
Journal of Computational and Applied Mathematics 182 (2005) 67–80

www.elsevier.com/locate/cam

Probabilistic subproblem selection in branch-and-bound
algorithms

Mirjam Düra,∗, Volker Stixb

aDepartment of Mathematics, Darmstadt University of Technology, D-64289 Darmstadt, Germany
bDepartment of Information Business, Vienna University of Economics and Business Administration,

A-1090 Vienna, Austria

Received 30 March 2004

Abstract

We investigate the branch-and-bound method for solving nonconvex optimization problems. Traditionally, much
effort has been invested in improving the quality of the bounds and in the development of branching strategies,
whereas little is known about good selection rules.After summarizing several known selection methods, we propose
to introduce a probabilistic element into the selection process. We describe conditions which guarantee that a
branch-and-bound algorithm using our probabilistic selection rule converges with probability 1. This new method is
a generalization of the well-known best-bound selection rule. Furthermore, we relate the corresponding probability
measure to the distribution of the optimal solution in the bounding interval. We also show how information on the
quality of the upper and lower bounds influences the choice of the subset selection rule and conclude with numerical
experiments on the Maximum Clique Problem which show that probabilistic selection can speed up an algorithm
in many cases.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Nonconvex programming; Subset selection in branch-and-bound algorithms; Convergence of branch-and-bound
algorithms

∗ Corresponding author.
E-mail addresses:duer@mathematik.tu-darmstadt.de(M. Dür), Volker.Stix@wu-wien.ac.at(V. Stix).

0377-0427/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.10.019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81949503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:duer@mathematik.tu-darmstadt.de
mailto:Volker.Stix@wu-wien.ac.at

68 M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80

1. Introduction and motivation

In this paper, we deal with the branch-and-bound method for maximizing a nonconcave function over
a set of feasible points determined by the constraints. Formally, we consider the problem

max f (x)

s.t. x ∈ M. (1)

It is common to assume the objective functionf to be upper semicontinuous and the feasible setM to
be compact, which ensures that the maximum exists.

This type of problem appears in numerous situations, and the branch-and-bound method is one possibil-
ity to solve it. Since it was first proposed in 1963 by Little et al.[12] this method has become increasingly
popular and has been successfully applied to a wide range of applications. Just to mention a few examples:
branch-and-bound has been used to solve discrete problems[2,3,7], continuous and stochastic problems
[6,13–15], problems in economics and in technical applications[10,16,17].

To be able to refer to the particular steps of the branch-and-bound algorithm to solve problem (1), we
recall its general framework (for a detailed introduction to the theory of branch-and-bound the reader is
referred to Horst and Tuy[8]):

Algorithm.
Step0: Compute a compact setX ⊃ M of simple structure (e.g., a simplex or hyperrectangle).

Compute an upper boundu(X)�maxx∈X∩M f (x) for the solution of (1), as well as a lower bound
	(X)�maxx∈X∩M f (x). LetL be an empty list, and set the iteration counterk := 1.
Step1: PartitionX into (a constant number of)� compact subsetsX1, . . . , X�, and add them to the

list L.
Step2: Calculate upper boundsu(Xi)�maxx∈Xi∩M f (x) and lower bounds	(Xi)�maxx∈Xi∩M f (x)

for all newly generated setsXi .
Step3: Update the current overall upper and lower bounds: Put

uk := max
X∈L u(X) and 	k := max

X∈L 	(X).

Step4: Discard elements from the listL which cannot contain a global optimizer, i.e. discard all
elementsX with the property (i)X ∩ M = ∅, or (ii) u(X) < 	k.
Step5: Select (according to some selection rule) a newX ∈ L which is to be subdivided in the next

iteration, and remove it fromL.
Step6: While stopping criteria are not fulfilled, incrementk := k + 1, and go to step 1.

Our analysis will focus on step 5, the selection of the next subset, for which we discuss a new approach.
Several possible selection rules are known: One popular procedure is depth search first. It is easy to
implement and requires only little memory. In other implementations, problem dependent heuristics are
used. Their main disadvantage is that convergence of the algorithm is often unsure.

