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Abstract 

Junnila, H. and Z. Yun, K-spaces and spaces with a a-hereditarily closure-preserving k-network, 

Topology and its Applications 44 (1992) 209-215. 

We give a necessary and sufficient condition for a regular space with a v-hereditarily closure- 

preserving k-network to be an H-space and we give some results concerning product spaces with 

a c-hereditarily closure-preserving k-network. 
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1. Introduction 

In this paper, we prove that a regular space X is an K-space if and only if X has 

a u-hereditarily closure-preserving k-network and contains no closed copy of SW,, 

and we show that S x S,, has no u-hereditarily closure-preserving k-network. As 

applications of these results, we give several characterizations of K-spaces and we 

prove that certain product spaces with a u-hereditarily closure-preserving k-network 

are K-spaces. 

Recall that a family 9 of subsets of X is called a k-network if for any compact 

set K and any open set U which contains K, there exist finitely many F, , . . . , Fk E 9 

such that K E F, U . * * U Fk c_ U. A family {F, : a E A} of subsets of X is said to be 

hereditarily closure-preserving if for any choice of S, c F,, for CY E A, the family 

{S, : a E A} is closure-preserving, i.e., for every A’ c A, Cl(u{S, : a E A’} = 

U{Cl s o1 : a E A’}. If a family is the union of countably many hereditarily closure- 

preserving families, then the family is said to be u-hereditarily closure-preserving. 
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An K-space is a regular space which has a u-locally finite k-network, and a u-space 

is a space which has a a-locally finite network. 

In the following, we shall study the relationship between K-spaces and regular 

spaces with a a-hereditarily closure-preserving k-network. The latter class of spaces 

is important mainly because of Foged’s result [2] that La&rev spaces (i.e., continuous 

images of metrizable spaces under closed mappings) can be characterized as regular 

Frechet spaces with a o-hereditarily closure-preserving k-network. 

Let S be the subspace {l/n: n E tI}u (0) of R in the usual topology. For each 

a <w,, let S ‘u) be a copy of S. We denote by S,, the quotient space obtained from 

the topological union @criw, S’“’ by mapping all the nonisolated points into one 

point. Let 0 be the nonisolated point of S,, . Note that S,, is a LaSnev space; by 

Foged’s result, S,, has a v-hereditarily closure-preserving k-network. 

If 9 is a family of subsets of X and x E X, then ( 9)_Y = {FE 9: x E F}. For terms 

which are not defined here, refer to [l]. 

2. K-spaces and the space S,, 

Lemma 2.1. If X is a T, -, u-space and every compact subset of X is finite, then we 

can represent X as X = UntN X, in such a way that, for every n, X,, is a closed and 

discrete subset of X. 

Proof. Let 9= lJnGN 9,, be a a-locally finite network of X which is closed under 

finite intersections. Let X,, ={x E X: {X}E s,,,}. Then X, is a closed and discrete 

subset of X. We show that X = lJniN X,. Let x E X, and enumerate (S), as {FL: k E 

N}. Let Fk = n,_ k Fi for each k. There must exist k E N such that FL = {x}. (Otherwise 

we can find a sequence of distinct points {x~,, : n EN} of X such that x~,, E FL,, and 

x # xk,, for each n. Then {x~,, : n EN} u {x} is an infinite compact subset of X.) Let 

n EN be such that Fk E S,,. Then x E X,, ; it follows that X = IJniN X,. 0 

Lemma 2.2. If 9 is a hereditarily closure-preserving family in a regular space X, then 

{Cl F: FE S} is also hereditarily closure-preserving in X [7, Lemma I]. 

Lemma 2.3. Let 9 be a hereditarily closure-preserving family of closed subsets of a 

Hausdorflspace X and let C be a compact subset of X. Then there exists ajnite subset 

A of C such that only finitely many members of 9 meet C\A [lo, Theorem 2.11. 

Note that, for a hereditarily closure-preserving closed family 9 of X, the set 

D={xEX: j(S),1 2 w} is closed and, by Lemma 2.3, every compact subset of D is 

finite. 
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Lemma 2.4. Let X be a Hausdorff space which contains no closed copy of SW,. If 9 is 

a hereditarily closure-preserving family of closed subsets of X, then for every x E X 

there are at most countably many FE 9 such that the set F\(x) contains a sequence 

converging to x. 

