled; we shall reach a contradiction f rom this. Hence  >,:e have a formula  
"/>(c, y) cor~sistent with T(c) wt!ieh has the  p r o p e r ~ '  that  f o r  each  ~r C F(c, y )  

r(c)k (~y)(~;'(c, y )~ : r (c ,  y)), 

Therefore  

c;. = {a ~ S: r + ~ (c) ~- (Vy)(,I~(c, v)--, o-(c, v))} ~ F~ 

. ~(m ~ :  : A ~ co,.? i:; v on A because: for every ~ ~ .~  TI~e relation ~ . . . .  '. 7 - 
(a) the assigmnent o"-~ (Vy)('~r@:, y)-~,cr(c, y)) ~s recursive; 
(b) since 7/' is X on A and c~::, ( e ) s  A, the provabil i ty relation in the definition of 

C~ is Z on A (see [3, p. 47, Example  6]). 
Because of our  assumptions on the admissible set we can use P ropos i t ion ,  .z: 

and we find tha; 

C = { A e S : c : A E  , _  a 

Because ~" is cons{stent with T(c)  

0¢~ t. i i (a  e ~ : ~ -~-a~a(c)+(3y)g*(c, y) consistent}, 

!et k be in fhe intersection, On one hand we have a medel  M 

M~: T+ <Kc) + (B y)g(c,  y). 

O~_ the other  hand if o-E zi then 

f : V l.- *: M ~,~V. )~ ~tc, y)-> cr(c, y))~ 

But this contradicts the definitio~ of ~ ( c ) .  The  Omitt ing of Types  Theorem is 
,~ow ~sed to give a solution to T +  (~lx)a,~-(x). 

Illustration, The  reader  may !ind it useful tO go throuN1 the proof  of  T h e o r e m  5.3 
i~-~ a farz-~iliar situation. Keisler 's  2-cardinal theorem provides a good example .  We 
!~aw~ a model 0< +, n, R, . . . .  ), we adjoin to it the dosed  unlmnaded Sets of ~<* and 
relation', {!or membersh ip  and being a dosed  tmbounded set. 'Fake a countable 
eteme11~ :,,ry -'u* * t .... ~, o:,,ructtm., A adjoin to it ~mmes for all its elements,  and call the 
theory c~ ti~e expa,~sio~ 7', Le t  

F(x, 3 ) - - , ~ b , y  a ? , ¢ , z / \ b < x : a ~  U A, b ~ A }  

where U( ' )  is the name of -: : ~:% 
We may now join the proof  of 'q { T(c) is defined by 

6 ( c ) e T ( c ~  i f f  {bc~)~,:A~4,(b)},::'[::::' 

where F 'a is the filter of }'dosed unbounded subse t s '  of a The  rest of  the proof  
may  then be r e a d  in these terms; it is easier since we d o  ~iot have  to wo:rry a b o u t  
things being 2. I t  may also: b e  found that normality of the  el,3sed m ~ b c a m d e d  
subsets need not be  invoked leav:ing a :rcmm for  improvements  o n :  th~s" '*~>,c,ralmat'- -" 
result. ' : :  : : : : : :  : 



16.  A p p l ~  a t l  : : = = 

We shall show a~ appiicadoa of .... e . . . . . . . .  5 ~ ~-s~" .... , ,--.- ....... ~=;~" °, • 
the method of  its prceof. 

L e t  us first of all look in  the cow, text of  this paper  at wha t  is Tv~a*o~do'~ ~' ~ . ~ ,  "~ ~ o  5~ 

{:4]. "Ehere he assumes " ;" Chang s conject~re to get a q" ec;a~ kited o": ~..,, " .......... ' ..... 
This can be a.cifieved aa ~ o d o , , a . '  ~ ~," ~ ~'-" Let  "~', "~.~:. the theory of.... 

