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ABSTRACT 

Information measures A,,, (entropies, divergences, inaccuracies, information im- 
provements, etc.), depending upon II probability distributions which we unite into a 
vector distribution, are recursive of type p if 

+I~P,+P,)A, .-_.&-- - 
( 

P2 

1 Pl+PB’Pl+Pz . 

If also a similar equation holds with three instead of two distinguished vectors, then p 
has to be multiplicative, except if all Am are identically 0. The information measure is 
semisymmetric if As(pi, p2, p3) = A3(pl, p3, p2). We determine all semisymmetric (in 
particular, symmetric) recursive information measures of multiplicative type, allowing 
first only positive probabilities. Previously the cases n < 3 have been examined mainly 
for j6( t) = ).L( 7i, r2,. . . ,T,) = 7p92a2- . .7,“n, and some probabilities were allowed to be 
0. This has made the proofs easier. But permitting certain probabilities to be 0 would 
exclude most information measures important for applications, so the description of 
appropriate domains became complicated. However, we show how the measures 
which we determine here can be extended to the “old” domains and to more general 
ones. 

1. HISTORY, MOTIVATION, TERMINOLOGY 

Entropies, deviations (directed divergences, inaccuracies, etc.) and infor- 
mation improvements (generalized directed divergences) depend on one, two, 
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or three (for our purposes finite, discrete) probability distributions, respec- 
tively [6]. Some efforts have also been made recently to deal with information 
measures depending upon more than three probability distributions ([14], 
[35], etc.). We wilI deal here with information measures depending upon an 
arbitrary number n of finite probability distributions, each containing, say, m 
probabilities, the same m for each distribution (since they are approximations, 
estimates of each other, or in other ways connected). We will unite the 
corresponding probabilities in the n distributions into ndimensional vectors, 
which we denote by Latin letters. So all lower case Latin letters, even with 
subscripts, will stand for vectors, except i, j, k, m, n etc. denoting natural 
numbers. Sets of vectors will be denoted by Latin capitals. Scalars (real 
numbers) will be denoted by Greek characters. 

The purpose of this paper is to determine all such information measures 
satisfying certain natural conditions. 

The class of information measures which were most thoroughly investi- 
gated are the symmetric recursive ones. (It seems that Faddeev [ 1 l] was the 
first to apply recursivity for characterization of an information measure; cf. 
[6]). Recursiuity means [pi = (T]l, ~j2,. . . , Tfi)] 

(m=3,4,...). 0) 

(The operations on vectors- here additions and divisions, and later also 
subtractions and multiplications- are done componentwise.) If the probabili- 
ties belong to events, then (1) describes how the measure of information 
changes if an event is split into two. Recursivity is also connected to the 
Huffman coding procedure. It is even more natural to suppose that the A,‘s 
are symmetric. For our purposes, it wilI be sufficient most of the time to 
suppose that they are semisymmetric, that is, 

A3(pl, ~2, ~3) = UPI, f-33, pd (2) 

If also 

A3(pl> ~2, ~3) = A,(P,, ~1, pa), (3) 

then the information measure is symmettic. Examples of symmetric recursive 
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information measures are the Shannon entropy 

the Kullback directed divergence 

(4) 

(5) 

and the Theil information improvement 

f ?r,log 2. 
k=l 

We did not specify till now the domains of the A,,, and of the equations 
(l), (2), (3). As n complete probability distributions, (pi, p,, . . . , pm) should 
satisfy 

p,+p,+ *** +p,=1, pi>’ 0 (j= 1,2,...,m), 

the additions (as before) and inequalities being meant componentwise, and 
0,l standing for (O,O,. . . ,O) and (1, 1,. . . , l), respectively. However, the exam- 
ples (4) and, even more, (5) and (6) show that some caution has to be 
exercised with 0 probabilities, because these expressions are not defined if 
some rk or pk or ak are 0. The definition 

OlogO : = 0 

takes care of this problem for (4), and also for (5) if ?rk = 0 was the problem. 
But how about (rk = 0 in (5), and pk = 0 or ok = 0 or both in (6) (in particular 
if “k f 0 for the same k)? In fact, if such values were permitted in the 
suppositions, these important information measures would be excluded from 
our characterizations. 

one way of getting around this difficulty is to require that, whenever ok or 
pk or both are zero for a given k, then rk should be zero too for that k 
[6, 13-17, 19, 20, 33, 361. This leads to pretty complicated domains (cf. [7]). 
We get simpler domains (but potentially more difficult proofs) if we just 
exclude zero probabilities, except for the first distribution (ok). In the case 
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ta = 2, this program has been carried out completely in [2,4,7,8], both for (1) 
[and (2)] and for th e measures of degree a which we wiU mention below. In 
the present paper, we completely eliminate zero probabilities (supposing even 
rk * 0) and determine on this more difficuh domain all semkymmbic 
recursive information measures dependhg upon n probability distributions 
(not just for n d 3), along with the generalizations to be outlined in the next 
paragraph. This has been done before only for n = 1 (cf. [6, 9, 281). We wiIl 
show also how to derive from our results those on the previously handled 
domains. 