A rule which ensures convergence of the branch-and-bound algorithm to the global maximum under
mild conditions is the rule “select the set with the highest upper bound in each iteration” (see[8]).
As we will often refer to this rule, we will call it “best-bound rule.” We will call the set with the best
upper bound in iterationk the dominating set of that iteration, and we will denote it byXk.

M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80 69

Recently, other selection criteria have been proposed: In the context of interval branch-and-bound
methods, Csendes[4] suggested to choose that set for which a certain index computed from the available
bounding information is maximal. He reports on good computational performance of his selection rule,
cf. also Kreinovich and Csendes[11].

Stix [14] reports on performance improvements when a so-called target oriented branch-and-bound
method is used. This means that not only the dominating set is selected for partitioning, but also all sets
X whoseu(X) exceeds a certain value, the target value.

In the present paper, we propose to include a probabilistic element in the selection process. Our
motivation is that we think that the traditional rule is too much focused on the dominating set. For
example, in situations where there are several sets with upper bounds similar to the dominating set,
there is no reason why the selection rule should discriminate those sets against the dominating one.
Our idea is that randomization can somehow balance the selection process and speed up the algorithm
runtime. Our numerical experiments on the Maximum Clique Problem show that this hope is justified in
many cases.

To illustrate this idea, imagine that, at some iterationk, the listL consists of six elementsX1, . . . , X6
whose upper and lower bounds can be represented as shown inFig. 1.

Since	k �maxx∈M f (x)�uk, we have the feeling that some of the sets are “more likely” to contain the
global solution than others. For example, inFig. 1 the setX3 seems “more likely” to contain the sought
maximizer thanX5, whereasX1 andX2 are “almost even likely” to contain the solution. Therefore, we
suggest to select the next set to be partitioned according to a probability distribution onL in such a way
that sets with higher upper bounds get higher probabilities of being selected, but also sets with bad upper
bounds are assigned a small, but nonzero probability of being chosen.

One possibility for such a probability distribution is to assign to each set a probability which is
proportional to the length of the intersection of the two intervals[(Xi), u(Xi)] and [k, uk]. This
means that

Pk(Xi is selected in iterationk) ∝ u(Xi) − 	k

uk − 	k

.

Obviously, this probability distribution depends on the list present in iterationk, a fact which is expressed
by the notationPk. In order to ensure thatPk is a probability measure, it must be normed properly,

X1

X2

X3
X4

X5
X6

uk

lk

Fig. 1. A possible situation in iterationk, before step 5.

70 M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80

which leads to

Pk(Xi is selected in iterationk) = u(Xi) − 	k∑
X∈L(u(X) − 	k)

. (2)

It is an important fact that we here assume all elementsX of the list to fulfill u(X)�	k, i.e., we assume
that step 4 of the branch-and-bound algorithm has been carried out before introducing the probabilistic
subset selection rule. This is equivalent to assigning the probability 0 to all setsX with u(X) < 	k.
In later sections we will discuss other possible probability distributions onL.

2. General setup and convergence results

It goes without saying that a probabilistic subset selection rule need not necessarily use the probability
measure sketched above in (2), but can use other probability measures as well. One could think of a priori
information on the quality of the bounds which could give rise to a certain probability measure. But also
the traditional best-bound rule is a (degenerate) probabilistic rule: the corresponding probability measure
assigns the probability 1 to the dominating set, and the probability 0 to all other sets. Other possible
probability measures are discussed in Section 3.

In this section, we outline a general theory for probabilistic subset selection and give conditions under
which the resulting branch-and-bound algorithms converge. An important assumption which we will
presume to be satisfied throughout is that the random selections are independent in the sense that whether
or not the dominating set is chosen in one iteration has no influence on whether or not it is selected in
any other iteration. We first recall some important definitions.

Definition 1. A partitioning procedure is called exhaustive, if every nested sequence{Xi}i∈N of partition
sets eventually shrinks to a singleton{x∗}.