Proof. Assume that there exists a point z E X, an uncountable subfamily 2 of 9, 

and for every H E 2Y, a subset SH = {yH,n : n EN} of H\(z) such that y,,, + z. By the 

remark made after Lemma 2.3, we can assume that, for every HE 2&T, 9 is point 

finite at every Y~,~, n E N. It follows that, for every H E %‘, the family {FE 9: F n S, # 

0} is countable. As a consequence, the family {S, : H E %0} is star-countable, and 

hence a-disjoint. Since %!! is uncountable, there exists a subfamily 9 or 9Z such 

that, I$I= w, and for all H, H’E$, if H # H’, then S, n SH8 =$!I. Now it easily 

follows, since 2 is hereditarily closure-preserving, that the subspace {z} u UHr F S, 

is closed in X and homeomorphic with S,,, a contradiction. 0 

Lemma 2.5. Let X be a regular space with a o-hereditarily closure-preserving k-network 

such that X contains no closed copy of SW,, and let D be a closed and discrete subset 

of X. Then there exists a u-discrete family 2i? consisting of closed subsets of X such 

that for every compact set K c X and for every d E K n D, the fami1.v {H E 2Y: d E 

Int, (K n H)} is a network of d in X. 

Proof. By Lemma 2.3, X has a closed k-network 9 = UnCh 9n such that, for every 

n EN, .9,, is hereditarily closure-preserving and %m G sn+, . For each XE X, let 

9(x) = {FE 9: there exists a compact set K c F such that x E Cl( K\{x})}. Since X 

is a a-space (see [ll]), every compact subset of X is metrizable, and it follows 

from Lemma 2.4 that, for each x E X, the family 9(x) is countable; hence we can 

write {I_)%‘: 9’~ 9(x) and 9’ is finite}u{{x}}={F,(x): kEN}. 

For all d E D and n EN, let G,(d) be a closed neighborhood of d such that 

G,(d)cX\~{F~~~:d~F},andletS,(d)=~{F~~,,:FnD={d}}.Notethat, 

for each n EN, since P’,,, is hereditarily closure-preserving, the family {G,,(d) n 

S,,(d): d E D} is closed and discrete. It follows that, for all n EN and kEN(, the 

family %,,, = {F,(d) n G,(d) n S,(d): d E D} is closed and discrete. To show that 

the o-discrete and closed family Z = lJn,kiN Z’,,, satisfies the condition of the lemma, 

let K 5 X be compact, let d E K n D and let 0 be a neighborhood of d in X. Let 

V be a closed neighborhood of d such that V c O\( D\(d)). Since 9 is a k-network 

of X, there exists a finite subfamily 9’ of 9 such that K n Vs UY c O\(D\{d}). 

LetnE~besuchthat~~~~andletk~NbesuchthatF,(d)=U(9’n9(d))u{d}. 

Then dEFk(d)nG,(d)nS,(d)~UB’~O. We complete the proof by 

showing that dEIntk(KnF,(d)nG,,(d)nS,(d)). Since dEInt,(KnV)c 

Intk (K n UP) and since 9’ is a finite family of closed subsets of X covering 

K n V, we have that d E Int, (K n U(F),,). Since (Us’) n (D\(d)) = 0, we have 
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that U( 9’), s S,(d). From the foregoing it follows that d E IntK (K n S,(d)). Since 

d E Int,G,,(d), we have that d E Int,(K n G,(d)). It remains to prove that d E 

Int,(KnF,(d)). For every FE%‘, let E,=X\CI(FnK\{d}), and let E= 

n{EF: FE 9’ and d E EF}. Then E is a neighborhood of d and we have that 

{F~9J:FnKnE#(il}c9’n~(d). It follows that KnUFnEG 
U(9’n 9(d)) u {d} = F,(d). Since d E Int,(K nUY) and d E Intx E, it follows 

from the foregoing that d E Int,(K n F,(d)). We have shown that d E 

IntK(K n S,,(d)), d E Int,(K n G,,(d)) and d E Int,(K n F,(d)); it follows that 

dEIntK(KnF,(d)nG,(d)nS,,(d)). Cl 

Theorem 2.6. Let X be a regular space which has a u-hereditarily closure-preserving 

k-network. Then X is an K-space if and only if X contains no closed copy of S,, . 

Proof. Necessity is immediate since every subspace of an K-space is an K-space 

and S,, is not an K-space [5, Example 9.21. 

SufJiciency. By Lemma 2.2, we may assume that X has a closed k-network 

~=LL S,,, where s,, is hereditarily closure-preserving and Fn E %,,+, for each 

n E N. Assume that X contains no closed copy of S,, . Let D, = {x E X: I( %,,),I 2 o}. 

