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a b s t r a c t

An extended formulation of a polytope P is a system of linear inequalities and equations
that describe some polyhedron which can be projected onto P . Extended formulations of
small size (i.e., number of inequalities) are of interest, as they allow tomodel corresponding
optimization problems as linear programs of small sizes. In this paper, we describe several
aspects and new results on the main known approach to establish lower bounds on the
sizes of extended formulations, which is to bound from below the number of rectangles
needed to cover the support of a slack matrix of the polytope. Our main goals are to shed
some light on the question how this combinatorial rectangle covering bound compares to
other bounds known from the literature, and to obtain a better idea of the power as well as
of the limitations of this bound. In particular, we provide geometric interpretations (and a
slight sharpening) of Yannakakis’ (1991) [35] result on the relation between minimal sizes
of extended formulations and the nonnegative rank of slack matrices, and we describe the
fooling set bound on the nonnegative rank (due to Dietzfelbinger et al. (1996) [7]) as the
clique number of a certain graph. Among other results, we prove that both the cube as
well as the Birkhoff polytope do not admit extended formulations with fewer inequalities
than these polytopes have facets, and we show that every extended formulation of a
d-dimensional neighborly polytope with Ω(d2) vertices has size Ω(d2).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

An extended formulation of a polytope1 P ⊆ Rd is a system of linear inequalities and linear equations defining a
polyhedron Q ⊆ Re along with an affine map π : Re

→ Rd satisfying π(Q ) = P . Note that by translating P and/or Q ,
we may safely assume that π is linear. The size of the extended formulation is the number of inequalities in the system (the
number of equations is ignored, since one can easily get rid of them). As in this setting linear optimization over P can be
done by linear optimization over Q , one is interested in finding small (and simple) extended formulations. Fig. 1 illustrates
an extended formulation of size 6 in R3 of a regular 8-gon. In fact, every regular 2k-gon has an extended formulation of size
2k [3,21], which can, e.g., be exploited in order to approximate second-order cones.

However, several polytopes associated with combinatorial optimization problems have surprisingly small extended
formulations (for recent survey articles we refer to [5,33,19]). Among the nicest examples are extended formulations of
size O(n3) for the spanning tree polytopes of complete graphs with n nodes (due toMartin [27]) and of size O(n log n) for the
permutahedron associated with the permutations of n elements (due to Goemans [14]). It may not be very surprising that
no polynomial size extended formulations of polytopes associated with NP-hard optimization problems like the traveling

∗ Corresponding author.
E-mail addresses: sfiorini@ulb.ac.be (S. Fiorini), kaibel@ovgu.de (V. Kaibel), pashkovi@mail.math.uni-magdeburg.de (K. Pashkovich),

dirk.theis@ovgu.de, theis@ovgu.de, theis@ovgu.de (D.O. Theis).
1 For all basic concepts and results on polyhedra and polytopes we refer to [37].

0012-365X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2012.09.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81949303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.disc.2012.09.015
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:sfiorini@ulb.ac.be
mailto:kaibel@ovgu.de
mailto:pashkovi@mail.math.uni-magdeburg.de
mailto:dirk.theis@ovgu.de
mailto:theis@ovgu.de
mailto:theis@ovgu.de
http://dx.doi.org/10.1016/j.disc.2012.09.015


68 S. Fiorini et al. / Discrete Mathematics 313 (2013) 67–83

Fig. 1. A regular 8-gon as a projection of a cube.

salesman polytope are known. However, the same holds, e.g., for matching polytopes to this day. While it may well be that
we simply still havemissed the right techniques to construct polynomial size extended formulations for the latter polytopes,
most people would probably agree that for the first ones we simply still miss the right techniques to prove lower bounds
on the sizes of extended formulations of concrete polytopes. Note, however, that Rothvoß [29] recently established, by an
elegant counting argument, the existence of 0/1-polytopes P in Rd such that the size of every extended formulation of P is
exponential in d.

There is a beautiful approach due to Yannakakis [35] for deriving lower bounds on the sizes of extended formulations that
share symmetries of the polytope to be described. In fact, Yannakakis proved that neither the traveling salesman polytopes
nor thematchingpolytopes associatedwith complete graphs admit polynomial size extended formulations that are invariant
under permuting the nodes of the graph. These techniques can, for instance, be extended to prove that the same holds for
the polytopes associated with cycles or matchings of logarithmic size in complete graphs, which do, however, have non-
symmetric extended formulations of polynomial size [22], as well as to show that the permutahedra do not have symmetric
extended formulations of sub-quadratic size [28].