Most of the commonly used partitioning methods (e.g., bisection of simplices and rectangles) are
exhaustive, cf. Horst and Tuy[8]. Furthermore, we need a concept which describes that, in the limit,
lower and upper bounds of a sequence of partition sets coincide.

Definition 2. We say that a bounding procedure has the zero convergence property, if for every exhaustive
sequence{Xi}i∈N of subsets ofX0 we have

lim
i→∞ u(Xi) = lim

i→∞ 	(Xi).

If a bounding procedure has this property, it follows immediately that both sequences of bounds
converge to the maximum off on the limit set

⋂
i∈N Xi : We have

lim
i→∞ u(Xi)� lim

i→∞ max
x∈Xi∩M

f (x) = max
x∈ ∩

i∈N
Xi∩M

f (x)� lim
i→∞ 	(Xi),

where the inner equality follows from Lemma 2 in Dür[5]. The zero convergence property implies
equality.

The following proposition gives an elementary convergence result. We understand a branch-and-bound
procedure to be convergent if limk→∞ uk = limk→∞ 	k.

M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80 71

Proposition 1. Assume that in a branch-and-bound procedure

(a) a selection rule is used which ensures that the dominating set is chosen infinitely often,
(b) an exhaustive partitioning procedure is used, and
(c) the bounding procedure has the zero convergence property.

Then the branch-and-bound procedure is convergent.

Proof. Denote bykn the (infinite) subsequence of iterations where the dominating set is selected for
subdivision, and byXkn the corresponding subsequence of dominating sets which, by definition, fulfill
u(Xkn) = ukn . Since allXkn are nodes of the branch-and-bound tree which, at every depthkn, has only a
finite breadth, we conclude that there exists an infinite subsequenceXknm

of Xkn which is nested. As the
partitioning procedure is exhaustive, the diametersd(Xknm

) → 0. Therefore, using the zero convergence
property, we have:

lim
k→∞ uk = lim

m→∞ uknm
= lim

m→∞ u(Xknm
) = lim

m→∞ 	(Xknm
)� lim

m→∞ 	knm
= lim

k→∞ 	k.

Since uk �	k for all k, the two limits must be equal, so the branch-and-bound procedure is
convergent. �

The next theorem introduces the probabilistic subset selection into the theory. It gives a condition which
guarantees convergence of the branch-and-bound procedure with probability 1.

Theorem 1. Assume that in a branch-and-bound procedure

(a) a probabilistic selection rule is used which fulfills

∞∑
k=0

Pk(Xk is selected in iterationk) = +∞,

(b) an exhaustive partitioning procedure is used, and
(c) the bounding procedure has the zero convergence property.

Then the branch-and-bound procedure converges with probability1.

Proof. Observe that in every iterationk ∈ N we are performing a Bernoulli experiment: Either
we select the dominating setXk, or we do not, events which we can encode by 1 and 0, respectively.
Hence, in every iterationk we have a sample space�k = � = {0, 1}. The corresponding�-field
is the power set of�:Ak = A = {∅, {0}, {1}, �}. Thus, in every iteration we have the same
measurable space(�,A). The probability measureQk describing the Bernoulli experiment,
however, depends on the iteration. We defineQk({1}) to be the probability thatXk is selected in
iterationk:

Qk({1}) = Pk(Xk is selected in iterationk),

andQk({0}) = 1 − Qk({1}). So we have defined a probability space (�,A, Qk) for each iterationk.

72 M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80

Next, we want to describe the entire selection process, i.e., an infinite sequence of Bernoulli experiments.
To this end, we need a common probability space, and the appropriate one is(∏

k∈N

�,
⊗
k∈N

A,
⊗
k∈N

Qk

)
,

where
∏

k∈N � denotes the infinite product� × � × . . . , (i.e.,
∏

k∈N � is the set of all sequences of
elements out of {0,1}),

⊗
k∈N A is the product�-field, and

⊗
k∈N Qk is the product of the measuresQk.