By Lemma 2.1 and the remark made after Lemma 2.3, we can represent each D, 

as D, = lJktN D,,I, in such a way that, for every k E IV’, D,+ is closed and discrete 

in X and D,,, z Dn,L+, . For all n and k, let R,,, be a p-discrete family satisfying 

the condition of Lemma 2.5 (with x= Rn,k and D = Dn,k). 

For every n E PU, since %,, is closure-preserving, closed and point-finite in X\D,,, 

9” is locally finite in X\ D,. For all n E N and k E N, let S,,, = U{ F E %k : F n D, = 0) 

and zY,,~ = {Fn S,,,: FE %,,}; note that sH,k is locally finite in X. 

We show that the a-locally finite family diQ= lJn,kcrN Z,,,,l,k u Un,heN s,,k is a 

k-network for X. Let K c_ 0 c_ X where K is compact and 0 is open. Then there 

exists a finite subfamily %’ of 9 such that K s US,z 0. Let n EN be such that 

9’ z F,,. The set K n D,, is finite, by Lemma 2.3, and hence there exists k E N 

such that K n D, c D,,,. By Lemma 2.5, there exists, for every d E K n D,,, a set 

Hd E En,,, such that dEInt,(KnHd) and H,, & 0. Let K’= 

K\U{IntK(K n Hd): d E K n D,}. Then K’ is a compact set and K’G X\D,; as a 

consequence, there exists a finite subfamily Pf of 9 such that K’E UP’z X\ D,. 

Let 1 EN be such that .Yc 4. Then UYE S,,, and hence K’c_ S,,,. Let 2 = 

{ Hd : d E K n D,} u {F n S,,: F E 9’). Then&F is a finite subfamily of 2 and it follows 

from the foregoing that K E U$ c 0. q 

Gruenhage, Michael and Tanaka have shown that S,, is not a quotient s-image 

of a metrizable space and S,,,l has no point-countable closed k-network [5, Example 

9.2, Theorem 6.1; 9, Theorem 3.21. Moreover, it is easy to check that ,y(S,,) > w,. 

Consequently, Theorem 2.6 has the following corollaries: 
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Corollary 2.7. A regular space X is an K-space if and only if X has a u-hereditarily 

closure-preserving k-network and a point-countable closed k-network. 

Corollary 2.8. If X is a regular quotient s-image of a metrizable space, then X is an 

K-space if and only if X has a u-hereditarily closure-preserving k-network. 

In particular, if a LaSnev space X is a quotient s-image of a metrizable space, 

then X is an K-space, and hence (see [4,8]), X is a closed s-image of a metrizable 

space. 

Corollary 2.9. If X is a regular space with a w-hereditarily closure-preserving k-network 

and x(X) G w,, then X is an K-space. 

Remark. For LaSnev spaces, the result of Corollary 2.9 is due to Gao [3]. Gao and 

Hattori [4] and Lin [8] have shown that a regular space X is an K-space ifand only 

if X has a o-closure-preserving and point-countable closed k-network. This result 

suggests the question whether in Corollary 2.7 above the condition “p-hereditarily 

closure-preserving” can be changed into “a-closure-preserving”. However, that 

cannot be done, as shown by the space X appearing in [5, example 9.81. The results 

given in [5] show that the space X is not an N-space, while it is easy to show that 

X has a a-closure-preserving base and X has a point-countable k-network consisting 

of compact sets. Moreover, X is a k-space but not a Frechet space. The following 

problem is still open. 

Problem. Is a stratifiable FrCchet space an K-space if the space has a point-countable 

closed k-network? 

3. Product spaces with a a-hereditarily closure-preserving k-network 

Theorem 3.1. S x SW, has no u-hereditarily closure-preserving k-network. 

Proof. By Lemma 2.2, if a regular space has a a-hereditarily closure-preserving 

k-network, then the space has a u-hereditarily closure-preserving closed k-network. 

By Lemma 2.3, if 9 is a a-hereditarily closure-preserving closed k-network for a 

regular space X, then, for every compact set K c X, the family {F E 5: IF n K I= w} 

is countable. Hence to prove Theorem 3.1, it suffices to show that for every closed 

k-network 9 of S x S,,,, , the family {FE 9: ((S x (0)) n FI = w} is uncountable. 

