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On the Solution of Algebraic Equations 
over Finite Fields 

E. R .  BERLEKA~P,* H. RUMSEY, AND G. SOLOMON~ 

Jet Propulsion Laboralory, Pasadena, California 91103 

This article gives new fast methods for decoding certain error- 
correcting codes by solving certain algebraic equations. As described 
by Peterson (1961), the locations of a Bose-Chaudhuri Hocquenghem 
code over a field of characteristic p are associated with the elements 
of an extension field, GF(pk). The code is designed in such a way that 
the weighted power-sum symmetric functions of the error locations 
can be obtained directly by computing appropriately chosen parity 
checks on the received word. Good methods for computing the ele- 
mentary symmetric functions from the weighted power-sum sym- 
metric functions have been presented by Berlekamp (1967). The 
elementary symmetric functions, a l ,  a2, .- .  , at are the coefficients 
of an algebraic equation whose roots are the error locations 

x t -t- a l x  ~-x -{- ~2x  ~ 2  -{- ' "  + q t  = 0 .  

Previous methods for finding the roots of this equation have 
searched all of the elements in GF(p k) (Chien, 1964) or looked up the 
answer in a large table (Polkinghorn, 1966). We present here improved 
procedures for extracting the roots of algebraic equations of small 
degrees. 

QUADRATIC EQUATIONS IN FIELDS OF CHARACTERISTIC TWO 

CASE 1:  WITH R E P E A T E D  ROOTS 

I n  order  to solve a quadrat ic  equat ion of the  type  x 2 + c = 0, where c 
and x C GF(2k),  we mus t  ex t rac t  the  square root  of c. Since in any  field 
of characterist ic  two we have the ident i ty  (x + y)2 = x 2 -t- y2 and 
similarly, (x ~- y)l~2 _- x11~ + ylI2 the  square root  is a linear operation. 
I n  te rms  of a fixed basis of GF(2k),  namely  Ul, u~, • • • , u~,  we m a y  write 
c = ~--~=1 c ~ ,  where c~ ~ GF(2) .  Because of the l inearity of the  square 
root,  we then  have  c 112 ~ - ~ 1  11~ = ci(u~) . Of course, (u~) lj2 can also be 
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i ~1~2 ~ i R ~ , j u ~  with represented in terms of this same: basis, wi th  Lu~)~ ~ 

R~,j ~ GF(2 ) .  We then have 

k k 

c 112 = E E c~ R,.~. us 
i=1 5=1 

For  example, in GF(25), let us take  the  basis consisting of u~ = a 5-~ for 
i = 1, 2, 3, 4, 5~ where a satisfies the equat ion  a 5 + a 2 + 1 = 0. The  
representat ion of all of the elements of GF(  25) in terms of this basis is given 
in the appendix. We see tha t  

(ul) l l~ = (ot')l/2 _ - a ~ 

\ 112 ~ Ot17 Or4 u2) = (a3) Ii~ = + a + 1 

( , , 2  ( )1t2 
U.3) = o~ 2 .= (x 

(u~) ~/~ = ( J ) ' ~  = o? ~ = o? + o~ ~ + ,~ + 1 

\1/2 1/2 
u~) = ( a  °) = 1, 

Hence, the  mat r ix  R is given by  [ ol0 j 
0 0 1 

R =  0 0 1 . 
1 0 1 
0 0 0 

For  example, if we wish to take the  square root  of c = a 4 + a 2 + a + 1 
we write [:OlO : 

1 0 0 1 
c m = cR = [1 0 1 1 1] 0 0 0 1 = [1 

1 0 1 
0 0 0 

1 1 0 0 ] .  

We can ver i fy  this by  checking t h a t  c a~6, c1~2 13 

C A S E  2 :  W I T H O U T  R E P E A T I ~ D  I~OOTS 

I n  general, the  quadrat ic  equat ion m a y  be wri t ten as x 2 + bx + c = O. 