For details on these probabilistic concepts, the reader is referred to Bauer[1]. We use the abbreviation
Q := ⊗

k∈N Qk.
Now letAk be the event “Xk is selected in iterationk”. Formally,Ak ∈ ⊗k∈N A is the event

Ak = � × · · · × �︸ ︷︷ ︸
k−1

×{1} × � × · · · .

Its probability isQ(Ak) = Qk({1}). To see that the family of events{Ak}k∈N is independent, take any
nonempty finite subsetI = {i1, . . . , in} of N, and observe that

Q(Ai1 ∩ · · · ∩ Ain) = Q(Ai1) · . . . · Q(Ain),

a basic property of the product measure.
Assumption (a) of the theorem translates to

∑∞
k=0 Q(Ak)=+∞. Hence, we have an independent family

{Ak}k∈N of events which fulfill the preconditions of the Borel–Cantelli lemma (cf. again Bauer[1]).
From this lemma, we conclude that with probability 1 infinitely manyAk occur, i.e., with probability 1
the dominating set is selected infinitely often. Combined with Proposition 1, this completes the proof of
Theorem 1. �

Remark1. The traditional best-bound rule trivially fulfills the conditions of Proposition 1 andTheorem 1.
Thus our new probabilistic selection method is a generalization of the best-bound rule.

Remark 2. In some situations, the branch-and-bound tree is not an infinite, but a finite tree. This occurs,
e.g., if at some depth of the tree the boundsu(X) are known to be exact, or if in each iteration the problem
dimension is reduced, such that for the subproblems corresponding to the leaves of the tree the dimension
is 1. Moreover, the tree is finite in all practical situations where the problem is not solved exactly but to
a prescribed tolerance� > 0.

It is obvious that in the finite tree setting the described probabilistic subset selection results in a
convergent, i.e., finite, algorithm.

Remark 3. Even if conditions (b) and (c) of Theorem 1 are fulfilled, it may occur that lower bounds
	k = −∞, for example if lower bounds are computed using feasible points, but no feasible point can
be found until iterationk. In such a situation, our randomized selection rule still results in a convergent
algorithm, provided that thePk fulfill condition (a) of Theorem 1.

One possibility to accomplish this is to use the best-bound-rule in all iterationsk with 	k = −∞, and
to switch to a different measure once the lower bound becomes finite. Or one could use any probability
measurePk which assigns to the dominating set a higher probability than to every other set in the current
list (cf. Corollary 1 below). Both ways will render the branch-and-bound procedure convergent.

M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80 73

Notice that under the assumption of the zero convergence property, if the algorithm generates an infinite
nested sequence of partition sets, then there exists at least a subsequence of upper bounds converging to
the optimal value of the underlying problem. Therefore, in the case where the problem is infeasible, the
algorithm must terminate after finitely many iterations indicating this fact.

3. Possible realizations of the probability measure

3.1. A general concept

To see that the probability measure introduced in Section 1, which assigns probabilities according
to (2), fulfills the key assumption (a) of Theorem 1, observe that this measure assigns to the dominating
set the highest probability among allX ∈ L. This means that this probability is not smaller than 1/|L|.
Now in iterationk, the list contains at mostk� elements (a consequence of step 1 of the branch-and-bound
framework, where each selected set is partitioned into exactly� subsets), hence

Pk(Xk is selected in iterationk)�
1

k�
.

Therefore,

∞∑
k=0

Pk(Xk is selected in iterationk)�
1

�

∞∑
k=0

1

k
= +∞,

which is the decisive property in Theorem 1. More general, we have the following result:

Corollary 1. Assume that in a branch-and-bound procedure

(a) a selection rule is used which ensures that in each iteration the dominating set is assigned the highest
probability among all elements of the list,

(b) the number of elements in the list increases at most linearly in the iterations,
(c) an exhaustive partitioning procedure is used, and
(d) the bounding procedure has the zero convergence property.

Then the branch-and-bound procedure is convergent with probability1.

