Topology and its Applications 44 (1992) 209-215 North-Holland 209

\aleph -spaces and spaces with a σ -hereditarily closure-preserving k-network

Heikki Junnila

Department of Mathematics, University of Helsinki, Hallituskatu 15, 00100 Helsinki 10, Finland

Yun Ziqiu

Mathematics Department, Suzhou University, Suzhou, Jiangsu, China

Received 29 June 1989 Revised 14 May 1990

Abstract

Junnila, H. and Z. Yun, \aleph -spaces and spaces with a σ -hereditarily closure-preserving k-network, Topology and its Applications 44 (1992) 209-215.

We give a necessary and sufficient condition for a regular space with a σ -hereditarily closurepreserving k-network to be an \aleph -space and we give some results concerning product spaces with a σ -hereditarily closure-preserving k-network.

Keywords: σ -hereditarily closure preserving, k-network, \aleph -space, S_{ω_1} .

AMS (MOS) Subj. Class.: 54E20.

1. Introduction

In this paper, we prove that a regular space X is an \aleph -space if and only if X has a σ -hereditarily closure-preserving k-network and contains no closed copy of S_{ω_1} , and we show that $S \times S_{\omega_1}$ has no σ -hereditarily closure-preserving k-network. As applications of these results, we give several characterizations of \aleph -spaces and we prove that certain product spaces with a σ -hereditarily closure-preserving k-network are \aleph -spaces.

Recall that a family \mathscr{F} of subsets of X is called a *k*-network if for any compact set K and any open set U which contains K, there exist finitely many $F_1, \ldots, F_k \in \mathscr{F}$ such that $K \subseteq F_1 \cup \cdots \cup F_k \subseteq U$. A family $\{F_\alpha : \alpha \in A\}$ of subsets of X is said to be hereditarily closure-preserving if for any choice of $S_\alpha \subseteq F_\alpha$, for $\alpha \in A$, the family $\{S_\alpha : \alpha \in A\}$ is closure-preserving, i.e., for every $A' \subseteq A$, $Cl(\bigcup \{S_\alpha : \alpha \in A'\} = \bigcup \{Cl S_\alpha : \alpha \in A'\}$. If a family is the union of countably many hereditarily closurepreserving families, then the family is said to be σ -hereditarily closure-preserving. An \aleph -space is a regular space which has a σ -locally finite k-network, and a σ -space is a space which has a σ -locally finite network.

In the following, we shall study the relationship between \aleph -spaces and regular spaces with a σ -hereditarily closure-preserving k-network. The latter class of spaces is important mainly because of Foged's result [2] that Lašnev spaces (i.e., continuous images of metrizable spaces under closed mappings) can be characterized as regular Fréchet spaces with a σ -hereditarily closure-preserving k-network.

Let S be the subspace $\{1/n : n \in \mathbb{N}\} \cup \{0\}$ of \mathbb{R} in the usual topology. For each $\alpha < \omega_1$, let $S^{(\alpha)}$ be a copy of S. We denote by S_{ω_1} the quotient space obtained from the topological union $\bigoplus_{\alpha < \omega_1} S^{(\alpha)}$ by mapping all the nonisolated points into one point. Let **0** be the nonisolated point of S_{ω_1} . Note that S_{ω_1} is a Lašnev space; by Foged's result, S_{ω_1} has a σ -hereditarily closure-preserving k-network.

If \mathscr{F} is a family of subsets of X and $x \in X$, then $(\mathscr{F})_x = \{F \in \mathscr{F} : x \in F\}$. For terms which are not defined here, refer to [1].

2. \aleph -spaces and the space S_{ω_1}

Lemma 2.1. If X is a T_1 -, σ -space and every compact subset of X is finite, then we can represent X as $X = \bigcup_{n \in \mathbb{N}} X_n$ in such a way that, for every n, X_n is a closed and discrete subset of X.