As mentioned, we deal also with a rather wide range of generalizations: In 
P21 (cf. 1% 61) t3 a enerahzed recursivity has been introduced for n = 1, first 
called [9] of type a and later [6] of degree a (because “type” sounded too 
general). Subsequently (see [6, l&21,23,32,34] and the survey [36]) this has 
been investigated also for n = 2 and n = 3. An information measure {A,} is 
recursive of degree a = (a,, as,. . . ,a,,) if 

+(p1+ Pz)=Az - - 
( 

Pl P2 

1 Pl+P,‘P,+Pz ’ 
(7) 

where 

As a further generalization, we now consider 

+cL(P,+ ~2)Az $$-s* 
i 1 2 1 2 i 

(m=3,4,...). (8) 

We call the {A,,,} satisfying this relation recur&e of type p, thus approaching 
the original name. As (7) shows, the case where p is multiplicative, that is, 

is of particular importance. We calI (8) with such p recursivity of multiplica- 
tive type. Symmetric recursive entropies of multiplicative type have been 
examined in [22, 24, 31, 3!5] for n = 1,2,3 and for the domains containing 
some zero probabilities. In this paper, we will first (Sections 2 and 3) 
determine alI semis~metric recur&e entropies of multiplicative type jbr all 
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dimensions n on the open domain described by 

g Pj=lV Pj>O (j=1,2,...,4, (10) 
j=l 

and then (Section 4) also on the older domains allowing some zero probabili- 
ties, which we have described above. 

An advantage of considering (8) rather than (7) is the possibility of 
extension to more general fields than the reals. We don’t elaborate on this, 
since we see no applications yet. 

We can also give another explanation why it is natural to assume that /-L in 
(8) is multiplicative (9): Let us suppose that, in addition to (8), the similar 
equation (cf. e.g. [6, p. 621, [35]) 

= A,_2(p, + P,+ P,, PO.-,Pm) 

+p(P,+P,+P3)A3 p1 i 
P2 P3 

p, + p, + p, ’ p, + P, + P, ’ Pl + P2 + p3 i 

holds, at least for m = 4. This and (8) imply 

On the other hand, two more applications of (8) give 

= A,(P+ p)+dp)A2(9,1- 9)+dp9)A2(1- V>. 

Thus comparison indeed yields /.L( p9) = p( p)p( 9), that is (9), if A,( 1 - r, r) s 
0. [If A,(1 - r, T) = 0, then, by (8), all A,,, are 0 whether p is multiplicative or 
not.] 

In Section 2 the case where the multiplicative p is not additive [~(p + 9) 

*AP)+l49) (P,9, P+9ElO,lr)l is settled with an argument analogous 
to one applied in linear algebra in order to establish the connection between 
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bilinear and quadratic forms. In Section 3 we prove for the remaining case 
where p is both additive and multiplicative that it is linear too. Therefore, and 
because of the multiplicativity, Equation (1) and the similar ones obtained by 
permuting the components are the only recursive equations left. They will 
then be solved completely. 

A preliminary announcement of some of these results is contained in 
[3, 291. 

2. MULTIPLICATIVE NONADDITIVE TYPES 

We first derive a functional equation with a single unknown function 
(rather than the sequence {A,}) from (2) and (8) on (10). We introduce this 
function qk Z + R by the definition 

(~(9) : = W - 939) (9EZ)> (11) 

where 

Z : =]o, l[“. (12) 

We use (8) for m = 3 and (2): 

&(P, + P,, P~)+P(P, + ~z)Ae .-!L --_&-_- ( Pl + P2 ’ Pl + P2 i 

= AJP~, ~2, ~3) 

and obtain, with (11) and with r = ~3, Y = P2, 

~(x)+P(1-x)cp(~)=~(Y)+P(l-Y)g(~) (13) 

for all (x, y) E D, where 

~:={(~,Y)lx,Y,x+y~~) (14 

[remember that p, = 1 - x - y E I; cf. (12)]. We call functions 9: Z + W 
which satisfy (13) on (14) ndi men&n91 information jkudions of type p. As 
mentioned before, the multiplicativity (9) is also supposed for p, 9 E I, so we 
are dealing with n-dimensional information functions of multiplicative type. 
The (A,,} can be determined from cp with the aid of (11) and (8). 
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In order to solve (13) in the case where p is multiplicative 
additive, we prove the following. 