In the construction of the probability measure (2) we were implicitly assuming that the unknown
optimal value maxx∈M f (x) is distributed uniformly in the bounding interval. This is, of course, the
natural thing to do if no additional information is available. But one could imagine that prior knowl-
edge on the quality of the bounds is available which suggests to use a distribution different from the
uniform one.

To be more precise, what we are doing here is (in a sort of Bayesian approach) to regard the unknown
optimal value of (1) as a random variableY whose distribution is described through a cumulative prob-
ability distribution functionF . The distribution functionF is viewed as a function telling us where in
the bounding interval the unknown optimal value maxx∈M f (x) is likely to be found and where it is not.
Without loss of generality assume thatY is distributed in the interval [0,1].

74 M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80

Using the distribution functionF , the probability measureP′
k must fulfill

P′
k(Xi is selected in iterationk) ∝ F

(
u(Xi) − 	k

uk − 	k

)
.

Here the distribution functionF has to be rescaled to the interval[k, uk]. Norming to a probability
measure gives

P′
k(Xi is selected in iterationk) = F((u(Xi) − 	k)/(uk − 	k))∑

X∈L F((u(X) − 	k)/(uk − 	k))
. (3)

From the monotonicity ofF we conclude that, compared to the probability measure (2), introducing a
distribution function does not change the order of the subsets according to their probabilities of being
selected in a given iterationk:

Pk(Xi)�Pk(Xj)⇐⇒u(Xi)�u(Xj) ⇐⇒ F

(
u(Xi) − 	k

uk − 	k

)
�F

(
u(Xj) − 	k

uk − 	k

)
⇐⇒P′

k(Xi)�P′
k(Xj).

Therefore, the dominating subset remains the set with the highest probability among all elements of the
list. As seen above, this property is sufficient for condition (a) of Theorem 1 to be fulfilled. This proves
the following result:

Proposition 2. Any choice of a distribution function F, combined with(3), results in a selection rule
which ensures the algorithm to converge with probability1.

3.2. Examples

Next, we discuss different possible choices of distributions and demonstrate their effect on the proba-
bilistic subset selection rule. To this end, take again the example ofFig. 1, but order the sets according to
their upper bounds: LetX[1] denote the set with the highest upper bound,X[6] the set with the lowest.

As mentioned before, assumingF to be the uniform distribution function results in the probability
measure introduced in (2): In this case, we haveF 1(x) = x, whence

P′
k(Xi is selected in iterationk) = F 1((u(Xi) − 	k)/(uk − 	k))∑

X∈L F 1((u(X) − 	k)/(uk − 	k))
= u(Xi) − 	k∑

X∈L (u(X) − 	k)
,

as asserted. The resulting probability distribution onL (along with the distribution functionF 1
k which is

the functionF 1 rescaled to the interval[k, uk]) can be seen in the following picture.

M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80 75

It may be reasonable to use other distributions, for example the distribution functionF 2 shown below.
This is reasonable if the upper bounds are supposed to be of higher quality than the lower bounds.

The resulting probabilities (calculated again for the example ofFig. 1) are sketched below. The differ-
ence to the uniform distribution is not too big, a fact which is not astonishing in view of the results of the
next section. But note that the probability of the dominating set has increased compared to the uniform
distribution.

3.3. Deterministic versus random selection

Next, we investigate the two stochastically extreme distribution functions: Consider

F 3(x) =
{

0 . . . 0�x < 1,

1 . . . x = 1.

F 3 corresponds to the situation where the global upper bounduk is known to be sharp, i.e., it is known
that maxx∈M∩X f (x) = u(X). Of course, this is only a hypothetical situation, because in this case,
maxx∈M f (x) = maxX∈L u(X) = uk, so the branch-and-bound algorithm would finish in the first iter-
ation. Anyhow, it is clear that the dominating set should be preferred to all others. And this is exactly
what the probability measure corresponding toF 3 defines: The resulting probabilities are 1 for the dom-
inating set and 0 for all others, so this choice of distribution function yields the deterministic best-bound
selection rule.

Now let us see what the other stochastically extreme distribution function leads to: Let

F 4(x) = 1 for 0�x�1.