Asking for the smallest size xc(P) of an arbitrary extended formulation of a polytope P , one finds that it suffices to
consider extended formulations that define bounded polyhedra Q , i.e., polytopes (see [10,19]). Indeed, if Q is an unbounded
polyhedron that is mapped to the polytope P by the linear map π , then the recession cone of Q is contained in the kernel
of π (as π(Q ) = P is bounded). Thus, the pointed polyhedron Q ′

= Q ∩ L with L being the orthogonal complement of
the lineality space of Q satisfies π(Q ′) = P as well. If Q ′ is bounded, we are done. Otherwise, choosing some vector a that
satisfies ⟨a, x⟩ > 0 for all non-zero elements of the recession cone of Q ′ and some β ∈ R such that β > ⟨a, v⟩ holds for all
vertices v of Q ′, we have that Q ′′

:= {x ∈ Q ′
: ⟨a, x⟩ = β} is a polytope with π(Q ′′) = P .

Therefore, defining an extension of a polytope P to be a polytope Q along with an affine projection that maps Q to P , the
extension complexity xc(P) of P equals the minimal number of facets of all extensions of P (where we can even restrict our
attention to full dimensional extensions). Note that since a polytope is the set of all convex combinations of its vertices, it
has a simplex with the same number of vertices as an extension, showing that xc(P) is at most theminimum of the numbers
of vertices and facets of P .

In the same paper [35] where he established the abovementioned lower bounds on symmetric extended formulations for
matching and traveling salesman polytopes, Yannakakis essentially also showed that the extension complexity of a polytope
P equals the nonnegative rank of a slack matrix of P , where the latter is a nonnegative matrix whose rows and columns are
indexed by the facets and vertices of P , respectively, storing in each row the slacks of the vertices in an inequality defining the
respective facet, and the nonnegative rank of a nonnegativematrixM is the smallest number r such thatM can bewritten as
a product of two nonnegative matrices with r columns and r rows, respectively. (See [25], or [2] and the references therein.)
Such a nonnegative factorization readily induces a covering of the set supp(M) of non-zero positions of M by r rectangles,
i.e., sets formed as the cartesian product of subsets of the row and of the column indices. Thus, the smallest number of
rectangles that cover supp(M) (the rectangle covering number of M) is a lower bound on the nonnegative rank of M , and
hence, on the extension complexity of P ifM is the slack matrix of P . Rectangle covering is the same concept as covering the
edges of a bipartite graph by bicliques (e.g., [8]), and it also coincides with factorizing a Boolean matrix (e.g., [6,16]).

In fact, almost all techniques to find lower bounds on the extension complexity of polytopes are combinatorial in the
sense that they yield lower bounds on the rectangle covering numbers of slack matrices rather than exploiting the true
numbers in the matrices. The main goal of this paper is to present current knowledge on the concept of rectangle covering
numbers in particular with respect to its relation to the extension complexity of polytopes and to add several results both
on lower bounds on rectangle covering number (providing lower bounds on the extension complexity of certain polytopes)
as well as on upper bounds (revealing limitations of this approach to find lower bounds on the extension complexity of
polytopes). Though the paper is written from the geometric point of view, we hope that it may also be useful for people
working on questions concerning the nonnegative rank from a more algebraic point of view.