but not 

LEMMA 1. If (p SUti.SfkS (13) (M (14) ~2nd /L SUt+?S (9) fi Ud p, Q E 1, 
then the jimctim \k : D + W, defined by 

satisfie.9 

and 

qx, Y) = *(Y, 49 ( 16) 
P(x,y)+\k(x+y,z)=~(~,Y+~)+~(YJ)~ (17) 

*(wY)=P(t)*(?Y) (18) 

wheneuer x, y, 2, x + y + 2, t E 1. 

Proof. In view of (15), Equation (16) is the same as (13). 
We prove (17) and (18) by using (15) and the mukiplicativity (9) 

repeatedly: 

+P(l-*-Yh( I_;_y)-+(X+Y+t) 

qx)+p(l-r) o(&)+P(l-& + ,4$;:‘,,)] [ )i 

By the symmetry (16) of \k, the left-hand side is symmetric in x and y while 
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the right-hand side is symmetric in y and z. Hence both sides are symmetric 
in x, y, z. This symmetry yields (17), while comparison of the right-hand sides 
of (17) and (19) gives 

which is (18) after renaming the variables. W 

It is easy to see that p, being multiplicative (Q), is identically zero on Z 
[cf. (12)], if it is zero for one qa E 1. Indeed, then 

PhII)= forah pEZ; (20) 

in particular, 

EL(x) = 0 if x is close enough to 0. (21) 

For each q E I, we wilI have qk as close to 0 as we want to by choosing a 
large k. Then, by (21) and (Q), 0 = p(qk) = p(q)k, so p(q) = 0 on 1. Since 
~=OisbothmuIti h ti p ‘ca ‘ve and additive, we relegate this case to Section 3 
and suppose here that p is nowhere zero on 1. 

Now we can extend first p to P: = IO, oo[ n and then \k to P2 with their 
properties (Q), WY, (17), and (18) intact. Ail t E P can be written as t = p/q 
with p, q E 1. We define 

ji(t)=# : =$$ (p,qEz) (22) 

[since p(q) * 01. Because of (Q), F is unambiguously defined and is an 
extension of I_L satisfying (9) (cf. [5]): 

ii(st) = F(+(~) (s, t E P). (2-3 

Again, ,ii is nowhere 0 on P. 
The extension of 9 to P2 is done by the definition 

T(x, y) = - l w 
P(S) 

a, SY), where (sx,sy)~D, SEZ (24) 

(possible, since p is nowhere 0 on I). Because of (18), g is unambiguously 
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defined and is an extension of \k. Indeed, if also t E Z and (tx, tY) E D, so 
much the more (stx, sty) E D. By (18) 

so we have 

L*( 
P(S) 

sx, sy)= - l WOY) P(t) 

and (24) is unambiguous. If (x, y) E D, then, by (18), 

so 3, as defined in (24) is an extension of \k. We also see that q and ,E satisfy 

q:(x, Y) = 3;(Y, x), (25) 

T+,y)+3++y,z)=~(x,y+n)+T(y,z), (26) 

and 

V(tx, tY) = F(t)% Y) (27) 

for all x, y, z, t E P. We prove for instance (27). Write t = p/9, where 
p, 9 E Z and (px, PY) E D. Then, by (24), 

and 

T(tx,ty)=T 7,: = ( 1 -$-JI(P"s PY). 

Because of (22) we have indeed (27). 
We now proceed to determine g. First we note that, for n = 1 and 

,E([) = c2, the equations (W), (26), and (27) are satisfied by all symmetric 
bilinear forms. Just as symmetric bilinear forms can be represented by their 
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diagonals, the quadratic forms, we may expect that q can be represented 
through its diagonal and, ultimately, by ,!i. We follow up this idea by the 
following computation, first using (25) and (26) in order to get 

Ol- 

v(Px,PY)+~.(9x,9Y)-~((P+9)x,(P+9)Y) 

=~(Px,9x)+~(PY,9Y)-~(P(x+Y),9(x+Y)). 