F 4 corresponds to a setting where the lower bound	k is known to be sharp, which may occur if the
optimal solution of the problem is known but the maximizing point is unknown, but also if good local
solutions are available which provide good lower bounds. Since	k is a feasible objective value for all

76 M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80

sets in the list, all of them should be assigned a positive probability. Indeed, here we get using (3)

P4
k(Xi is selected in iterationk) = 1∑

X∈L1
= 1

|L| ,

so all sets from the list have the same probability of being chosen. This is somehow the purely random
selection, whereas the stochastically smallest distribution functionF 3 resulted in the purely deterministic
choice.

We see that there is a range of selection rules, from purely deterministic to purely random, and these
selection rules correspond to the two distribution functionsF 3 andF 4. Every other distribution function
F can be ranked on this scale. An appropriate way to measure the distance� of F to F 4 is

�(F, F 4) =
∫ 1

0
(F 4(y) − F(y)) dy =

∫ 1

0
(1 − F(y)) dy = EF (Y),

whereEF (Y) denotes the expected value of the random variableY (the unknown optimal value of the
original problem (1), rescaled to the interval [0,1]) with respect to the distribution described byF . This
quantity lies between 0 and 1. If the measure is near 0, this signifies that the selection procedure is highly
random, a measure near 1 corresponds to a selection process which is very close to deterministic.

This means that if the expected valueEF (Y) is nearly 1 (= near to the upper bound), then it is
recommendable to use a more deterministic selection procedure, ifEF (Y) is nearly 0 (= near to the lower
bound), then a more random selection rule should be used.

4. Experimental results

We tested the implication of this new selection rule compared to the best-bound rule. The experiments
were made on an NP-complete discrete problem, the Maximum Clique Problem (MCP), a well-known
problem in graph theory. Its objective is to find the largest complete subgraph inside a given graph. As
problem instances some graphs from the DIMACS challenge were chosen (see[9]). These graphs are
known to be hard to solve with respect to the MCP.

The two compared algorithms have the same structure except for the selection step 5 (i.e., step 5 in
the prototype algorithm of Section 1). On one hand we tested an algorithm (called “best-bound” below)
which deterministically always selects the subproblem with the best upper bound. Our second algorithm
selects the subproblem depending on an assumed distribution of the real maximum as introduced in this
paper. The latter algorithm is called “random” below.

The following three figures (Figs. 2–4) illustrate three typical situations: All of them plot the num-
ber of iterations (i.e., sub-nodes visited) on the horizontal axis against the maximal clique-size found.

M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80 77

The best-bound algorithm is plotted using a dashed line whereas the random-algorithm is plotted with a
solid line.

Fig. 2shows the behavior of the two versions of the algorithm on thesan200 _0.9 _1 graph, a graph
of dimension 200 (i.e., 200 vertices), density 0.9 (i.e., 90% of the possible edges are actually present),
and a maximum clique size of 70. Here the random-algorithm is able to find larger cliques in earlier
iterations than the best-bound algorithm all the time. This results in a better performance of this particular
random-instance of 74%.

55

60

65

70

75

0 50 100 150 200 250 300 350 400 450 500

S
iz

e

Iteration

Random
Best-Bound

Fig. 2. Overall better performance of the random-algorithm.

32

33

34

35

36

37

0 100 200 300 400 500 600 700 800 900

S
iz

e

Iteration

Random

Best-Bound

Fig. 3. Better performance of the random-algorithm.

78 M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80

35

40

45

50

55

60

65

0 50 100 150 200 250 300 350 400 450 500

S
iz

e

Iteration

Random
Best-Bound

Fig. 4. Overall better performance of the best-bound algorithm.

Fig. 3shows the results when testingsan200 _0.9 _3, a different graph of dimension 200 and den-
sity 0.9. Here the maximum clique size is known to be 44. Both algorithms were terminated after 3000
iterations with the same maximal clique size of 36 found so far. It can be seen that although the best-bound
algorithm was superior at the very beginning it was beaten by the random-algorithm.After 1000 iterations
the best-bound algorithm had still around 58,000 subproblems in its listL (see Section 1) whereas the
random-algorithm had only around 40,000. This phenomenon was observed in all of our experiments and
will be discussed below.