Let B be a closed k-network of S x S,, . By transfinite induction, choose F, E 9 

andz,E(Sx(S’“‘\{O}))nF,,foreacha<w,,sothatJ(Sx{O})nF,I=wandF,# 

F,, for every a’< a, as follows: 

Since S x S’O’ is compact, some finite subfamily 9’ of 9 covers S x S’“‘. It is easy 

to see that there exists F, E 9’ and Z”E (S x (S’“)\(O))) n F. such that I(S x 

(0)) I? F,] = w. 
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Let cy <w, and assume that, for every p <(Y, we have chosen Fe E g and zP E 

(S x (S’“‘\(O))) n Fp such that I( S x (0)) n FP I= w. Note that the set 2 = {zP : p < a} 

is closed and 2 n (S x S’“‘) = t4; hence there exists a finite 9’ E 9 such that S x S’“’ G 

IJFG S x SUl\Z. There exists F, E 9’ and z, E (S x (S'"'\(O))) n F, such that 

j(Sx{O})n F,l=w. S ince F,, n Z = 0, we have that F, # FP for each p < CY. This 

completes the inductive construction. 0 

Remark. Consider the following statement: 

There exists a closed k-network 9 of S x S,,,, such that, for every 

compact and infinite subset K of S x S,, , the family {FE 9: K c F} 

is countable. (*) 

The above proof shows that the statement obtained from (*) by replacing “K G F” 

with “(K n FI = w” is not valid. Statement (*), however, turns out to be independent 

of ZFC: it is quite easy to see that CHJ(*) and (*)+(s = w,) (refer to [13] for 

the definition and properties of the cardinal s). 

The following result, which follows directly from Theorems 2.6 and 3.1, is a 

generalization of [7, Theorem I]: 

Corollary. If X is a regular space and S x X has a u-hereditarily closure-preserving 

k-network, then X is an R-space. 

Theorem 3.2. If X and Yare regular spaces such that both of them have a u-hereditarily 

closure-preserving k-network, then Xx Y has a u-hereditarily closure-preserving 

k-network if and only if either both X and Y are K-spaces or in one of them every 

compact subset is finite. 

Proof. Necessity. Assume that XX Y has a c-hereditarily closure-preserving 

k-network and Y is not an K-space. We show that every compact subset of X is 

finite. By Theorem 2.6, Y contains a closed copy of S,, . It follows from Theorem 

3.1 that X cannot contain a copy of S. Since X is a w-space, every compact subset 

of X is metrizable. Every infinite compact metrizable space contains a copy of S. 

As a consequence, every compact subset of X is finite. 

Sufhciency. If both X and Y are K-spaces, then X x Y is an K-space, and hence 

it has a a-hereditarily closure-preserving k-network. Assume that every compact 

subset of X is finite. Then, by Lemma 2.1, we can represent X as X = Uncmr X,, in 

such a way that, for each n EN, X,, is closed and discrete. Note that {{x}: x E X} is 

a k-network for X. Let %= Ukirm %!?k be a k-network for Y such that each Rk is 

hereditarily closure-preserving. Let 9,,k = {{x} x H: x f X,, and H E Rk}. Then 9 = 

U&R_ S&k is a u-hereditarily closure-preserving k-network for X x Y. 0 

As seen in the above proof, every u-space without infinite compact subsets is an 

K-space; hence we have the following consequence of Theorem 3.2. 
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Corollary 3.3. Let X and Y be regular spaces. If X x Y has a o-hereditarily closure- 

preserving k-network, then either X or Y is an K-space. 

Corollary 3.4. Let X be a regular space such that X2 has a u-hereditarily closure- 

preserving k-network. Then X is an K-space. 

Since every infinite product of two-point spaces is an infinite compact space, 

Theorem 3.2 has the following consequence. 

Corollary 3.5. For each n E W, let X,, be a regular space which has at least two points. 

U” rI*tN X,, has a o-hereditarily closure-preserving k-network, then it is an K-space. 

Harley and Tanaka [6, Theorem 1; 12, Theorem of Remark 4.11 showed that the 

property of “being a Frechet space ” is poorly behaved among products of La&rev 

spaces, i.e., if X and Y are Las’nev spaces, then X x Y is a Fre’chet space if and only 

if either both X and Y are metrizable or one of them is discrete. Since every LaSnev 

space is a regular k-space, the next result, which follows from Theorem 3.2, shows 

that the property of “having a g-hereditarily closure-preserving k-network” is also 

poorly behaved among products of La&rev spaces. 

Corollary 3.6. If X and Y are regular k-spaces and X x Y has a u-hereditarily 

closure-preserving k-network, then either both X and Y are N-spaces or one of them 

is discrete. 
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