(S t..! a,=,, ,~ . . . .  ) 

where S consists of  subsets of  ah whose oa:ter type in ,-oh a,~d •. • ermmerates a!i 
~r%.~ 1~,:,-~e:@t of t}l,,3 str~Ictllre L,;" = }:. ~.A!ti- elements ae, d subsets of the arfiverse...~s . . . . .  ~ . . . . . .  

F(x, y) be the type 

q~ 

has cardinatity cog and we are in no position to apply Theorem 5.3. But if we 
co,lapse ~+ to m, that is if we work in a universe W where ,c~ is cou~a{:ab!e, the~'e 
we have T and ~x~ countable and embedded i~ tt::e admissible set A of_ set~; b. "~7 
which are of cardinatity <~:+ hereditarily. If Chang's  c0a]ectt~re holds S ~s ar~ 
A~-sampling of o0=~ wMch is essentially .it; and for every s e S (S El ah, ~, s,, o .) i:~ a 
sotutkm for  (Nx)a,.(x)~ AII the o ther  eo~aditi0ns of  Theorem ~ ~ . . . . . .  ~'~ ~,/~ ;~ 4 
its application yields an elementary ,exte:asio. M of (S  U oa2, ~; .  ° .) which em:~:ak?s 
an element c such that c ~ S  M and M > a ~ c  if[ a<,a~> We; can ,'.~<>w &~[i:r~e a 
V-ultrafilter o~ S by 

U e . O  iff M[= U(c) .  

Let ¥7D be the ultrapower of V using only ttie functions f" S--> V which arc b I/; 
and let * be the elementary embedding of  V into ~'D. We want tO cotnpute '~.:- 
order type Of co'~. If f,: g :S--~ w~ t!!en ];z~, < g@ iff . M ~ f ( c )  < g ( c ) <  o):~. Now t;~.e 
order  type of ah in M is the same a s that of  C (we can express this in M) sad t-bat 
is a~a, s o  ro*~ ~v,. The other inequali ty fo l lows  f r o m  Considering for a < ~h. 

~ 2  . : 2 

./2 (s) = c~th eleme~it Of s. The set-up of  [42 ~s thus estab!~shed, The p:roCedt~e u~:ed 
h e r e  does not  give a better result but  it gives a uniform strategy to f",mo, ~~ ,-ir,~,,,.t~,..,~ '~ ..... 

situations. : : : . . . .  

The  at~plication tlsing the m e t h o d  of the p r o o f  0f 7 h e 0 r e m  5.3 co:m:eri~s a 
Situation when w e h a v e  a model  .M of Z F C  a u d  a n  elementary eme*x/~'.r~ 
j :  M--~, N Thes{~ models n e e d  no t be  standard.  Given X a M  the, e a r e  ~wo s~:~ :< b 
~eneral different which car~ be associated with X .  First :0f  all we bare  ; ( v . , . .  ;~.~ 

which SatisfieS t h e  same p rope r t i e s  in N ?a s in  M.  Secondly we bav*~ the 5~e! 
s t ) ( X ) = ~ ( x ) : M ~ x  a X }  which is :merely a subset of: N in  the case whe!~ this 
subset is an element of iV, meaning that for seine: Y~:~N and fo r every a si.N 

.... i i N ~ a e = y  iff ae s t i (X) :  : ,  : : : :  

w e  a h Sta:adard par{::o XexiSts  i nd we de el¢i e. ="~ ~" f n N a  t~0te the = nt ~.~ z'~- iW :: IS Y t  at t h e  
:stffX) or  by St(X). ~ : : : :  : : 
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For example i f .M= V and N = V~/~, where D is a ~¢-complete uttra~tter Over ~: 
(>a))  then st0¢)= ~ (assuming N ~s trammve),: If D is non-princiPa I aver: ~-=~o 
the St(~) does not exist and ; for  that matter, no standard of:any i infinite ordinal 
exists in N. In the opposite direction we nave that < is snpercompact iff for every 
A > , :  there iS an elementary embedding i of V into M such tl!at ~ is the =first 
ordinal moved by ] and the standard par t  of X2st,(X) exists for every set X ~ M : 
of cardinati~y A. 