We have just  seen t h a t  if b ~ 0, this equat ion has a unique  solution in 
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GF(2 ~), and'.tha.t this solut ion m a y  be: found by  mult iplying the vector  
representing c:by the  m a t r i x R  which extracts  square roots. " 

If  b ¢ 0, ;we first t rans form the equat ion by  introducing the new 
variable y = x/b. This new variable  satisfies the equat ion b2y 2 -4-: b2y 
-4- c = 0 , . o r  y2 -4- Y = :d, where d = c/b 2. We n o w n o t i e e  tha t  if 

2 y~ -4- y~ = v~ and Yj 2 -t- Yj = vj ,  then  (yi +y~)2 + (yl + Y  j) = v l + vj.  
Hence,  a solution of the equat ion y2 + Y = d = 2: d,v~ ; dl C GF(2),  is 
given by  y = Z d~y~, where y~ is a solution of the equat ion y~ -t- y~ = v~. 
This shows tha t  t h e  set of v for which the equat ion y2 _~. Y = v has a 
solution in GF(2  k) forms a linear subspace of the vector  space G F ( ~ ) ,  
and since each value of v corresponds to two values of y, the  dimension- 
al i ty of the  subspace is evident ly  k - 1. Consequently,  the  solutions of 
the  equat ion y2 -t- Y -t- d = 0 m a y  be represented in terms of solutions 
to the  equat ions y2 -t- y~ -t- v~- = 0, for i = 1, 2, - - .  , k -~ 1, whe):e the 
vi span the space of v's for which y2 -t- y + v = 0 has solutions in GF(21:). 
If d is not  expressible as a sum of such v's, the  equat ion y-~ -t- y -t- d has 
no solutions ~n GF(2k).  If d = ~ d x , : ,  then  y = Zd~y~ is a So lu t ionof  
y2 + Y ~-d .  The  other  solution is found b y  adding t o the first solution a 
solution of y2 -t- y ~ 0, namely,  y = 1. 

I f  y~ J r  y~ = v~, then  we m a y  square b o t h  sides to obtaih 
2J (y~)2 -t- y~ = v~ 2. B y  repeatedly  squaring, we find tha t  y~+~ -t- y~' = v~ . 

Summing on j gives 
k--1 /~--1 

E ( y l  E " 
" ~  V i  , 

j = 0  j = 0  

The  lef t -hand side Of this equat ion is equal to y~k + Y~, which is 0 foi" all 
y~ 5 GF(2k)2 There fore ,  if the quadratic: equat ion y2 + y = v haS Solu- 

X - - ~ k ~ l  .2i. 
t ions in GF(2k), then T r  (v) = 0, where T r  (v) is defined aS Z.,j=0 v . 
However ,  all elements in G F ( ~ )  are roots of the equat ion x 2~ + X = 0.  
F r o m  the factoriz~tion 

2k ~___, X 2 2 k - 1  ) " • x + x (z : '+  + z 2 ~ +  ...... + z 

. - ( ! +  x -t- x 2 -t- x 2~ -t- . . -  + x  2~ ~) = ( T r  ( x ) ) ( 1 - I -  T r  (x))i, 

we see that: exact ly  half  of the  elements in GF(2  ~) have  T r  ( x ) =  0 and 
exact ly  h a l f h a v e  T r  (x)  = 1. Since the  space of v's for which y2 -t- y = v 
has solutions in GF(2  k) has dimension k -- t ,  we have t h e  following 
theorem. : : 

• 2 TH~O~E~ 1. I f  V ~ GF(2~),  the quadratic equatwn y + y = v has 
solutions in GF(2  ~) iff T r  (V) = 0. • 
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We have recent ly  learned t ha t  various versions of this theorem have  
been independent ly  discovered by  various people. T h e  earliest version we 
have  seen is given by  Hughes  (1959), where it  is a t t r ibu ted  to Marshal l  
Hall.  

EXAMPLE. In  GF(25), with 0/~ + 0/2 + 1 = 0, the  equat ions 
Y~ + yi = v~ have  the  solutions 

3 
Vl = 0~ Yl ---- a ,  

?)2 ~ 0/2 6 0/3 , Y2 ~ ~ -~- 0/, 

4 12 0/3 0/2 v3 = 0/, Ys = 0/ = ~ + 0 / ,  

V4 = 0/8 = 0/3 _~_ 0/2 _t_ 1, Y4 = a 24 = 0/4 _[_ a3 _{_ 0/3 + 0/ 

or preferably,  

v4 = 0/s ~_ 1, y4 = a 4 -~- 0/2  

There  are no solutions to  the  equat ions y ~ +  y + 1 - - 0 ,  or 
y2 -t- y -t- a 3 = 0. Thus  T r ( a )  = T r ( a  2) = T r ( a  4) = 0 bu t  T r ( 1 )  
-- T r  ( a  3) = 1. In  terms of our  previous basis ui = a s-i, i - I, 2, • . .  , 5, 
with y = % d ,u i ,  the  solution of the  equat ion y2 .{_ y _{_ d = 0 is given by  

F ° I '  'ol 
[Yl,Y~,Ys y4] = [dl d2,ds  d4] 0 1 

[0,0  0 o'J 
if ds = d2. I f  d~ ~ dr ,  no solutions exist, because T r ( Z d , u ~ )  
= Z d~Tr  (ui)  = d2 -t- ds.  I f  solutions exist, y~ m a y  be arbi t rar i ly  as- 
signed either the  value 0 or the  value 1, corresponding to the two differ- 
ent  solutions of the  quadrat ic .  

FURTHER USES OF THE TRACE OPERATOR 

We have  seen t ha t  t he  quadrat ic  equation,  x 2 -~ ax  ÷ b = O, 

a, b C GF(2~), a ~ 0, has solutions in GF(2 ~) iff T r  ( b / a  s) = O, where 
T r  (x)  = x ~ x 2 -t- x ~ -t- • .- -t- x 2~-~. This opera tor  has the impor t an t  
propert ies  t ha t  T r  (x  2) = T r  (x)  and T r  (x -~ y) -- T r  (x)  ~- T r  (y )  
for all $, y C GF(2~).  As tu te  use of these propert ies enables one to derive 
condit ions for the  existence of solutions in G F ( 2  ~) of certain cubic equa-  
tions, as evidenced by  the following theorem.  

THEOREM 2. The cubic equation x s n u x = a, a E GF(2~), a ~ 0 has a 
unique  solution, x E GF(2~) ,  iff T r  (a  -1) ~ T r  (1) .  

Remark .  The  general cubic, x ~ ~ #lx 2 -t- a2x -t- as -- 0 m a y  be reduced 



S O L U T I O N  OF  A L G E B R A I C  E Q U A T I O N S  557 

to the form z ~ + z = a as follows. First, the substitution x = y + a l ,  
2 

eliminates the quadratic term, giving y~ -t- (a2 + ~1 )y + (a3 + ala~) = 0. 
Except in the degenerate case when a~ = ~1 ~, we may then set 
y ~- z(a~ + ~12) 1'2 so tha t  z ~ + z + a = 0 where a = (~,~ + ala2)/ 
( ~  + ~ ~)31~. 

Proof. Setting x = 1/y  transforms the equation to ay 3 + y2 _{_ 1 = 0; 
setting y = z + 1 transforms this equation to az ~ + (a + 1)z 2 -}- az 

z = 0, or z 3 + bz ~ + z -l- 1 = O. These transformations map roots in 
GF(2 k) into other roots in GF(2k), so the equation 

x 3 + x - t - a  = 0 (1) 

has a unique solution in GF(2 k) iff 

z 3+bz 2 + z + l  =0 (2) 

has a unique solution in GF(2k), where b = (a -t- 1) /a .  If u is a solution 
of (2), then a solution of ( 1 ) is given by v = 1/(u  -t- 1) or u = ( v + 1)/v. 
Suppose u is a solution to (2), u E GF(2~). Then u ~ -t- bu 2 -{- u -{-- 1 = O, 
a n d u  4 - t - b u  a - l - u  2 + u  = 0, s o T r ( u  4 + b u  ~-k-u  ~ + u )  = T r ( 0 )  = 0 
= Tr (u 4) -t- Tr  (bu ~) + Tr (u ~) + Tr (u).  Since T r ( u  4) = Tr ((u2) 2) 
~- Tr(u~) ,  we have Tr(bu")  = T r ( u ) .  However, we also have 
bu ~ + b2~ + bu + b = O,soO = T r ( b u  8-{-b~u 2 + bu + b) = T r ( b u  3) 
-t- Tr (b). Therefore, Tr (bu 3) = Tr (b), so Tr (u) = Tr (b) because 
both are equal to Tr  (bu 3). 

Since u is a root of (2), we may factor it out, obtaining 

(z"+bz ~ + z + l )  = ( z + u )  z ~ + \ ~ / z +  . 

Thus u is the unique root in GF( 2 k) iff 

U 8 
1 - - T r  ( u ( u  ~ 1)~) = T r ( ( u ~  1)~). 

But  

U $ U 3 U U 2 
- - -  - u + - - + ~  

( u + l )  2 l + u  2 l + u  ( l + u ) "  

SO 

U 3 

= T r ( u ) +  Tr ( 1 - - ~ )  + 
U 2 

= T r  ( u )  -- T r  (b) .  



558 BERLEKAMP, RUMSEY, AND SOLOMON 

Thus, if (2) h a s a  unique root in GF(2k), Tr (b) = 1; if (2) has three 
distinct .roots in GF(2k), T r  (b) = 0. Correspondingly, if (1) has 
a unique root, v C GF(2k), T r ( ( v  ~-  1)/v) = 1 -- T r ( ( a  ~- 1)/a) 
= Tr (::1): ~- Tr (a -!) and Tr (a -z) ~ Tr (1); if (1) has three distinct 
roots in GF(2k), Tr ( (a  ~- 1)/a)  = 0 and Tr (a -I) = Tr (1). No cubic 
over GF (2 ~) can have exactly two roots in GF(2k), (since the sum of the 
roots is!the coefficient of the quadratic term), but  some cubics over 
GF(2'~): have no roots  in GF(2k). To complete the proof, we must show 
that  if (1) has no roots in GF(2~), then Tr (1) = Tr (a-l) ,  or equiva- 
lently, if Tr (1) ~ Tr (a-Z), then (1) has a unique root in GF(2~). This 
is most readily seen by a counting argument. 

Let Ai(i  = 0, 1, 3) be the set of a C GF(2 ~) - 0 such that  the equation 
x 3 + x = a has i solutions in GF(2k). Let X~(i = 1, 3) be thecor-  
responding solution sets. Clearly IX31 = 31A3 I; I X~ I = I A~ I. Since 0 
and l:~are the only solutions of x ~ + x = 0, all x C GF(2 k) - G F ( 2 )  must 
correspond to some nonzero a, and X1 u X~ = GF(2 ~) - GF(2). Let 
Ti ,  ( i f =  0, 1) be the set of x C  GF(2 k) -- GF(2) such that  
Tr ( ( x + ' l ) / x )  -- i, or equivalently, Tr (x -z) + Tr (1) = i. We have 
shown fhat  X1 ~ T1, X3 ~ To, A1 c_ T1, A3 ~ Tou1 .  Since 
X i u X i  = ~ T ~ u T 0 ,  we conclude that  X~ = Ti ,  X3 = To. Since 
jAil  = ' 1 X * I  = I T, I, we also have A~ = X~ = T 1 .  Q.E.D. 
A l t h o u g h  this theorem enables us to determine whether or not the 

equation x a + x = a has a unique solution in GF(2 k) by making a simple 
parity-check calculation on some of the bits in the representation of a - i ,  

it does not enable us to find this unique solution if there is one. Further- 
more, if there is not a unique solution, we do not know whether there are 
no sohiti~ns or three solutions. One form of an answer to this question is 
given by the following theorem. 

THEOREM 3. A necessary and su~cient condition that all three roots of 
the cubic polynomial x ~ ~- x + a lie in GF( 2k) is that Pk( a) = 0 where the 
polynomials Pk( x ) may be defined recursively by the equations 

Pl(x)  = x~ P~(x) = x, 

2k--3 
P~(x) = Pk-l(x) ~- x Pk-2(x). 

The proof, which is lengthy, is given by Berlekamp, Solomon, and 
Rumsey (1966). 

Although this theorem provides a theoretical answer to the question of 
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whe the r  x3-t - x = a has  three  roots  or zero roots [given T r ( a  -~) 
= T r  (1)], it is no t  as useful  in prac t ice  as the  me thods  in t roduced  in the  
next  section, which enable  one to find all of the  roots in GF(2k): in ad- 
di t ion to de termining  how m a n y  roots  there  are. 

p-POLYNOMIALS AND TRANSLATED p-POLYNOMIALS 

DEFINITIONS. A polynomial, L (z )  over GF(p~), p pri~te, is said to be 
a p-polynomial iff it is of the form L(z )  ~ = o  Liz ~ -= ; a polynomial 
A ( z )  over GF(p m) is said to be a translated p-polynomial iff  it is of the 
form A ( z )  = L( z )  -- u where u C GF(p "~) and L(z )  is a ppolynomial.  

T h e  p -Po lynomia l s  were first in t roduced b y  Ore (1933, 1934) in two 
i m p o r t a n t  papers  which expounded m a n y  of their  theoret ical  propert ies.  
Fo r  our  purposes,  the  ma in  va lue  of t r ans la ted  p-polynomia ls  lies in the  
pract ica l  ease wi th  which one m a y  compu te  their  roots  in GF(p") .  

I f  Zk ~ GF(p),  and a °, a ~, a 2, . . .  , a ~re a s t anda rd  basis for 
GF(pm), then.  

( E  = = Z 
k k /~ 

F r o m  this we see t h a t  
I f  L ( z )  is a p-polynomial, and if z = ~ Zka ~, Zk C GF(p),  then 

L(z )  = ~--~k Z~L(a~). 
I f  we also use the  s t andard  representa t ion  to express the value 

of the  field e lements  L(o~°), L(a l ) ,  . . . ,  L(a'~-1), we m a y  write 
L ( a  ~) = ~j=0~-I Li jM, Li.j C GF(p).  The  coefficients of the  s t anda rd  
represen ta t ion  for the  va lue  of the  polynomia l  L(z)  m a y  therefore be 
ob ta ined  b y  pos tmul t ip ly ing  the  row vec tor  Z = [Z0, Z1,  • • • , Z~-i] by  
the  m X m ma t r ix  L over  GF(p) : 

FLo,o L0,, Lo,2 . . .  Lo, -i " 
[Zo, Z1, " "  , Zm-1]/Ll ,o  L1,1 L1,2 " ' "  L1,~-1 

:l 
L -1;o L~-i .~= 

For  example,  let us consider the  polynomia l  

L(z )  = z 16 q- al3z 8 -~ Ot30Z 4 "~ O/18Z2 "~ a2OZ 

over  GF(25),  ,where a is a root  of the  pr imi t ive  i r reducible  b inary  po ly -  
nomial ,  x 5 + z ~ -~- 1. Using the  tables of logs and antilogs; in the  
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appendix, we may calculate 

L ( 1 )  = a ° + a TM + a ~° + a TM + j o  = O, 

L ( a )  = a 16 + a 21 + a ~ + a s° + a 21 = 1 + a + d 2 + a s + a 4, 

L( a2) = as + as9 + aT + a2s + ~ s  = 1 + a + a 2 + a s + a 4, 

L ( a  3) = a 17 ~ -  a 6 -4- a II + a 24 -~- a ss = 1 + a + a s -1- a s, 

L ( a  4) = a 2 + a la -4- a le -~- o~ 26 "4- a s4 = 1 + a + a s -~- a s ;  

~o L is represented by the 5 × 5 binary matrix Ei°°°l 1 1 1 0 

L =  1 1 1 1 . 
1 1 1 

1 1 1 

If, for example, we wish to compute L(aS2), we write a s2 in its standard 
representation, namely a ss = 1 + a ~ + a 4 or more simply, [10101]. Then 
[10101]L = [00001], so L ( a  ~2) = a 4. 

The major value of the matrix representation of a p-polynomial is tha t  
it transforms the polynomial L(z )  -- u = 0 into the matrix equation 
ZL = U. Thus, we may find the roots in GF(p m) of the translated 
p-polynomial L(z )  by solving m simultaneous linear equations over 
GF(p) .  In general, this may  be done by  reducing the m × m L-matrix to 
any of several "canonical" forms by appropriate column operations on 
the augmented L-matrix. The form which is most convenient for the 
present problem is the reduced triangular idempotent form, L, in which 
every entry below the main diagonal is zero, every entry on the main 
diagonal is zero or one, and every entry in the same column as a main 
diagonal zero or the same row as a main diagonal one is zero. Any square 
L-matrix can be reduced to such an g-matrix by appropriate column 
operations. These same column operations, applied to the augmented 
row U, will transform it into another row, ~l. The  equation ZL = U 
then becomes Z/~ = 0 .  

From the triangular idempotent form of the/~-matr ix,  it is readily 
seen that  L is a linear combination of the rows of/~ iff ~ has a zero cor- 
responding to each diagonal component of/~. Equivalently, the product  
of each component of l~ and the corresponding diagonal component of 
L - I must be zero. If the product of any component of ~" and the cor- 
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responding diagonal component of/~ - I is nonzero then ~ is not a linear 
combination of rows of /~ and the equations Z/~ = l~I and ZL = U 
have no solutions. If the product of every component of (I and the cor- 
responding diagonal component of/~ - I is zero, then l) is a linear com- 
bination of the rows of f~, and one particular solution of the equations 
Z/~ = l) and ZL = U is given by Z = l~I. In order to find the general 
solution we may add to l:l any solution of the equations Z/~ = 0 and 
ZL = 0. From the form of /~, it is easily seen that  f2 = /~, so that  
(/~ - I)/~ = 0. ~urthermore,  Rank (f~ - I )  + Rank (/ ,)  = m, so 
that  the null space of I~I is spanned by  the rows of/~ - I.  Thus, the general 
solution of ZL = U is given by l~l -t- any linear combination of rows of 
(/~ --  I ) .  

As an example, we consider the translated 2-polynomial over GF(2~),  
A ( z )  = z 16 + a13z s -{- a~°z4 + alSz 2 + a26z + a 4. As shown in an earlier 
example, the polynomial A ( z )  - a 4 is represented by the matrix 

1 1 1 
L =  1 1 1 . 

1 1 1 

1 1 1 

We form the augmented matrix by annexing the additional row cor- 
responding to u = 4 ,  U = 00001. The L-matrix may be reduced to a 
triangular idempotent form by adding the third eolunm into all of the 
other columns and then adding the fifth column into the third column, 

One solution is seen to be 00101 = a 7. The other seven roots of A ( z )  
in GF(25) are 10101, 01001, 11001, 00110, 10110, 01010, and 11010. 

Thus, one may find nil of the roots in G F ( p  '~) of a translated p-poly- 
nomial by a straightforward procedure, which in practice is much 
simpler than the Chien search. Unfortunately, however, most poly- 

giving liooo!lolo Iioooilo 
L =  0 1 0 , / 2 - - I =  0 0 0 . 

0 0  0 0 0 1 
0 0 0 0 0 0 

U =  0 0 1 0 1  
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nomials are not translated p-polynomials. Over fields of characteristic 
two, quadratics are translated 2-polynomials but  cubics are not. How- 
ever, if we multiply the general cubic, x 3 + zix 2 + z2x + ~3 by  the 
factor (x -t- zl), we obtain a translated 2-polynomial whose roots in- 
dude  the 3 roots of the cubic and the extraneous root z l .  In general, 
any polynomial has a multiple which is a translated p-polynomial, and 
this multiple may be computed by a straightforward procedure: If z (x)  
has degree d, then compute the polynomials r (°) (x),  r (1) (x),  -. • , r (d-l) (x) 
w h e r e x  -- r (x) m o d z ( x )  and d e g r  (x) < d -- d e g a ( x ) .  The 
d ~- 1 polynomials 1, r(°)(x), r(~)(x), . . .  , r(~-l)(x) all have degree less 
than d, so they satisfy a linear dependence c + ~'.~-_-~ ckr(~)(x) = O, 

"~"~ d--1 X p k from which we deduce that  c -~ Z~k=0 ck is a multiple of a(x) .  I t  is 
obviously a translated p-polynomial of degree at most pd-1. Similarly, 
Ore (1933) has shown that  a(x)  has a multiple which is a p-polynomial 
of degree at most pd. 

In general, if z(x)  is any polynomial over GF(pm), one may compute 
the roots of a(x)  in GF(p m) as follows: First, one finds the least multiple 
of z(x)  which is a translated p-polynomial. Then, by solving the cor- 
responding set of linear equations over GF(p),  one finds the roots of 
this translated p-polynomial in GF(pm). Finally, one examines each of 
the roots of this translated p-polynomial to decide which are roots of 
~(x). 

If a BCH code of block length p m _  1 is designed to correct t errors, 
then the degree of z(x)  will be at most t, and the degree of its least mul- 
t iple which is a translated p-polynomial will be at most p H .  If t is small 
compared to m, then our procedure results in considerable savings 
over the conventional Chien search. However, if t > m, then our pro- 
cedure gains nothing, since in tha t  case the least multiple of a(x)  which 
is a translated p-polynomial is likely to be x "~" - x. In tha t  case, all 
elements in the field must still be tested. 

In  some cases, other transformations prove helpful. For example, 
consider the quartic equation over a field of characteristic 2: x 4 ~- zlx 3 -P 

2 / / \ l P 2  a2x d- ~ x  JF a4. Setting y = x -~ ~ 3 / ~ )  eliminates the linear term; 
setting z = 1/y then gives a quartic which is a translated 2-polynomial. 
This qllartic has  ~ = 0. More generally, it can be shown that  if p di- 
vides deg ~ (x) and ~ = 0, then a(x) has a multiple of degree at most 
pa-2 which is a translated p-polynomial. If p does not divide deg a(x) ,  
then ~1 = 0 implies only that  a(x)  has a multiple of degree at most p~-1 
which i.s a p-polynomial. 
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APPENDIX: LoGs AND ANTILOGS IN GF(25), BASE a, A ROOT OF 
ZS-~ Z~-k 1 

We say logs ~ = h iff ~ = a k. We than have log. (~n) = log~ ~ q- logs 
mod!N, where N is the least positive integer such that  a ~ = 1. 

1 ~ 2 a 2 ~ 4  1 ~ 2 a 3 ~ 4  

--31 0 10000 00000 
--30 1 01000 00001 
--29 2 00100 00010 
--28 3 00010 00011 
--27 4 00001 00100 
--26 5 10100 00101 
--25 6 01010 00110 
--24 7 00101 00111 
--23 8 10110 01000 
--22 9 01011 01001 
--21 10 10001 01010 
--20 11 11100 01011 
--19 12 01110 01100 
--18 13 00111 01101 
- -  17 14 10111 01110 
- -  16 15 11111 01111 
-- 15 16 11011 10000 
--14 17 11001 10001 
--13 18 11000 10010 
--12 19 01100 10011 
-- 11 20 00110 10100 
-- 10 21 00011 10101 

--9 22 10101 10110 
--8 23 11110 10111 
--7 24 01111 11000 
--6 25 10011 11001 
--5 26 11101 11010 
--4 27 11010 11011 
--3 28 01101 11100 
--2 29 10010 11101 
-- 1 30 01001 11110 

31 10000 11111 

RECEIVED: June 10, 1966;revised May 4, 1967. 
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