Proof. Let $\mathscr{F} = \bigcup_{n \in \mathbb{N}} \mathscr{F}_n$ be a σ -locally finite network of X which is closed under finite intersections. Let $X_n = \{x \in X : \{x\} \in \mathscr{F}_n\}$. Then X_n is a closed and discrete subset of X. We show that $X = \bigcup_{n \in \mathbb{N}} X_n$. Let $x \in X$, and enumerate $(\mathscr{F})_x$ as $\{F'_k : k \in \mathbb{N}\}$. Let $F_k = \bigcap_{n \leq k} F'_n$ for each k. There must exist $k \in \mathbb{N}$ such that $F_k = \{x\}$. (Otherwise we can find a sequence of distinct points $\{x_{k_n} : n \in \mathbb{N}\}$ of X such that $x_{k_n} \in F_{k_n}$ and $x \neq x_{k_n}$ for each n. Then $\{x_{k_n} : n \in \mathbb{N}\} \cup \{x\}$ is an infinite compact subset of X.) Let $n \in \mathbb{N}$ be such that $F_k \in \mathscr{F}_n$. Then $x \in X_n$; it follows that $X = \bigcup_{n \in \mathbb{N}} X_n$. \Box

Lemma 2.2. If \mathcal{F} is a hereditarily closure-preserving family in a regular space X, then $\{C \mid F : F \in \mathcal{F}\}$ is also hereditarily closure-preserving in X [7, Lemma 1].

Lemma 2.3. Let \mathcal{F} be a hereditarily closure-preserving family of closed subsets of a Hausdorff space X and let C be a compact subset of X. Then there exists a finite subset A of C such that only finitely many members of \mathcal{F} meet $C \setminus A$ [10, Theorem 2.1].

Note that, for a hereditarily closure-preserving closed family \mathscr{F} of X, the set $D = \{x \in X : |(\mathscr{F})_x| \ge \omega\}$ is closed and, by Lemma 2.3, every compact subset of D is finite.

k-networks

Lemma 2.4. Let X be a Hausdorff space which contains no closed copy of S_{ω_1} . If \mathscr{F} is a hereditarily closure-preserving family of closed subsets of X, then for every $x \in X$ there are at most countably many $F \in \mathscr{F}$ such that the set $F \setminus \{x\}$ contains a sequence converging to x.

Proof. Assume that there exists a point $z \in X$, an uncountable subfamily \mathcal{H} of \mathcal{F} , and for every $H \in \mathcal{H}$, a subset $S_H = \{y_{H,n} : n \in \mathbb{N}\}$ of $H \setminus \{z\}$ such that $y_{H,n} \to z$. By the remark made after Lemma 2.3, we can assume that, for every $H \in \mathcal{H}$, \mathcal{F} is point finite at every $y_{H,n}$, $n \in \mathbb{N}$. It follows that, for every $H \in \mathcal{H}$, the family $\{F \in \mathcal{F} : F \cap S_H \neq \emptyset\}$ is countable. As a consequence, the family $\{S_H : H \in \mathcal{H}\}$ is star-countable, and hence σ -disjoint. Since \mathcal{H} is uncountable, there exists a subfamily \mathcal{J} or \mathcal{H} such that, $|\mathcal{J}| = \omega_1$ and for all H, $H' \in \mathcal{J}$, if $H \neq H'$, then $S_H \cap S_{H'} = \emptyset$. Now it easily follows, since \mathcal{J} is hereditarily closure-preserving, that the subspace $\{z\} \cup \bigcup_{H \in \mathcal{J}} S_H$ is closed in X and homeomorphic with S_{ω_1} , a contradiction. \Box

Lemma 2.5. Let X be a regular space with a σ -hereditarily closure-preserving k-network such that X contains no closed copy of S_{ω_1} , and let D be a closed and discrete subset of X. Then there exists a σ -discrete family \mathcal{H} consisting of closed subsets of X such that for every compact set $K \subseteq X$ and for every $d \in K \cap D$, the family $\{H \in \mathcal{H}: d \in$ $Int_K(K \cap H)\}$ is a network of d in X.