With (27) we get 

H ) -( k-3 p p +p 9 p p+Q)lqcY)= [~(x)+ji(Y)-~(x+Y)l~:(P79) 

(28) 

for all x, y, p, 9 E P. 
At this point we make use of the assumption that p, and thus F, is not 

additive, so that there exist po, q. E P for which p( po) + ,E( 90) - E_( p. + 90) f 
0. Put into (28) p = p. and 9 = 9. in order to obtain, with (Y = 
%%> 9o)/[E-i(Po)+P(9o)-P(Po+ 90)13 

V(x,y)=aF(x)+aF(y)-aETi(x+y) for all x,yEP. (29) 

In particular, \k is of the form (29) on D, that is, 

\~(x,Y)=~cc(x)+LTcL(Y)-~~(~+~) on D. (30) 

Evidently, functions of the form (30) are indeed solutions to (16), (17), and 
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(18). With this general solution for \k, Equation (15) is reduced to 

11 

(31) 

Putting y = (1 - x)2 into (31), we get 

~(x)+~(1--x)~(~)=\cI(x+~--xz) (33) 

for all x, z E 1. We distinguish two cases. 
If p(t) s 1, we use the symmetry of the right-hand side of (33) to get 

By fixing z = za with ~(1 - z,) * 1 we get 

where p = +!(~a)/[~(1 - ~a)- 11 is a constant. This and (32) give 

$+)=&)+PI.L(1-+-B (-I), (34) 

and then (8) and (11) yield 

L(P,, PZ,".~ Pm) =PP(Pl)+ a 5 P(Pj)-P 
j=2 

(35) 

(C~=ipj=1;pj>0,j=1,2 ,..., m;m=2,3 ,... )withconstanta,/?. 
If, on the other hand, p(t) = 1 on I, then (33) is reduced to 

or, with X(x): = J/(1 - x), 

GY) = w+qY) b,Y a (36) 
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Thus, from (32), 

c$(x) = a + X(1- x) (XEI), (37) 

ad by (8) and (19, 

5 pi= 1; pj>O, j=1,2 ,..., m; m=2,3 ,... 
j=l 

It is easy to verify that (34) always satisfies (13) and that (35) satisfies (2) 
and (8), while (37) satisfies (13), and (38) satisfies (2) and (8) if X satisfies (36) 
and p(t) = 1. We have proved the following. 

THEOREM 1. Suppose that p is multiplicative (9) on I2 but not additive. 
Then the general solution of (13) 012 (14) is given by (34) for p(t) s 1 and by 
(37) with 136) for p(t) = 1. Further, the general semi.symmetric recursive 
entropies of type p are given by (35) for p(t)* 1 and by (38) for p(t)= 1, 
where X is an arbitrary solution of (36) and a, p are real constants. Zf also (3) 
is supposed, then the A,‘s are filly symmetric and p = a in (35), A = 0 in 
(36). 

We notice that no regularity conditions were needed. If + [or A2; cf. (ll)] 
is even weakly regular, say bounded on a set of positive measure, then, in (37) 
and (38), 

A(r)= i Ykhtk [&E]O,l[, k=1,2,...,n; x=(&,52,...&)], 
k-l 

yl, y2,. , . , y, being arbitrary constants (cf. [30]). 

3. MULTIPLICATIVE ADDITIVE TYPES 

We now go over to the remaining case where p: Z + W is both multiplica- 
tive 

AP9) = dPM9) (P29W (9) 
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and additive 

13 

(3% 

We introduce the function Y: IO, 1[ + Iw by 

v(T): =p(7,7,...,7) (7 +J[). 

It immediately follows from (9) and (39) that JJ is both additive and multi- 
plicative. So we have either 

V(T) = 7 (40) 

or 

V(T) = 0 (41) 

on IO, l[. (This is welI known for real-valued functions additive and m,ultipIica- 
tive for aU reals, but can be just as easily proved on our restricted domains: 
V( r2) = V( T)~ > 0, so v is bounded from below, and therefore alI such solu- 
tions of v(u+T)=v(u)+v(T), even on the open triangle {(d,r)]u,r,u+ 
r&IO, l[), are of the form v( 7) = yr, which satisfies v(ur) = v(u)v( 7) if, and 
only if, y is either 0 or 1.) 

In both cases 

In the case (41) this gives with y = 7x, that p is identically 0: 

(43) 

In the case (40), on the other hand, (42) establishes 

so, together with (39), we have that CL is linear (more exactly, p can be 
extended to a linear map W n + W). So 

P(x)=PL(5& 9...> &J= t +&. 
k=l 
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But this satisfies (9), that is, 

n n ” 

c “ktkvk = c ai& c akvk, 
k-l i-l k-l 

if, and only if, 

a&=0 for i==k and ai=ak. 

Soak=Oorak=1,butifanak=1,thenallothera,=O(i*k).Thus,inthe 
case (40), p is a projection: 

h) = d&s &‘“‘&,) = & forsomeffxed k={1,2 ,..., n}. (44) 

We have proved the following. 