Fig. 4 shows the results of a third graph of dimension 200 and density 0.9, thesan200 _0.9 _2
graph. Here the maximum clique size is 60. Both algorithms were stopped after 3000 iterations. At that
stage, neither of them had found the maximum clique, but both of them had found a maximal clique
of size 59. For this problem, the best-bound algorithm was superior compared to the random-algorithm.
The same was observed after repeating the experiment with new random selections, whence we think
that this is a structural property of that particular graph. After 1000 iterations the best-bound algorithm
and random-algorithm had around 8700 and 6500 subproblems in their respective lists. We let the algo-
rithms continue to run to check which one will first find the maximum clique, but without success after
3000 iterations.

The above plots illustrate some representative outcomes of our experiments. To give a more complete
picture, we have summarized our experimental findings inTable 1.

The table lists graphs of dimension up to 400 for which both algorithms were unable to find the exact
solution. Instead, both algorithms were stopped when they reached the same local solution so far. The
time (measured in iterations) when the stopping happened is illustrated inTable 1. To reflect randomness,
the random algorithm was restarted 20 times with different random seed.

The columns “min”, “avg” and “max” represent the minimum, average and maximum stopping-time for
this algorithm, respectively. Column “best-bound” shows the stopping-time for the best-bound algorithm,
and column “performance” gives the relative average time the random selection rule was faster compared

M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80 79

Table 1
Experimental results on DIMACS-graphs up to dimension 400

Name Dimension Random Best-bound Performance (%)

Min. Avg. Max.

brock200_1 200 1497 1935.45 2103 2802 69
brock400_1 400 25 72.85 102 105 69
brock400_2 400 17 67.20 107 90 71
brock400_3 400 41 163.45 259 99 165
brock400_4 400 8 254.45 560 330 77
MANN_a27 378 9 16.25 30 123 13
p_hat300-2 300 2833 4603.75 5079 3628 127
p_hat300-3 300 53 145.10 288 156 93
san200_0.9_2 200 136 253.90 348 243 104
san200_0.9_3 200 92 853.20 1732 885 96
san400_0.7_1 400 23 142.30 207 88 162
san400_0.7_2 400 688 1046.60 1865 2777 38
san400_0.7_3 400 38 833.70 1291 462 181
san400_0.9_1 400 18 192.10 511 272 71
sanr200_0.7 200 12 77.25 132 144 53
sanr200_0.9 200 694 3468.05 8613 3512 98
sanr400_0.7 400 44 216.90 372 257 84

to the best-bound rule (i.e., the ratio of the columns “avg” and “best-bound”). Instances where the random
algorithm performed better than the best-bound algorithm are shown in bold.

It can be seen that in 12 out of the 17 testproblems the random selection rule performed (in average)
better than the best-bound rule, in five cases it was even better with respect to its maximum stopping-time.

In five of our test problems the random selection rule performed worse (in average). In none of these
five cases, however, it performed worse with respect to its minimum stopping-time.

An observation in all our experiments was that the size of the listL in the random-algorithm was always
by a magnitude smaller than that of the best-bound algorithm. One explanation for that behavior is, that, for
our test problems, larger problems tend to have a larger upper bound and tend to create more subproblems
(which are nevertheless bounded by a fixed number). If the dominating set is always extracted next, it
is more likely to create more subproblems than in the random-algorithm. A second explanation which is
more general and not specific to a problem-class is as follows: by selecting randomly the probability of
creating more infeasible subproblems is higher. These problems are removed from the list by step 4 of the
general algorithm (see Section 1). Anyway, because of a smaller listL, the random-algorithm consumes
less memory and is therefore faster (e.g., in step 4).