Proof. By Lemma 2.3, X has a closed k-network $\mathscr{F} = \bigcup_{n \in \mathbb{N}} \mathscr{F}_n$ such that, for every $n \in \mathbb{N}$, \mathscr{F}_n is hereditarily closure-preserving and $\mathscr{F}_n \subseteq \mathscr{F}_{n+1}$. For each $x \in X$, let $\mathscr{F}(x) = \{F \in \mathscr{F}: \text{there exists a compact set } K \subseteq F \text{ such that } x \in \operatorname{Cl}(K \setminus \{x\})\}$. Since X is a σ -space (see [11]), every compact subset of X is metrizable, and it follows from Lemma 2.4 that, for each $x \in X$, the family $\mathscr{F}(x)$ is countable; hence we can write $\{\bigcup \mathscr{F}': \mathscr{F}' \subseteq \mathscr{F}(x) \text{ and } \mathscr{F}' \text{ is finite}\} \cup \{\{x\}\} = \{F_k(x): k \in \mathbb{N}\}.$

For all $d \in D$ and $n \in \mathbb{N}$, let $G_n(d)$ be a closed neighborhood of d such that $G_n(d) \subseteq X \setminus \bigcup \{F \in \mathcal{F}_n : d \notin F\}$, and let $S_n(d) = \bigcup \{F \in \mathcal{F}_n : F \cap D = \{d\}\}$. Note that, for each $n \in \mathbb{N}$, since \mathcal{F}_n is hereditarily closure-preserving, the family $\{G_n(d) \cap S_n(d) : d \in D\}$ is closed and discrete. It follows that, for all $n \in \mathbb{N}$ and $k \in \mathbb{N}$, the family $\mathcal{H}_{n,k} = \{F_k(d) \cap G_n(d) \cap S_n(d) : d \in D\}$ is closed and discrete. To show that the σ -discrete and closed family $\mathcal{H} = \bigcup_{n,k\in\mathbb{N}} \mathcal{H}_{n,k}$ satisfies the condition of the lemma, let $K \subseteq X$ be compact, let $d \in K \cap D$ and let O be a neighborhood of d in X. Let V be a closed neighborhood of d such that $V \subseteq O \setminus (D \setminus \{d\})$. Since \mathcal{F} is a k-network of X, there exists a finite subfamily \mathcal{F}' of \mathcal{F} such that $K \cap V \subseteq \bigcup \mathcal{F}' \subseteq O \setminus (D \setminus \{d\})$. Let $n \in \mathbb{N}$ be such that $\mathcal{F}' \subseteq \mathcal{F}_n$ and let $k \in \mathbb{N}$ be such that $\mathcal{F}_k(d) \cap G_n(d) \cap S_n(d) \subseteq \bigcup \mathcal{F}' \subseteq O$. We complete the proof by showing that $d \in \operatorname{Int}_K(K \cap F_k(d) \cap G_n(d) \cap S_n(d))$. Since $d \in \operatorname{Int}_K(K \cap V) \subseteq \operatorname{Int}_K(K \cap \bigcup \mathcal{F}')$ and since \mathcal{F}' is a finite family of closed subsets of X covering $K \cap V$, we have that $d \in \operatorname{Int}_K(K \cap \bigcup (\mathcal{F}')_d)$. Since $(\bigcup \mathcal{F}') \cap (D \setminus \{d\}) = \emptyset$, we have