PROPOSITION. A function CL: I + R is add&e and multiplicative, i.e. 
satis* (9) and (39) [cf. (12), (14)], if, and only if, /.i is either identically zero 
or a projecdon(44) 0fZ to IO, l[. 

So the only cases not settled yet are, in addition to 

A,(P~, P,, PS,..., P,,,) = A,~-I(P, + P,, PW~P,)~ 

2 pj=l; pj>O, j-1,2 ,..., m; 
j- 1 

(45) 

the equation (1) and the similar ones with %rrk + rsk (k = 2,. . . ,fl) in place of 
err + Q. For the latter, we may restrict ourselves to (1) [and (2)] without 
restricting generality. 

The argument at the beginning of Section 2 translates these into 

444 = dY> (46) 

or 

(47) 

respectively, on D for $: Z + W, as defined by (ll), (12), and (14). 
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Equation (46) simply means that + is constant 

+(x)=6 (-z), (48) 

and, in view of (11) and (45), 

knh,~z,-~, p, ) = 6 (constant) 

i pj4; pj> 0, j= 1,2 )...) m; 
j=l 

As to (47), for convenience we change our notation slightly in this section. 
We write 5,~ for II,q, and u=(& ,..., &,), u=(Q.,...,~,) (so, in most of 
this section, Latin characters stand for (n - l)-component vectors). 

We write also 

so that (47) goes over into 

for 

(51) 

IJLI+r)+-u[, (52) 

U,u,U+uE]O,l[n-l. (59 

We fix u and u temporarily so that, with the notation 

Equation (51) becomes 

(54) 
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for (52). It has been proved in [27] that this implies, among othrs, 

(p,(7)=7r;(7)+(1-7)x(l-r)+(Yr7+pi, 

rJ&)=rr;(7)+(1-+(1-r)+(Ys7+&, 

where x : IO, 1[ + R is a solution of 

X(u7)=X(u)+A(7) (a,rE]O,l[). (55) 

CornBaring this with (54) and letting u, u vary again, we get 

~(,,24)=7x(7)+(1-+i(1++(Y(U)7+/3(u) 

(r E]O,l[, U E]O,l[“-l). (56) 

If we put (56) into (51), we get, in view of (55), 

Comparison of the coefficients of E and of the terms independent of 5 and n 
yields 

44=&!J+s(fi)y (57) 

S(u)+/$ &J =a(u)+a( &) (58) 

for (53). We solve these equations here by a method similar to [8]. Another 
proof can be found in [3]. Equation (58) is just (13) for /? with p(t)= 1 and 
n - 1 instead of n. By Theorem 1, (37), 

B(u)=X(l-u)+& (U+,l[“-l), 

where E is constant and x:]O,l[ n- ’ + W satisfies 

(59) 

A(tu)=X(t)+X(u) (t, u E]o,l[“-1); (60) 
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consequently also 

Ii ; =X(u)-X(t) (t,u,~E]Op). 
( 1 (61) 

We take this into account when substituting (59) into (57) and get 

a(u)=a & ( 1 +X(1-u-+-X(1-u)+& 

=(Y ( ) & +q1--+-0)4(1-0)+x(1-u) 

-qu)+x(.)-~(l-u)+& 

for (53). Introducing t = u/(1 - u) and using (61) again, this goes over into 

a(u)+x(l-u)-x(u)=a(t)+x(1-t)-x(t)+&, ’ 

which shows that both sides have to be constant (say y) and that y = y + E, so 
E = 0. Thus we have, for all u E 10, l[” - ‘, 

and [cf. (59)] 

a(u)=h-(u)-X-(1-u)+y (62) 

p(u)=k(l-u) (u~]o,l[“-‘). (63) 

Since (62) and (63) with (60) always satisfy (57) and (58), we have proved the 
folIowing. 

LEMMA 2. The general solution of the system (57), (58) for u, v, u + II 
E IO, l[ R - 1 is given by (62) and (63). Here y is an arbitrary real constant and 
x: IO, l[” -’ + R is an a&tray solution of (60). 

In view of (56), (62), and (63), we have 

If we write 

X(x) = A(,$, u) : = A(t)+ X(u). 
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this X : IO, l[ n + W satisfies (36) and we can write (64) as 

~(X)=~A(x)+(l-E)X(l-x)+Y5. (W 
It is easy to check that (65), with an arbitrary constant y and an arbitrary 
solution X of (36), always satisfies (47) on D. 