The paper starts by describing (in Section 2) the relation between rectangle coverings and extensions both in the pure
combinatorial setting of embeddings of face lattices as well as via the characterization of the extension complexity as
the nonnegative rank of slack matrices. Here, we also give geometric explanations of Yannakakis’ algebraic result relating
extensions and nonnegative factorizations. We then give some results on upper bounds on rectangle covering numbers. For
instance, we show that the rectangle covering number of slackmatrices of polytopeswith n vertices and atmost k vertices in
every facet is bounded byO(k2 log n) (Proposition 3.2). In Section 4we briefly describe the connection between the rectangle
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covering number of a nonnegative matrix and deterministic as well as nondeterministic communication complexity. While
the relation to deterministic communication complexity theory had already been used by Yannakakis [35], recent results
of Huang and Sudakov [18] on nondeterministic communication complexity have interesting implications for questions
concerning extension complexity as well. In Section 5 we then present several techniques to derive lower bounds on
rectangle covering numbers, as well as some new results obtained by using these techniques. We start by proving that the
logarithm of the number of faces of a polytope P is not only a lower bound on its extension complexity (as already observed
by Goemans [14]) but also on the rectangle number of a slack matrix of P . Observing that the rectangle covering number of
a nonnegative matrix is the chromatic number of the rectangle graph of the matrix, we interpret the fooling set bound (see
Dietzfelbinger et al. [7]) as the clique number of that graph. Exploiting that bound, we show, for instance, that for both the
cube as well as for the Birkhoff polytope the extension complexity equals the number of facets (Propositions 5.9 and 5.10).
However, we also show that for no d-dimensional polytope the clique bound can yield a better lower bound on the extension
complexity than (d + 1)2. We also treat (in Section 5.4) the relation between the independence ratio of the rectangle graph
and the concept of generalized fooling sets (due to Dietzfelbinger et al. [7]), and we prove that for d-dimensional neighborly
polytopes with Ω(d2) vertices the rectangle covering number (and thus the extension complexity) is bounded from below
by Ω(d2).

We close this introduction with a few remarks on notation. We only distinguish between row and column vectors in the
context of matrix multiplications, where, as usual, vectors are meant to be understood as column vectors. For a matrix M ,
we denote by Mi,⋆ and M⋆,j the vectors in the ith row and in the jth column of M , respectively. All logarithms are meant to
refer to base two.

2. Projections and derived structures

2.1. Lattice embeddings

Let us denote byL(P) the face lattice of a polytope P , i.e., the set of faces of P (including the non-proper faces∅ and P itself)
partially ordered by inclusion. The following proposition describes the relation between the face lattices of two polytopes
one ofwhich is a projection of the other. The statement certainly is not new, but aswe are not aware of any explicit reference
for it, we include a brief proof. An embedding of a partially ordered set (S, 6) into a partially ordered set (T , ⊑) is a map f
such that u 6 v if and only if f (u) ⊑ f (v). Notice that every embedding is injective.

Proposition 2.1. If Q ⊆ Re and P ⊆ Rd are two polytopes, and π : Re
→ Rd is an affine map with π(Q ) = P, then the map

that assigns h(F) := Q ∩ π−1(F) to each face F of P defines an embedding of L(P) into L(Q ).

Proof. For any face F of P defined by an inequality ⟨a, x⟩ 6 β , we have ⟨a, π(y)⟩ 6 β for all y ∈ Q with equality if and only
if π(y) ∈ F holds. Thus, h(F) is indeed a face of Q , defined by the linear inequality ⟨a, π(y)⟩ 6 β . Moreover, h is clearly an
embedding. �

Remark 2.2. From the definition of h, we see that h(F ∩G) = h(F)∩h(G) holds for all faces F ,G. We call a lattice embedding
hwith this property meet-faithful. Clearly, not all lattice embeddings are meet-faithful.

Fig. 2 illustrates the embedding from Proposition 2.1. In the figure, P is a 4-dimensional cross-polytope, Q is a
7-dimensional simplex and π is any affine projection mapping the 8 vertices of Q to the 8 vertices of P . Denoting by ei
the ith unit vector, we have Q = conv{0, e1, . . . , e7} ⊆ R7, P = conv{e1, −e1, . . . , e4, −e4} ⊆ R4 and for instance
π(0) = e1, π(e1) = −e1, . . . , π(e7) = −e4. As the figure suggests correctly, constructing a small extended formulation
for a polytope P means to hide the facets of P in the fat middle part of the face lattice of an extension with few facets.

2.2. Slack representations

Let P be a polytope in Rd. Let Ax 6 b be a system of linear inequalities such that

P = {x ∈ Rd
: Ax 6 b},

and letm denote the number of inequalities involved in Ax 6 b. The slack vector of a point x ∈ Rd is the vector b− Ax ∈ Rm,
and the slack map of P w.r.t. Ax 6 b is the affine map σ : Rd

→ Rm that maps each vector to its slack vector. We call the
polytope P̃ := σ(P), which is the image of P under the slack map σ , the slack representation of P w.r.t. Ax 6 b. Clearly the
affine hull aff(P̃) of P̃ is the image of the affine hull aff(P) of P under σ . We call aff(P̃) the slack space of P w.r.t. Ax 6 b. Note
that the polytope P̃ is affinely isomorphic to the polytope P and P̃ = aff(P̃) ∩ Rm

+
.