We also found that the random-algorithm finds better lower bounds (local solutions) in earlier iterations
and consumes less memory. For our problems an assumed density function similar toF 2

k seemed to be
more efficient than an equi-distribution implied byF 1

k (see Section 3.2).
Therefore, our numerical experiments suggest that the probabilistic selection method has two main

advantages: (i) better local optimizers and thus larger lower bounds are found in earlier iterations of the
algorithm and (ii) the listL of candidate-sets is considerably smaller compared to the best-bound rule.
These two features result in a speedup of the algorithm performance.

80 M. Dür, V. Stix / Journal of Computational and Applied Mathematics 182 (2005) 67–80

5. Conclusion

This article generalized the well-established best-bound selection rule using new probabilistic parame-
ters. We showed convergence conditions for the probabilistic branch-and-bound algorithm and motivated
different possible random distributions. Numerical tests performed on the Maximum Clique Problem
showed that probabilistic selection often results in a speed-up of the algorithm.

Acknowledgements

The authors are indebted to the anonymous referees for valuable comments and suggestions, which
have greatly improved the earlier version of this paper.

References

[1] H. Bauer, Probability Theory, de Gruyter, Berlin, 1996.
[2] R. Bausch, A multicriteria scheduling tool using a branch-and-bound algorithm, European J. Oper. Res. 61 (1992)

215–218.
[3] I.M. Bomze, V. Stix, Genetic engineering via negative fitness: evolutionary dynamics for global optimization, Ann. Oper.

Res. 89 (1999) 297–318.
[4] T. Csendes, New subinterval selection criteria for interval global optimization, J. Global Optim. 19 (2001) 307–327.
[5] M. Dür, Dual bounding procedures lead to convergent branch-and-bound algorithms, Math. Programming 91 (2001)

117–125.
[6] M. Dür, R. Horst, N.V. Thoai, Solving sum-of-ratios fractional programs using efficient points, Optimization 49 (2001)

447–466.
[7] P. Hahn, T. Grant, N. Hall, A branch-and-bound algorithm for the quadratic assignment problem based on the Hungarian

method, European J. Oper. Res. 108 (1998) 629–640.
[8] R. Horst, H. Tuy, Global Optimization: Deterministic Approaches, 3rd ed., Springer, Berlin, 1996.
[9] D.S. Johnson, M.A. Trick (Eds.), Cliques, coloring and satisfiability: Second dimacs implementation challenge, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science 26, American Mathematical Society, Providence, RI,
1996.

[10] J. Karkazis, A branch-and-bound algorithm for the location of facilities causing atmospheric pollution, European J. Oper.
Res. 58 (1992) 363–373.

[11] V. Kreinovich, T. Csendes, Theoretical justification of a heuristic subbox selection criterion for interval global optimization,
Central European J. Oper. Res. 9 (2001) 255–265.

[12] J.D.C. Little, K.G. Murty, D.W. Sweeney, C. Karel, An algorithm for the traveling salesman problem, Oper. Res. 21 (1963)
972–989.

[13] V. Norkin, G. Pflug, A. Ruszczy´nski, A branch-and-bound method for stochastic global optimization, Math. Programming
83 (1998) 425–450.

[14] V. Stix, Target oriented branch & bound method for global optimization, J. Global Optim. 26 (2003) 261–277.
[15] V. Stix, Stochastic Branch & Bound applying Target Oriented Branch & Bound Method to Optimal Scenario Tree

Reduction, Technical Report TR03/2002, Department of Information Business, Vienna University of Economics and
Business Administration.

[16] M. Stojković, F. Soumis, An optimization model for the simultaneous operational flight and pilot scheduling problem,
Management Sci. 47 (9) (2001) 1290–1305.

[17] F. Vanderbeck, A nested decomposition approach to a three-stage, two-dimensional cutting-stock problem, Management
Sci. 47 (6) (2001) 864–879.

	Probabilistic subproblem selection in branch-and-bound algorithms
	Introduction and motivation
	General setup and convergence results
	Possible realizations of the probability measure
	A general concept
	Examples
	Deterministic versus random selection

	Experimental results
	Conclusion
	Acknowledgements
	References