Remembering that in our case and in the other cases of nontrivial 
[p(t) s 0] additive and multiplicative /.L, we have (44), so (65) and the similar 
formulas, with other components distinguished instead of the first, can be 
written as 

~(~)=P(~)[w+Yl+P(1-#G-~) (x E z). (66) 
Making use of (8), (9), (39), and (ll), we get 

: pj=l; pj>O; j=1,2,...,m; m = 2,3 
j=l 

Of course, (66) satisfies (13), and (67) satisfies (2) and (8) always when p is 
both additive and multiplicative. We have proved the following. 

THEOREM 2. Zf p is both additive (39) and multiplicative (9) on Z2, then 
the general solution of (13) on (14) is given by (48) if p(t) = 0 and by (66) if 
p(t) f 0, and the general semi.symmetric recursive entropies of type p are in 
this case given by (49) if p(t) = 0 and by (67) if p(t) ??0, where y, 6 are 
arbitrary real con&ants and X is an a&tray solution of (36). Zf also (3) is 
supposed (symmetry), then y = 0 in (66) and (67). 

If, as after Theorem 1, we wish to determine the weakIy regular, say 
measurable solutions or those bounded on a set of positive measure, we can 
(cf. [6,10,26]), change X so that it has the same regularity properties. So, 
under these conditions, we have in (66) and (67) [6,10,26,30] 

w = t Ykh35k [&~]0,1[, k=1,2,...,n* 9 x=(E1,E2,...J 11, n 
k=l 

again with arbitrary real constants Yl, Yz,. - * ,Yn- 
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4. EXTENSIONS TO BOUNDARY POINTS 

We are now showing how our solutions can be extended to the “old’ 
domains mentioned in Section 1. Since that has been the case most com- 
pletely researched before, we start with (44), in particular (1) and (47). We 
will deal simultaneously with the cases where just the first [or, in the general 
case (44), the kth] component of the vectors is 0 (or l), or several say ni, 
components, including the first [the kth] are 0 (or 1). Therefore, we divide in 
this section every (n-component) vector into an nicomponent part with 
subscript 1 and an (n - ni )-component vector with subscript 2. So we write 
(47) [cf. (51)] as 

=+(Yl.y,)+o-n)O( *+). 
1 2 

Considering boundary probabilities in (1) (in the first components or in 
several, including the first) means permitting, in addition to D [as defined in 
(14)], also the points with 

xl=y,=o=(o,...,o) 

or 

or 

x,=0, ~iE]O,l[~l or yi=O, xiE]O,l[n’ 

x,+y,=l=(l,...,l), Xi, Y, -+J[“’ 

in the domain of (69), while we keep 

r2,Y2,X2+Y2E10,1["-n1. 

We first note that, for x1 E ]O,l[“l, x2, y2 E IO, l[“-“I, 22 G Ys, 

A(% ~2)-%, Y2) 

(70) 

(71) 

(72) 

(73) 
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depends only upon x,/y,. Indeed, by (36), 

G,u,, v2) = +,s x,)+ qu,, u2) (74) 

for xl,UIE]O,l[“l, x2,U2E]0,1[“-“1. So, if also ~~,t~E]lO,l[~-~l, s2dt2, 
and 

x2 s2 -=- 
Y2 t2 ’ 

that is, t2x2 =s2y,, 

and s1 E IO, l[ “1, then 

qs,, s2)+ +,, Y2) = X($X,, S2Y2) = qs,x,, t2+) = qs,, tz>+ qx,, x2), 

that is, 

as asserted. Thus we can extend the definition of X(u,, u2) to u1 = 1 by 

: = X(x,, x2)-- X(x,, Yz> 

x1 ~]0,1[“’ arbitrary, 

and the extended A will still satisfy (74) and, as a consequence, also 

A t1 t2 ( i __ 
% 'u2 

=aJd-X(u,,u,) (76) 

[compare (75)]. Th e e xt ension (75) of h is similar to the extension (22) of p 
and can also be carried out to JO, 00 [n if desired. 

Now we substitute into (69) first y, = 0 (including TJ = 0) and x1 E 10, l[ 111 
[cf. (71% and get, by W), 

Nx,, x2)+ Q- 6)W - x,,l-x2~+~~+~l-5~o(O~~) 

=@J(o,Y,)+G x ( I,~)+(~-~)x(l-~,,'-~~y2)+y~ 
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or, in view of (75), 

=+(o,y,)+(1-[)h 1, 1-X2-y2 
i 1 (1-~2w-Y2~ ' 

and, with (75) and t2 = y,/(l- x2), 

~(O,Y,)-X(1,1-Y2)=(1-E)~(O,~z)-(l-E)A(l,1-~2). (77) 

But this implies 

G(O,y,)--X(1,1-y,)=P (constant), 

and, substituting +(O, y2) = X(1,1 - y2)+ j3 into (77), we see that /3 = 0 and 

+(0, Y2) = A(13 1 - Y2) (Y240,1[n-n1). (78) 

Now, that is exactly what we expect as the extension of (65) to xi = 0 
(consequently 5 = 0), if we agree upon 

O-X(0,x,): =o, (79) 

which is customary (like 0 * log0 : = 0). The function given by (78) indeed 
satisfies (69) for (71) and also for (70), in view of (74). 