A set of r nonnegative vectors T := {t1, . . . , tr} ⊆ Rm
+
is called a slack generating set of P w.r.t. Ax 6 b of size r if every

point in P̃ can be expressed as a nonnegative combination of the vectors in T . Then the following system
r

k=1

λktk ∈ aff(P̃) and λk > 0 for all k ∈ [r]
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Fig. 2. Embedding of the face lattice of the 4-dimensional cross-polytope into the face lattice of the 7-dimensional simplex.

provides an extended formulation of P̃ of size r via the projectionmapλ →
r

k=1 λktk. Since P and P̃ are affinely isomorphic,
this also yields an extension of P of size r , which is called a slack extension of P w.r.t. Ax 6 b.

Lemma 2.3. If the inequality ⟨c, x⟩ 6 δ is valid for a polytope P := {x ∈ Rd
| Ax 6 b} with dim(P) > 1, then it is a nonnegative

combination of the inequalities of the system Ax 6 b defining P.

Proof. By Farkas’s lemma, because P ≠ ∅, there exists δ′ 6 δ such that ⟨c, x⟩ 6 δ′ is a nonnegative combination of the
inequalities of Ax 6 b. Now let i be an index such that min{


Ai,⋆, x


| x ∈ P} < max{


Ai,⋆, x


| x ∈ P} = bi. Such an index

exists because dim(P) > 1. Letting b′

i := min{

Ai,⋆, x


| x ∈ P}, we see that the inequality −


Ai,⋆, x


6 −b′

i is valid for P .
By Farkas’s lemma, because of the minimality of b′

i , this last inequality is a nonnegative combination of the inequalities of
Ax 6 b. By adding the inequality


Ai,⋆, x


6 bi and then scaling by (bi−b′

i)
−1, we infer that 0 6 1 is a nonnegative combination

of the inequalities of Ax 6 b. After scaling by δ − δ′ and adding the inequality ⟨c, x⟩ 6 δ′, we conclude that ⟨c, x⟩ 6 δ is a
nonnegative combination of the inequalities of Ax 6 b. �

Lemma 2.4. Let P := {x ∈ Rd
| Ax 6 b} be a polytope with dim(P) > 1. If the polytope P has f facets, then P has a slack

generating set of size f w.r.t. Ax 6 b.

Proof. Let m and r denote the total number and the number of nonredundant inequalities of Ax 6 b respectively. W.l.o.g.,
assume that these r nonredundant inequalities come first in the system Ax 6 b. By Lemma 2.3, each of the m − r last
inequalities of Ax 6 b is a nonnegative combination of the r first inequalities of Ax 6 b. This implies that, for each i ∈ [m]\[r],
there are nonnegative coefficients tk,i ∈ R+ such that

Ai,⋆ =

r
k=1

Ak,⋆tk,i and bi =

r
k=1

bktk,i.

By letting tk,i := 1 if i = k and tk,i := 0 for i ∈ [r], the above equations hold for all i ∈ [m]. This defines a set T := {t1, . . . , tr}
of nonnegative vectors tk ∈ Rm

+
, k ∈ [r].

To show that T is a slack generating set, consider for any point x ∈ P the nonnegative combination

r
k=1


bk −


Ak,⋆, x


tk. (1)

For i ∈ [m], the ith coordinate of this vector equals

r
k=1


bk −


Ak,⋆, x


tk,i =

r
k=1

bktk,i −


r

k=1

Ak,⋆tk,i, x


= bi −


Ai,⋆, x


,

thus (1) equals the slack vector of x.
Moreover, in (1) the coefficients corresponding to inequalities that hold with equality for all points of P can be chosen to

be zeros. Thus the corresponding vectors can be removed from T , resulting in a slack generating set of size f . �
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Fig. 3. The four polytopes P, P̃,Q and Q̃ and the maps between them.

Theorem 2.5. The extension complexity of a polytope P with dim(P) > 1 is equal to the minimum size of a slack generating set
of P w.r.t. any given system Ax 6 b defining P.

Proof. For an extension Q ⊆ Re of P of size r we have to show that there is a slack generating set of the polytope P of
size r . Since the polytopes P and P̃ are affinely isomorphic, