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On the Solution of Algebraic Equations
over Finite Fields

E. R. BerLegamp,* H. Rumsey, ANp G. SoLomoN{

Jet Propulsion Laboratory, Pasadena, California 91108

This article gives new fast methods for decoding certain error-
correcting codes by solving certain algebraic equations. As described
by Peterson (1961), the locations of a Bose-Chaudhuri Hocquenghem
code over a field of characteristic p are associated with the elements
of an extension field, GF (p*). The code is designed in such a way that
the weighted power-sum symmetric functions of the error locations
can be obtained directly by computing appropriately chosen parity
checks on the received word. Good methods for computing the ele-
mentary symmetric functions from the weighted power-sum sym-
metric functions have been presented by Berlekamp (1967). The
elementary symmetric functions, 1 , 02, -+ , o¢ are the coefficients
of an algebraic equation whose roots are the error locations

zt+ ezt et s g = 0.

Previous methods for finding the roots of this equation have
searched all of the elements in GF(p*) (Chien, 1964) or looked up the
answer in a large table (Polkinghorn, 1966). We present here improved
procedures for extracting the roots of algebraic equations of small
degrees.

QUADRATIC EQUATIONS IN FIELDS OF CHARACTERISTIC TWO
Case 1: wita RereaTeEp Roots

In order to solve a quadratic equation of the type * 4+ ¢ = 0, where ¢
and z € GF(2"), we must extract the square root of ¢. Since in any field
of characteristic two we have the identity (z + y)* = «* + %° and
similarly, (z 4+ y)"* = 2'* + 4* the square root is a linear operation.
In terms of a fixed basis of GF(2*), namely u; , us, - - - , u , we may write
¢ = Y % cui,where c; € GF(2). Because of the linearity of the square
root, we then have ¢ = > % ci(u:)"®. Of course, (u:;)"? can also be
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represented in terms of this same. basis, with ()" Y2 Z R, with
R;; ¢ GF(2). We then have

k
; ¢ Bij vy

<Z o R; J> U .

For example, in GF(2°%), let us take the basis consisting of u; = o™ for
i = 1,2, 3,4, 5 where « satisfies the equation o® + &’ + 1 = 0. The
representation of all of the elements of GF(2°) in terms of this basisis given
in the appendix. We see that

(u1)1/2 — <a4)1/2 — a2
(u2)1/2 — (a3)1/2 — CK17 — a4 + a + 1
<u3)1/2 — (a2>1/2 = «a

(u4)1./2 - (aI)I/Z — alﬁ — a{i + a3 _|_ o + 1

i Mw i Mw

(u5)1/2 — (a0)1/2 — 1'
Hence, the matrix R is given by
0 01 0 O
i 0 0 11
R=10 0 0 1 O
1 1 0 1 1
0 0 0 0 1

For example, if we wish to take the square root of ¢ = o+l +at+1
we write

- 0 01 0 O
100111
M=¢cR=0101111/0 0 0 1 0j=1[1110 0.
11011J
0 0 0 0 1

26, 12 13

We can verify this by checking that ¢ = &™; ¢~ = «

CASE 2: WITHOUT REPEATED ROOTS

In general, the quadratic equation may be written as &£ +bxr+ec=0.
We have just seen that if b = 0, this equation has a unique solution in
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GF(2%), and that this solution may be.found by multiplying the vector
representing ¢ by the matrix- B which extracts square roots.

If b #. 0, we first transform the equation by introducing the new
variable ¥ = z/b. This new variable satisfies the equation by by
+ ¢ =00ty +y =d, where d = “¢/b'. 'We now notice that if
y? +yi = viand y +y; = vy, then (y: + )" + (s +15) = vs + 05
Hence, a solution of the equation ¢ +y = d = Zda,;d: € GF(2), is
given by ¥ = Zd.y. , where y, is a solution of the equation ui oy = s,
This shows that the set of » for which the equation ¥ +y = vhasa
solution in GF(2*) forms a linear subspace of the vector space GF (2%,
and since each value of v corresponds to two values of y, the dimension-
ality of the subspace is evidently k¥ — 1. Consequently, the solutions of
the equation 4* + y -+ d = 0 may be represented in terms of solutions
to the equations y." + y; + v; = O, fori =1,2, ---,k — 1, where the
v; span the space of ¢’s for which y* +y 4+ = 0has solutions in GF(2%).
If d is not expreSSJble as a sum of such »’s, the equation v+ ¥ + d has
no solutions in GF(2%). 1 d = =do,, then y = Zdy; is a solution of
v 4y + 4. The other solution is found by addmg to the first solution a
solutlon of w4y =0, namely, y = 1.