We substitute now (72) into (69) and get, by use of (65), 

We transform this by using (75) again: 
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or, with s2 = y,/(l- x2), t2 = x,/(1 - y2), 

This indies that #(l, t2)- X(1, t2)- y = 0, i.e. 

4@,~,)=~(l,~,)+u (t2 E]O,l["-"I). 

This is again what we expect as the extension of (65) to x1 = 1, with the 
convention (79). 

Going over to the remaining trivial case p(t) = 0 [cf. (43)] of additive and 
multiplicative p, it is clear that, by extending (45) or (46) to some boundary 
points of their domains, the validity of (49) and (48), respectively, will also be 
extended to the values 0 (or 1) of the respective components. Thus, we have 
proved the following (cf. [8] for a special case). 

THEOREM 3. Zf in addition to D [see (14)], also the points suti.sj$ng 
(70) or (71) or (72), with (73), are included into the domain of(13) and p is 
both additive and multiplicative, then the general solutions continue to be 
presented by +(x)= 6 ifp(t)= 0, and by 

[cf (a)] ifdt)= 7k [see @% d2@ e now x = (x1, x2), x1 E IO, 1[“1 U{O, l}, 
x2 E ]O,l[“- nl with the convention (79). Here y, 6 are arbitrary constants. In 
(81), x1 contains the kth component & of x, and h is an a&tray so&ion of 
(74) with (75). 

The same conventions extend the respective solution A,,,(p,, p,, . . . ,p,,,) = 
Gand 

of (2) and (8) (p additive and multiplicative) to the case where some 
probabilities may be 0, with the same restrictions. 

We consider now (13) with p(t) = 1, that is, 
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allowing again, in addition to D, points satisfying (70), (71), or (72) with (73). 
By substituting, again, y, = 0, x1 E IO, 1[“1 [cf. (71)] into (82), we get, in view 
of (37), 

a+ X(1-x,,l- x,)++ 0 ( q$-) =+(O,y,)+a+h l-x,, ( ?y,y”) 

or, with (75), 

=h I,+$- -X(1,1-y,). 
i 2 1 

Introducing t2 = y,/(l - x2) again, this goes over into 

+(O,y,)--X(1,1-y2)=q$0,t2)-X(1,1-t,)=B (constant). 

so 

(P(o, Y2> = P + w, l- Y2) for all y2 E]O, l[n-“‘. (83) 

This satisfies (82) for (71) and also for (70). 
At last, we substitute (72), that is x1 + y, = 1, into (82), using (37): 

a+X(l-x1,1-r,)++ 1 ( &) 
=a+A(x,,l-y,)++ l,* 

( i l-Y, 

(W 

and specify x1=;=&...,;), s2 = x2/(1- y2), tz = y,/(l- x2) in order to 

get 

~(1,t2)-~(1,s,)=A(B,1-Y,)-x(8,1-x,-Y,) 

+x(~,l-x2-y2)-x(~,1-x2) 

=A(l,l-t,)--X(1,1-s,). 
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So, for some constant y, 

9(w,)=Y+~(Ll-GJ for all tz E]O,l[“-“I. (85) 

Putting (85) back into (84) or just choosing y2 = x2 in (84), we are in for a 
swprise: 

h(l-x,,l-x,)=h(x,,l-x2). (88) 

Equation (74) implies (cf. [l, 251) 

Ah x2) = U4+X,b2)3 (87) 

where 

xi(~ivi>=hi(xi)+A*(y,) (i = 1,2). (88) 

So (86) goes over into 

that is, 

h Xl ( 1 -= 
l l-x, O* 

But, as we have mentioned before, every solution of (88), bounded on an 
interval (and {zllxl = x,/(1- x,), x1 ~10, ;[“I} is an interval) is of the form 

&(I,,..., 5,,) = ? YJogL 
k=l 

and this can be 0 on an interval only if 

A,( x1) = 0. 

Therefore (87) becomes 

(89) 
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and (37) is reduced to 

c ~(x)=a+x2(1-x,). 