that $\bigcup (\mathscr{F}')_d \subseteq S_n(d)$. From the foregoing it follows that $d \in \operatorname{Int}_K(K \cap S_n(d))$. Since $d \in \operatorname{Int}_X G_n(d)$, we have that $d \in \operatorname{Int}_K(K \cap G_n(d))$. It remains to prove that $d \in \operatorname{Int}_K(K \cap F_k(d))$. For every $F \in \mathscr{F}'$, let $E_F = X \setminus \operatorname{Cl}(F \cap K \setminus \{d\})$, and let $E = \bigcap \{E_F : F \in \mathscr{F}' \text{ and } d \in E_F\}$. Then E is a neighborhood of d and we have that $\{F \in \mathscr{F}' : F \cap K \cap E \neq \emptyset\} \subseteq \mathscr{F}' \cap \mathscr{F}(d)$. It follows that $K \cap \bigcup \mathscr{F}' \cap E \subseteq \bigcup (\mathscr{F}' \cap \mathscr{F}(d)) \cup \{d\} = F_k(d)$. Since $d \in \operatorname{Int}_K(K \cap \bigcup \mathscr{F}')$ and $d \in \operatorname{Int}_X E$, it follows from the foregoing that $d \in \operatorname{Int}_K(K \cap F_k(d))$. We have shown that $d \in \operatorname{Int}_K(K \cap S_n(d))$, $d \in \operatorname{Int}_K(K \cap G_n(d))$ and $d \in \operatorname{Int}_K(K \cap F_k(d))$; it follows that $d \in \operatorname{Int}_K(K \cap F_k(d)) \cap G_n(d) \cap S_n(d))$. \Box

Theorem 2.6. Let X be a regular space which has a σ -hereditarily closure-preserving k-network. Then X is an \aleph -space if and only if X contains no closed copy of S_{ω_1} .

Proof. Necessity is immediate since every subspace of an \aleph -space is an \aleph -space and S_{ω_1} is not an \aleph -space [5, Example 9.2].

Sufficiency. By Lemma 2.2, we may assume that X has a closed k-network $\mathscr{F} = \bigcup_{n \in \mathbb{N}} \mathscr{F}_n$, where \mathscr{F}_n is hereditarily closure-preserving and $\mathscr{F}_n \subseteq \mathscr{F}_{n+1}$ for each $n \in \mathbb{N}$. Assume that X contains no closed copy of S_{ω_1} . Let $D_n = \{x \in X : |(\mathscr{F}_n)_x| \ge \omega\}$. By Lemma 2.1 and the remark made after Lemma 2.3, we can represent each D_n as $D_n = \bigcup_{k \in \mathbb{N}} D_{n,k}$ in such a way that, for every $k \in \mathbb{N}$, $D_{n,k}$ is closed and discrete in X and $D_{n,k} \subseteq D_{n,k+1}$. For all n and k, let $\mathscr{H}_{n,k}$ be a σ -discrete family satisfying the condition of Lemma 2.5 (with $\mathscr{H} = \mathscr{H}_{n,k}$ and $D = D_{n,k}$).

For every $n \in \mathbb{N}$, since \mathscr{F}_n is closure-preserving, closed and point-finite in $X \setminus D_n$, \mathscr{F}_n is locally finite in $X \setminus D_n$. For all $n \in \mathbb{N}$ and $k \in \mathbb{N}$, let $S_{n,k} = \bigcup \{F \in \mathscr{F}_k : F \cap D_n = \emptyset\}$ and $\mathscr{F}_{n,k} = \{F \cap S_{n,k} : F \in \mathscr{F}_n\}$; note that $\mathscr{F}_{n,k}$ is locally finite in X.

We show that the σ -locally finite family $\mathscr{L} = \bigcup_{n,k \in \mathbb{N}} \mathscr{H}_{n,k} \cup \bigcup_{n,k \in \mathbb{N}} \mathscr{F}_{n,k}$ is a k-network for X. Let $K \subseteq O \subseteq X$ where K is compact and O is open. Then there exists a finite subfamily \mathscr{F}' of \mathscr{F} such that $K \subseteq \bigcup \mathscr{F}' \subseteq O$. Let $n \in \mathbb{N}$ be such that $\mathscr{F}' \subseteq \mathscr{F}_n$. The set $K \cap D_n$ is finite, by Lemma 2.3, and hence there exists $k \in \mathbb{N}$ such that $K \cap D_n \subseteq D_{n,k}$. By Lemma 2.5, there exists, for every $d \in K \cap D_n$, a set K' = $H_d \in \mathcal{H}_{n,k}$ such that $d \in \operatorname{Int}_{K}(K \cap H_{d})$ and $H_d \subseteq O$. Let $K \setminus \bigcup \{ \operatorname{Int}_K (K \cap H_d) : d \in K \cap D_n \}$. Then K' is a compact set and $K' \subseteq X \setminus D_n$; as a consequence, there exists a finite subfamily \mathcal{F}'' of \mathcal{F} such that $K' \subseteq \bigcup \mathcal{F}'' \subseteq X \setminus D_n$. Let $l \in \mathbb{N}$ be such that $\mathscr{F}' \subseteq \mathscr{F}_l$. Then $\bigcup \mathscr{F}' \subseteq S_{n,l}$ and hence $K' \subseteq S_{n,l}$. Let $\mathscr{J} =$ $\{H_d: d \in K \cap D_n\} \cup \{F \cap S_{n,l}: F \in \mathscr{F}'\}$. Then \mathscr{I} is a finite subfamily of \mathscr{L} and it follows from the foregoing that $K \subseteq \bigcup \mathscr{J} \subseteq O$. \Box

Gruenhage, Michael and Tanaka have shown that S_{ω_1} is not a quotient s-image of a metrizable space and S_{ω_1} has no point-countable closed k-network [5, Example 9.2, Theorem 6.1; 9, Theorem 3.2]. Moreover, it is easy to check that $\chi(S_{\omega_1}) > \omega_1$. Consequently, Theorem 2.6 has the following corollaries:

```
k-networks
```

Corollary 2.7. A regular space X is an \aleph -space if and only if X has a σ -hereditarily closure-preserving k-network and a point-countable closed k-network.

Corollary 2.8. If X is a regular quotient s-image of a metrizable space, then X is an \aleph -space if and only if X has a σ -hereditarily closure-preserving k-network.

In particular, if a Lašnev space X is a quotient s-image of a metrizable space, then X is an \aleph -space, and hence (see [4, 8]), X is a closed s-image of a metrizable space.

Corollary 2.9. If X is a regular space with a σ -hereditarily closure-preserving k-network and $\chi(X) \leq \omega_1$, then X is an \aleph -space.

Remark. For Lašnev spaces, the result of Corollary 2.9 is due to Gao [3]. Gao and Hattori [4] and Lin [8] have shown that a *regular space* X is an \aleph -space if and only if X has a σ -closure-preserving and point-countable closed k-network. This result suggests the question whether in Corollary 2.7 above the condition " σ -hereditarily closure-preserving" can be changed into " σ -closure-preserving". However, that cannot be done, as shown by the space X appearing in [5, example 9.8]. The results given in [5] show that the space X is not an \aleph -space, while it is easy to show that X has a σ -closure-preserving base and X has a point-countable k-network consisting of compact sets. Moreover, X is a k-space but not a Fréchet space. The following problem is still open.

Problem. Is a stratifiable Fréchet space an \aleph -space if the space has a point-countable closed *k*-network?

3. Product spaces with a σ -hereditarily closure-preserving k-network

Theorem 3.1. $S \times S_{\omega_1}$ has no σ -hereditarily closure-preserving k-network.

Proof. By Lemma 2.2, if a regular space has a σ -hereditarily closure-preserving k-network, then the space has a σ -hereditarily closure-preserving closed k-network. By Lemma 2.3, if \mathscr{F} is a σ -hereditarily closure-preserving closed k-network for a regular space X, then, for every compact set $K \subseteq X$, the family $\{F \in \mathscr{F} : |F \cap K| = \omega\}$ is countable. Hence to prove Theorem 3.1, it suffices to show that for every closed k-network \mathscr{F} of $S \times S_{\omega_1}$, the family $\{F \in \mathscr{F} : |(S \times \{0\}) \cap F| = \omega\}$ is uncountable.

Let \mathscr{F} be a closed k-network of $S \times S_{\omega_1}$. By transfinite induction, choose $F_{\alpha} \in \mathscr{F}$ and $z_{\alpha} \in (S \times (S^{(\alpha)} \setminus \{0\})) \cap F_{\alpha}$, for each $\alpha < \omega_1$, so that $|(S \times \{0\}) \cap F_{\alpha}| = \omega$ and $F_{\alpha} \neq F_{\alpha'}$ for every $\alpha' < \alpha$, as follows:

Since $S \times S^{(0)}$ is compact, some finite subfamily \mathscr{F}' of \mathscr{F} covers $S \times S^{(0)}$. It is easy to see that there exists $F_0 \in \mathscr{F}'$ and $z_0 \in (S \times (S^{(0)} \setminus \{0\})) \cap F_0$ such that $|(S \times \{0\}) \cap F_0| = \omega$.

Let $\alpha < \omega_1$ and assume that, for every $\beta < \alpha$, we have chosen $F_{\beta} \in \mathscr{F}$ and $z_{\beta} \in (S \times (S^{(\beta)} \setminus \{0\})) \cap F_{\beta}$ such that $|(S \times \{0\}) \cap F_{\beta}| = \omega$. Note that the set $Z = \{z_{\beta} : \beta < \alpha\}$ is closed and $Z \cap (S \times S^{(\alpha)}) = \emptyset$; hence there exists a finite $\mathscr{F}' \subseteq \mathscr{F}$ such that $S \times S^{(\alpha)} \subseteq \bigcup \mathscr{F}' \subseteq S \times S_{\omega_1} \setminus Z$. There exists $F_{\alpha} \in \mathscr{F}'$ and $z_{\alpha} \in (S \times (S^{(\alpha)} \setminus \{0\})) \cap F_{\alpha}$ such that $|(S \times \{0\}) \cap F_{\alpha}| = \omega$. Since $F_{\alpha} \cap Z = \emptyset$, we have that $F_{\alpha} \neq F_{\beta}$ for each $\beta < \alpha$. This completes the inductive construction. \Box

Remark. Consider the following statement:

There exists a closed k-network \mathscr{F} of $S \times S_{\omega_1}$ such that, for every compact and infinite subset K of $S \times S_{\omega_1}$, the family $\{F \in \mathscr{F}: K \subseteq F\}$ is countable. (*)

The above proof shows that the statement obtained from (*) by replacing " $K \subseteq F$ " with " $|K \cap F| = \omega$ " is not valid. Statement (*), however, turns out to be independent of ZFC: it is quite easy to see that CH \Rightarrow (*) and (*) \Rightarrow ($s = \omega_1$) (refer to [13] for the definition and properties of the cardinal s).

The following result, which follows directly from Theorems 2.6 and 3.1, is a generalization of [7, Theorem 1]:

Corollary. If X is a regular space and $S \times X$ has a σ -hereditarily closure-preserving k-network, then X is an \aleph -space.

Theorem 3.2. If X and Y are regular spaces such that both of them have a σ -hereditarily closure-preserving k-network, then $X \times Y$ has a σ -hereditarily closure-preserving k-network if and only if either both X and Y are \aleph -spaces or in one of them every compact subset is finite.

Proof. Necessity. Assume that $X \times Y$ has a σ -hereditarily closure-preserving k-network and Y is not an \aleph -space. We show that every compact subset of X is finite. By Theorem 2.6, Y contains a closed copy of S_{ω_1} . It follows from Theorem 3.1 that X cannot contain a copy of S. Since X is a σ -space, every compact subset of X is metrizable. Every infinite compact metrizable space contains a copy of S. As a consequence, every compact subset of X is finite.

Sufficiency. If both X and Y are \aleph -spaces, then $X \times Y$ is an \aleph -space, and hence it has a σ -hereditarily closure-preserving k-network. Assume that every compact subset of X is finite. Then, by Lemma 2.1, we can represent X as $X = \bigcup_{n \in \mathbb{N}} X_n$ in such a way that, for each $n \in \mathbb{N}$, X_n is closed and discrete. Note that $\{\{x\}: x \in X\}$ is a k-network for X. Let $\mathcal{H} = \bigcup_{k \in \mathbb{N}} \mathcal{H}_k$ be a k-network for Y such that each \mathcal{H}_k is hereditarily closure-preserving. Let $\mathcal{F}_{n,k} = \{\{x\} \times H : x \in X_n \text{ and } H \in \mathcal{H}_k\}$. Then $\mathcal{F} = \bigcup_{n,k \in \mathbb{N}} \mathcal{F}_{n,k}$ is a σ -hereditarily closure-preserving k-network for $X \times Y$. \Box

As seen in the above proof, every σ -space without infinite compact subsets is an \aleph -space; hence we have the following consequence of Theorem 3.2.

k-networks

Corollary 3.3. Let X and Y be regular spaces. If $X \times Y$ has a σ -hereditarily closurepreserving k-network, then either X or Y is an \aleph -space.

Corollary 3.4. Let X be a regular space such that X^2 has a σ -hereditarily closurepreserving k-network. Then X is an \aleph -space.

Since every infinite product of two-point spaces is an infinite compact space, Theorem 3.2 has the following consequence.

Corollary 3.5. For each $n \in \mathbb{N}$, let X_n be a regular space which has at least two points. If $\prod_{n \in \mathbb{N}} X_n$ has a σ -hereditarily closure-preserving k-network, then it is an \aleph -space.

Harley and Tanaka [6, Theorem 1; 12, Theorem of Remark 4.1] showed that the property of "being a Fréchet space" is poorly behaved among products of Lašnev spaces, i.e., if X and Y are Lašnev spaces, then $X \times Y$ is a Fréchet space if and only if either both X and Y are metrizable or one of them is discrete. Since every Lašnev space is a regular k-space, the next result, which follows from Theorem 3.2, shows that the property of "having a σ -hereditarily closure-preserving k-network" is also poorly behaved among products of Lašnev spaces.

Corollary 3.6. If X and Y are regular k-spaces and $X \times Y$ has a σ -hereditarily closure-preserving k-network, then either both X and Y are \aleph -spaces or one of them is discrete.

References

- [1] R. Engelking, General Topology (PWN, Warsaw, 1977).
- [2] L. Foged, A characterization of closed images of metric spaces, Proc. Amer. Math. Soc. 95 (1985) 487-490.
- [3] Z. Gao, The closed images of metric spaces and Fréchet N-spaces, Questions Answers Gen. Topology 5 (1987) 281-291.
- [4] Z. Gao and Y. Hattori, A characterization of closed s-images of metric spaces, Tsukuba J. Math. 11 (1987) 367-370.
- [5] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984) 299-306.
- [6] P.W. Harley, Metrization of closed images of metric spaces, in: TOPO 72, Lecture Notes in Mathematics 378 (Springer, Berlin, 1972) 188-191.
- [7] S. Lin, On a problem of K. Tamano, Questions Answers Gen. Topology 6 (1988) 99-102.
- [8] S. Lin, Mapping theorems of N-spaces, Topology Appl. 30 (1988) 159-164.
- [9] E. Michael, ℵ'₀-spaces and a function space theorem of R. Pol, Indiana Univ. Math. J. 26 (1977) 299-306.
- [10] A. Okuyama, On a generalization of Σ -spaces, Pacific J. Math. 42 (1972) 485-495.
- [11] F. Siwiec and J. Nagata, A note on nets and metrization, Proc. Japan Acad. 44 (1968) 623-627.
- [12] Y. Tanaka, A characterization for the product of closed images of metric spaces to be a k-space, Proc. Amer. Math. Soc. 74 (1979) 166-170.
- [13] E.K. van Douwen, The integers and topology, in: K. Kunen and J.E. Vaughan, eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 111-168.