If y1 + Y. = v;, then we may square both sides to obtain
(g5 + yl = vi. By repeatedly squaring, we find that yfjﬂ + yf] =7,
Summing on j gives _

k—1

Z <y““ v = 2 ot

j=0
The left- hand side of this equation is equal to yl + yl , Wthh is 0 for all
yi € GF(Q’G ) Thelefore if the quadratic equatlon W+ y=v has solu-
tions in GF(Zk) then Tr (v) = 0, where Tr (v) is defined as Zk:(l; o
However, all elements in GF(2*) are roots of the equatlon i + =0,
From the factorization

Pt = 2+ +2’”> .
(A4t o 2 ‘)—(Tr(w)>(1+Tr<x)>,

we see that exactly half of the elements in GF(2*) have Tr (ac), = 0 and
exactly half have Tr (z) = 1. Since the space of v’s for which % 4+ y. = v
has solutions in GF(2°) has dimension k¥ — 1, we have- the followmg
theorem.

TusoreMm 1. If v € GF(2"), the quad1 atic equatzon Y + y =-v has
solutzons m GF(Z'“) iff Tr (v) = 0 o



556 BERLEKAMP, RUMSEY, AND SOLOMON

We have recently learned that various versions of this theorem have
been independently discovered by various people. The earliest version we
have seen is given by Hughes (1959), where it is attributed to Marshall
Hall.

Examere. In GF(2%), with &’ + & + 1 = 0, the equations
yi + y: = v; have the solutions

3

U = a, Nn=a,
2 6 3
v = o, o= a = o + q
4 12 3 2
vy = o, B=a =a +a + a

n=d=++1 p=d=d+l+d+a
or preferably,
v=d +1, yi=a+

There are no solutions to the equations y° + y + 1 = 0, or
7 4y + o = 0. Thus Tr (a) = Tr(d’) = Tr(a') = 0 but Tr (1)

= Tr (') = 1. In terms of our previous basisu; = o, = 1,2, .-+ , 5,
with ¥ = 2 du; , the solution of the equation 4* 4+ y + d = 0 is given by
0 1 1 1’|
01 0

1
[yl:yﬂ’y3sy4]=[d15d27d3:d4] 0 1 0 1
01 0 0

iff ds = dy. If d5 ¥ dy, no solutions exist, because Tr (2 d.u:)
= 2d;Tr(u;) = dy + ds. If solutions exist, y; may be arbitrarily as-
signed either the value 0 or the value 1, corresponding to the two differ-
ent solutions of the quadratic.

FURTHER USES OF THE TRACE OPERATOR

We have seen that the quadratic equation, 2 + azx + b = 0,
a, b € GF(2"), a # 0, has solutions in GF(2*) iff Tr (b/a”) = 0, where
Tr(z) =z +2° +2° + --- + " . This operator has the important
properties that Tr (2*) = Tr(z) and Tr (z + y) = Tr(z) + Tr(y)
forallz, y € GF(2"). Astute use of these properties enables one to derive
conditions for the existence of solutions in GF(2*) of certain cubic equa-
tions, as evidenced by the following theorem.

TaEoREM 2. The cubic equation z° + z = a,a € GF(2"),a # 0 has a
unigque solution, x € GF(2*), iff Tr (a7 = Tr(1).

Remark. The general cubic, ° + o1’ + 092 + o3 = 0 may be reduced
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to the form 2° 4 z = a as follows. First, the substitution z = y + o1,
eliminates the quadratic term, giving 3° + (o2 + o1*)y + (o3 + 0103) = 0.
Except in the degenerate case when o3 = o), we may then set
y = 2(os + or’)"* 50 that & + 2z + @ = 0 where a = (o5 + 0102)/
(o2 + 012)3/2.

Proof. Setting ¢ = 1/y transforms the equation to af +4 +1=0;
setting ¥ = z + 1 transforms this equation to az® + (a + 1)2* + az

+2=0,0rz + b’ + 2+ 1 = 0. These transformations map roots in
GF(2") into other roots in GF(2*), so the equation
@ 4+r4+a=0 (1)
has a unique solution in GF(2*) iff
Z+b+z+1=0 (2)

has a unique solution in GF( 2’“), where b = (a + 1)/a. If u is a solution
of (2), then a solution of (1) 1sg1venbyv =1/(u+1Doru= (v+1)/v
Supposeulsasolutlon to (2),u € GF(Z ). Thenu +bi4u+1=0,
and u' + b’ + 4’ +u =0, soTr(u + bu® + o +u) =Tr(0) =0
= Tr («*) + Tr (bu) + Tr («*) + Tr (u). Since Tr (u*) = Tr ((v')*)
= Tr(«), we have Tr(bu’) = Tr(u). However, we also have
bu’ + b + bu + b = 0,500 = Tr (bu® + b’ + bu 4+ b) = Tr (b®)
+ Tr (b). Therefore, Tr (bu’) = Tr (b), so Tr(u) = Tr(b) because
both are equal to Tr (bu’).
Sinee u is a root of (2), we may factor it out, obtaining

(z"‘+bz2+z+1>=(z+u>(z2+(“;;1)z+%).

Thus u is the unique root in GF(2°) iff
u u
= (o) = = (o)

o W U u*
wr) it e ttTiraTaT o

But

80

1 ((7%‘3) Tr @)+ T’( e )+ Tr ((1 ¥ u)2>

= Tr (u) = Tr (b).
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Thus, if (2) has a unique root in GF(2*), Tr (b) = 1;if (2) has three
distinet roots in GF(2%), Tr () = 0. Correspondingly, if (1) has
a unigie root, » € GF(2Y), Tr((v + 1)/») = 1 = Tr{(e + 1)/a)
= Tr(1). 4+ Tr(a™) and Tr (a) 5 Tr(1);if (1) has three distinet
roots in GF(2*), Tr ((a 4+ 1)/a) = 0 and Tr (¢™*) = Tr (1). No cubic
over GF(2") can have exactly two roots in GF(2*), (since the sum of the
roots isf{ the coefficient of the quadratic term), but some cubics over
GF(2") have no roots.in GF(2*). To complete the proof, we must show
that if (1) has no roots in GF(2*), then Tr (1) = Tr (a™), or equiva-
lently, if Tr (1) = Tr (a™"), then (1) has a unique root in GF(2*). This
is most readily seen by a counting argument.

Let A(i = 0,1,3) bethesetof € GF(2*) — 0 such that the equation
2 4+ x = a has 7 solutions in GF(2"). Let X.,(¢ = 1, 3) be the cor-
responding solution sets. Clearly | X3| = 3| A3]; | X1] = | A1/ Since 0
and Tare the only solutions of 2* + « = 0, allz € GF(2*) — GF(2) must
correspond to some nonzero a, and Xyu X5 = GF(2°) — GF(2). Let
T:, (¢:= 0, 1) be the set of z & GF(2*) — GF(2) such that
Tr ((z4+1)/z) = ¢, or equivalently, Tr (z ') + Tr (1) = 7. We have
shdwn that X1 g Tl, X3 g To, A]_ g Tl, A3 Q T()U 1. Since
Xiu Xy =-TyuTy, we conclude that X; = Ti, X; = T,. Since
|A1| ='| Xi| = |[Tv|, we also have 4; = X, = T. Q.E.D.
-.Although this theorem enables us to determine whether or not the
equation 2 + & = ¢ has a unique solution in GF(2*) by making a simple
parity-check calculation on some of the bits in the representation of a™,
it does not enable us to find this unique solution if there is one. Further-
more, if theré is not 4 unique solution, we do not know whether there are
no solutions or three solutions. One form of an answer to this question is
given by the following theorem.

TuROREM 3. A necessary and sufficient condition that all three rools of
the cubic polynomial z* + x + a lie tn GF(2") is that Py(a) = 0 where the
polynomials Pr(x) may be defined recursively by the equations

Py(z) = z, Py(z) = 2,
Pu(z) = Pra(z) + 2 "Pra(x).

The proof, which is lengthy, is given by Berlekamp, Solomon, and
Rumsey (1966). ‘
Although this theorem provides a theoretical answer to the question of
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whether z° + z = @ has three roots or zero roots [given Tr{(a™)
=Tr (1)}, it is not as useful in practice as the methods introduced in the
next section, which enable one to find all of the roots in GF(2*) in ad-
dition to determining how many roots there are.

p-POLYNOMIALS AND TRANSLATED p-POLYNO’VIIAL&

DEFINTTIONS. A polynomial, L(z) over GF(p™), p pmme 8 saﬂ,d to be
a p-polynomial iff it is of the form L(z) = >k o Lz o polynomial
A(2) over GF(p™) 1s said to be a translated p-polynomial iff it is of the
form A(z) = L(2) — u whereu € GF(p™) and L(z) is a p-polynomial.

The p-Polynomials were first introduced by Ore (1933, 1934) in two
important papers which expounded many of their theoretical properties.
For our purposes, the main value of translated p-polynomials lies in the
practical ease with which one may compute their roots in GF(p™).

If Z, € GF(p), and &, o', &, -+, " " are a standard basis for
GF(p™), then.

(3 7} = 28" = T2y

From this we see that

If L(2) is a p-polynomial, and if z = 2 Zpd", Z, € GF(p), then
L(z) = 21 Zal(a®)

If we also use the standard representation to express the value

of the field elements L(a"), L(d"), -+, L{(«™™), we may write
L(a) = > "4 Lo, Li; € GF(p). The coefficients of the standard
representation for the value of the polynomial L(z) may therefore be
obtained by postmultiplying the row vector Z = [Zy, Z1, -+, Zm-a] by
the m X m matrix L over GF(p):
IVLO,O LO,l LO,Z c LO,m‘“-l 1
[ZO 3 Zl [ IR Zm—l] L:LO LLI L1’2 o Ll,m—l ) l .
[Lm—l,o Lm—l,m.—lJ

For example, let us consider the polynomial
L(z) = S + o8 + o + %2 + o2

over GF(?S),Where a is a root of the primitive irreducible binary poly-
nomial, z° + 2% + 1. Using the tables of logs and antilogs in the
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appendix, we may calculate
L(1) = o' + a® + ¥ + o + & = 0,
La)=®* 4+ "+ + a4+ = 14+a+d+d+d,
Le)=d +d®+d +a®+a*=14a+d+d+d
L) =ad"++ad"+*+d®=14+a+d+ 2,
L) = + o' +a*+a”+a* =1+ a+d +d;

%0 L is represented by the 5 X 5 binary matrix

00 0 00O
11 1 1 1
L=]11 111
111 10
111 10

If, for example, we wish to compute L(a™), we write o’ in its standard
representation, namely o” = 1 + o’ 4+ « or more simply, [10101]. Then
[10101)L = {00001], so L(a™) = o',

The major value of the matrix representation of a p-polynomial is that
it transforms the polynomial L(z) — u = 0 into the matrix equation
ZL = U. Thus, we may find the roots in GF(p™) of the translated
p-polynomial L(z) by solving m simultaneous linear equations over
GF(p). In general, this may be done by reducing the m X m L-matrix to
any of several “canonical” forms by appropriate column operations on
the augmented L-matrix. The form which is most convenient for the
present problem is the reduced triangular idempotent form, I, in which
every entry below the main diagonal is zero, every entry on the main
diagonal is zero or one, and every entry in the same column as a majin
diagonal zero or the same row as a main diagonal one is zero. Any square
L-matrix can be reduced to such an I-matrix by appropriate column
operations. These same column operations, applied to the augmented
row U, will transform it into another row, U. The equation ZL = U
then becomes ZI = U.

From the triangular idempotent form of the L-matrix, it is readily
seen that L is a linear combination of the rows of L iff U has a zero cor-
responding to each diagonal component of L. Equivalently, the product
of each component of U and the corresponding diagonal component of
I — I must be zero. If the product of any component of U and the cor-
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responding diagonal component of L — I is nonzero then U is not a linear
combination of rows of I and the equations ZI, = U and ZL = U
have no solutions. If the product of every component of U and the cor-
responding diagonal component of I — I is zero, then U is a linear com-
bination of the rows of I, and one particular solution of the equations
ZL = U and ZL = U is given by Z = U. In order to find the general
solution we may add to U any solution of the equations ZL = 0 and
ZL = 0. From the form of L, it is easily seen that I’ = I, so that
(I — DL = 0. Furthermore, Rank (I — I) + Rank (L) = m, so
that the null space of U is spanned by the rows of I, — I. Thus, the general
solution of ZL = U is given by U + any linear combination of rows of
(L—1).

As an example, we congider the translated 2-polynomial over GF(2°),
A(z) = 2% + &% 4+ " + &% + % + o' As shown in an earlier
example, the polynomial A(z) — o' is represented by the matrix

0 0 O
1
11,
]
0
We form the augmented matrix by annexing the additional row cor-
responding to w = o', U = 00001. The L-matrix may be reduced to a
triangular idempotent form by adding the third column into all of the

other columns and then adding the fifth column into the third column,
giving

™~
It
— et e O
Pt et D
e el e
= e

1

0 0 0 0 O 1 0 0 0 O

0 01 00 011 0 0
L=10 0 1 0 0|, L—-I=]0 0 0 0 0Of.

[00001 00011J

0 0 0 0 1 0 0 0 0 0
U= 0 0 1 0 1

One solution is seen to be 00101 = o’. The other seven roots of A(z)
in GF(2%) are 10101, 01001, 11001, 00110, 10110, 01010, and 11010.
Thus, one may find all of the roots in GF(p™) of a translated p-poly-
nomial by a straightforward procedure, which in practice is much
simpler than the Chien search. Unfortunately, however, most poly-
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nomials are not translated p-polynomials. Over fields of characteristic
two, quadratics are translated 2-polynomials but cubies are not. How-
ever, if we multiply the general cubic, 2° + oy2® + osx + o3 by the
factor (# + o1), we obtain a translated 2-polynomial whose roots in-
clude the 3 roots of the cubic and the extraneous root oy . In general,
any polynomial has a multiple which is a translated p-polynomial, and
this multiple may be computed by a straightforward procedure: If ¢(z)
has degree d, then compute the polynomials #*(z), r®(z), - - -, ¥ V()
where 2% = r®(2) mod o(z) and deg **®(z) < d = deg o(z). The
d -+ 1 polynomials 1, *®(z), (&), -- -, @ (z) all have degree less
than d, so they satisfy a linear dependence ¢ + o er®(2) =0,
from which we deduce that ¢ + Y ecgcia® is a multiple of o(z). Tt is
obviously a translated p-polynomial of degree at most p® . Similarly,
Ore (1933) has shown that ¢(2) has a multiple which is a p-polynomial
of degree at most p°.

In general, if o(z) is any polynomial over GF(p™), one may compute
the roots of o(z) in GF(p™) as follows: First, one finds the least multiple
of o(x) which is a translated p-polynomial. Then, by solving the cor-
responding set of linear equations over GF(p), one finds the roots of
this translated p-polynomial in GF(p™). Finally, one examines each of
the roots of this translated p-polynomial to decide which are roots of
a{x).

If a BCH code of block length p™ — 1 is designed to correct ¢ errors,
then the degree of ¢(x) will be at most ¢, and the degree of its least mul-
tiple which is a translated p-polynomial will be at most p*. If ¢ is small
compared to m, then our procedure results in considerable savings
over the conventional Chien search. However, if £ > m, then our pro-
cedure gains nothing, since in that case the least multiple of ¢(z) which
is a translated p-polynomial is likely to be 2*" — z. In that case, all
elements in the field must still be tested.

In some cases, other transformations prove helpful. For example,
consider the quartic equation over a field of characteristie 2: z* + o2® +
o’ + o3x + o4. Setting y = = + (03/01)"” eliminates the linear term;
setting z = 1/y then gives a quartic which is a translated 2-polynomial.
This quartic has &1 = 0. More generally, it can be shown that if p di-
vides deg ¢ {x) and o1 = 0, then ¢(z) has a multiple of degree at most
p°% which is a translated p-polynomial. If p does not divide deg o(z),
then oy = 0 implies only that o(z) has a multiple of degree at most p*
which ig a p-polynomial.



SOLUTION OF ALGEBRAIC EQUATIONS 563

APPENDIX: Loas aND ANTILOGS IN GF(2), BASE o, A RooT OF
22241
We say log, £ = kiff £ = o°. We than have log, (&) = log, £ + loga 1
mod)V, where N is the least positive integer such that o™ = 1.

laa?a?at lac?adat

—31 0 10000 00000 o0
—30 1 01000 00001 4
—29 2 00100 00010 3
—28 3 00010 00011 21
—27 4 00001 00100 2
—26 5 10100 00101 7
—25 6 01010 00110 20
—24 7 00101 00111 13
—23 8 10110 01000 1
—22 9 . 01011 01001 30
—21 10 10001 01010 6
—20 11 11100 01011 9
—19 12 01110 01100 19
—18 13 00111 01101 28
-17 14 10111 01110 12
—16 15 11111 01111 24
—15 16 11011 10000 0
—14 17 11001 10001 10
—13 18 11000 10010 29
—12 19 01100 10011 25
—11 20 00110 10100 5
—10 21 00011 10101 22
-9 22 10101 10110 8
—8 23 11110 10111 14
—7 24 0i111 11000 18
—6 25 10011 11001 17
-5 26 11101 11010 27
—4 27 11010 11011 16
-3 28 01101 11100 11
—2 29 10010 11101 26
-1 30 01001 11110 23
31 10000 11111 15

RECEIVED: June 10, 1966; revised May 4, 1967.
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