Thus we have the remarkable fact that extending the domain D of (82) to 
include some boundary points [those which satisfy (72)] restricts even the 
solution on the original domain D. 

In view of (37), (83), (85), and (89), we have proved the following (cf. [2] 
for the special case n = 2, n, = 1). 

THEOREM 4. The general solution of (82) for D and fir (70), (71), (72) 
with (73) is given by 

i 

c+h,(l-rs) if X+]O,lp, 

+(+x2)= P+h2(1-r,) if x,=0, 
y+hs(1-2,) if x,=1, . 

where a, 8, y are arbitrary red constants and A, : 10, l[” - + + IF4 is an arbi- 
tray solution of (88). 

From this we can build up A, (m = 2,3,. . . ) from C#J with the aid of (11) 
and (8) [p(t) = 11. 

Finally, if p is multiplicative but not additive and not identically 1, we 
write (13) as 

=$a(Y,,Y2)+p(l-YylJ-Y2)~ 5-5 
i 1 2 1 

and put into it (71) (yi = 0, xi E ]O,l[“l) and (34): 

ai4xl, x2)+Pdl- x,,l-x,)-P+~(1--1,1--2)~ 0 ( &) 
= +(o, Y,)+dlJ- Yz) “P [ (x+)+/%(1-% 1-:;y2)-Lq* 
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Here and in what follows we suppose that p has been extended with the aid of 
(22) to]O,co[“( an d omit the bars). Then p satisfies [compare to (74) and (76)] 

forall tl,t2E]0,00[n’, t.~~,u~E]O,co[~-~~ (92) 

(p is nowhere 0, as shown in Section 2). So (91) can be written as 

/.4-~,,l--3) cp 0, [ ( &)+B-A(L yy)] 

If we divide this by ~(1, y2) and write t2 = y,/(l - x2) again, we get 

= (y’ (constant), (93) 

that is, 

~(o,Y,)=~'c1(1,Y2)+~~(1¶1-Yz)-P (y2+J[n-n9. (94) 

and 

(Y’+-q,l)=(Y’. 

Hence either a’ = 0 and 

@,Y,)=ML~-Y2h3 (Y240J[n-n9, (95) 

or 

that is [cf. (92)] 

&I, 1) = 1, 

~(tl,tz)=CL(l,tz)=Clg(t,), where cL2(t2u2) = c12(t2h2(u2). (96) 
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The functions given by (95) with arbitrary constant /? and, if (96) holds, also 
(94) with arbitrary constants a’, /3 satisfy (91) and also 

44A~2)+P(Ll-~2)cp 0 ( &) =mY,)+P0J-Y,)~ o+- i 1 2 

obtained from (QO) by the substitution (70). 
We conclude by putting (72) and (34) into (90): 

~~.(~,,~2)+P~(l-~l,l-~,)-P+cl(l-~,,l-~,)~ lq+- i 1 2 

=a~(1-xl,~2)+Bcl(x,,l-~2)-P+~(~1,1-y2)~ L& . (97) 
i 1 

We substitute here x1 = f, s2 = x,/(1 - y2), t2 = y,/(l- x2), divide (97) by 
p(i, 1 - x - y), and apply (92) in order to get 

+(1J,)+P-41J2) =+(lJ2)+bdl,~2) =p, (constmt) 

POJ-s2) P(u--2) 

Putting 

into (97), we get, with (92) and with t, = xl/(1 - x,), 

P’=LwJ). 

So, either /3’ = 0 and 

a~2)=4,t2)--rS (QQ) 

or 
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, r 

and (96) holds. The functions given by (99) (with arbitrary constant (Y, fi and, 
if (96) holds, also (98) with constant a, j3, /?’ indeed satisfy (97). So we have 
proved the folIowing (cf. [2, 41 for n = 2, n, = 1, ~(rr, 7s) = r:lr.). 

THEOREM 5. The general solutions of (!30) (with /J ??1 multiplicatiue but 
not additive), for the domain covering D and (70), (71), (72) along with (73), 
are given by (34), (95), (99), and, if(96) hdds, also by 

where a, LX’, /3, /3’ are arbitrary constants and j.~,(x,) = ~(1, x2). 

Again, it is easy to build up Am (m = 2,3,. . . ) from + with the aid of (11) 
and (8). In particular, since (95) and (99) can be considered as extensions of 
(34) with jqo, tz) = 0, in this case A,,, is given by (35) also if some components 
of a vector pi are 0. Values of + and A,,, at other boundary points can also be 
easily determined by extending the domains of (13) and (8), respectively. 
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