Let us now consider X; s ~ M with M"~S is a samp!fi~g ot! .:Xi The type of the 
sampling S in M is the set 

This set is a tbT~e of the theory of the model M. 1t M were a se twe could also taik 
about the type of the samptin~ in (M, ' ° a~,,~,-, it would then be a t,~qpe of 
ThgCM.. a~.. , ,~.. ,  ~ e x  and the following . . . .  theorem would be true even with this definition 
of the type of S. 

Theorem 6.1. Let  M be a countable model of_ ZF, let .~; S ~  M" be such that~rF~ "S  
is a sampling of X " ,  and let ,r(v) be the type o r S  in )~I. ~N~r a~,y ~,pe V~(v) of  Th(M) 
which extends r(v) there is an elementary extension N of  M which cot~.tait~s the 
sta.ndard part o]" X and 

N~:X(st(X)). 

Proof, Let T(c) be a theory in the language of M augmented by a new co~stant c 
and names for all elemeuts of M (a names a) whose axioms are :  

t 

T(c)={4(ca~ . .  a,i):{s~:.-S Al~&[sal  ~" ~ -  r:-M~ 

Here F Ms is the filte:r ht M r detelanined by S and the~et  {s~. S :~ ' f~ [ sa~  -. '. a,~]} 
,~,~o~e~~-"~ * '- the elemer, t of M satisfying the definition. 

T(c) is a. consistent theor~ and any model of it  can be considered as an ,  

etement~-~_ry extev~sio~ of ?d. We now show that T locally omit s the type : 

{ y e c A v ¢ , : z : M ~ : a ~ ? X } .  : (i)  °, 

i 

Let V(~ca~ ¢,) be su<:~ that 

T(c)}-(gy)[O(vca~ .a,,)--~)~<~c/-~,CaJ 

f o r  eve:rv a ~ M satisfying M>, a ~ X2 Thei~ R~r <wery S't~ch a 

y E y 1} Ca = { s e S : ~ l } : ( V y ) [ O ( y s a i . * .  a.)-2~ S,,', ¢ a  ' : : = : 

represents an element of M such= that  Ag>C. ~/~si Moreover  the flmction which 
assign s to: a e M X  th e s e tC~  is in ?~ therefore, since M,~Fs iS no,~i~ml :: i : : 



i 

But  if s ~ S  is such tha~ a ;_:.M~ 
w e  h a w  : : : 7 . . . .  : :  ~ . . . . . .  

MP~(ysa~  ~ i .  a , j ~ ,  y e SA y..,~ a 

and f rom this :it follows that  

M~-~(3y}~[,(ysa,.,. cj. 
By the definition o f  T(c )  this mea,{~s ~-~at 

T(c)b-~(BV)~,(yca~ o°.  a,,). 

St) there is a model  N omitt ing t h e  type a>d therefore co~v:amm~i~ c -  ::,,~(: .... ~mi~ 
N~ ~(st(..x)). 

There  is a partiM Converse to h,- +~.,i, ~- ,,~- "" ~ " N " ~-~ -" ..... , v-, . 
in N and N P s t ( X ) g  j (X)~ Take  a f o r m u l a  %" i" " "~ • ~~ " 

N }  = 4 s [ s t ( X ) , / ( a 0 , . . . , / ( a , J ] °  

may aiso assume that  - , e .  rl(yw ~vv.~ implies '¢t~e fom~uJa v c: ]'(XS We show that K 
M is s taedard  the e lement  S of  M satisfying 

: M ~ v  ¢ ' : S + ' ~ 6 ( v a : t  " " a , , )  

is a sampIine of X. Let  f e  M be such tha t  M P f  is X-atgebraic.  Now ir~ , ,  ~,~" ~ ~; ~ -:( cL~ ~; 
j (X)-a lgebra ie ;  bu t  j ( X * )  may  be different from j ( X ) *  (in N;  thi~gs are ,%rmle if 
N is standard). Fortunately,  the .nature of partia! .X-ab.ebras ;s such '~ .... i~- e:',ai:,!ea 
us to p~o've: if 

N P  w e d o m  (j(f)) 0, (st(X))*, 

then w is really finite. 
We show this by induction on the rank of .f (in M)~ if '¢he rauk is 0 (of k 0  rhea 

the d o m a i n : o f f  has one e lement  and the same is true of j(f)~ if the rank is > 0  the~a 
we have:  

.MP(Vw e X*)[w ~ d o m  (~),:~W' e dom (j(f"~))] 

w h e r e  we is the  first te t te r  in w and w = wow'. Hence  we have 
i 

.NP:~Vw c j (X*))[w <~ dora (j(J))~> w{ e dora (i(f%))], 

Therefore ,  if .N} w ~-: dona (J(0)  Q st(X)*, t!aen Wo ~ st(X)* a.,?e v,.?~ dcm (i(:Y"'0o So 
we = j(xo) where  xo ~ X and then  w' e dom (](f*,,)), ~ence b y  the ind:tictiVe ags~.m~% 

t ion  w; is finite and:so is w: Having this resul t i t  .iS easy to  c t ieck  that  : . . . . .  

N}, :St (X)  is closed u n d e r  ~(f).i : :  i : 
: : 7 : 

Le t  r :~ X be .  finite, We; have : - : : : i : : 

: ::: N , ( 3 v ) [ e ( v ;  j ( a 0 ; .  : . : ; : j (a , ) )Xi<r)~IVA V iS dOsedm'~der:.;i(t)~, i 

Th.e sentence (w~thout. 1} is t rue:m M wMc,  inca:ms fllat S cvn.ta, n a a  aa.mp~,a ~.~ciseJ 



under f and including r. consequently M ~-S is a Sampling. The: type  of this 
sampling in M contains all formutas ~ ( v )  whic!a are true of st(X~ i n  N:and  are~ 
implied by (5, but we have not been able to get die t~])e Of S included in that o f  
st(X) 

However ,  the above implies ' 

CoroBaK" 6,2. Let ;vI be smndard ii 3I--~N elementary, let st(w~ ,:~) e-dSt in N ~,~d 
let i(~o~) and st(~ ~. have the same order ~pe. Then N~=Chang'S con~ect~,.a',e ~or 

Proof,  Define a sampling of ¢o-~ usme the formula "v  has order  type ¢o~ z', v ~ o).-'o 
This formula is true of st(e@ "t) in N so ttiis defines a sampling. We explai~led in 
Section 3 why the existenCe of such Sampling implies Chang's conjecture. 

The types of samplings limit and outline the properties st(X) can be made to 
satisfy. Let  us ampIify ~his a bit. For a set X define qs,~ to be the set of at1 
formi~ias 4,(v) (of the language of set theory) which satisfy: 

if S is a sampling of X then for some s ~ N d,(s) 
is tree (in the universe). 

Intuitively, c~o~; seems to contain the properties which can  not be avoided in 
non-trivial extensions° To give some examples we show that  @~,~#45 : the 
property "v  is a countaNe ordinal"  is in  '/~,.~ because tliere are structure oatL:: 
whose elementary substructures consist entirety of ordinals, so every Samplir,g of 
~,~ must contafi~_ a eom~tab!e ordir, ak The  pr~_~pcrty does not bekmg to 4~.~;~ because 
the set of subsets of power ~,h is a sampling of ~,>.. 

Added in proof 

The main argument in this paper  is similar in spirit to the proof of the 
Completeness Theorem for Stationary Logics. See J, Bairwise, M, Kaufmam~ and 
M. ~iakkai, Stationary Logic, Amn. of Math. Logic 13 (1978) 1.7 t.=224. 
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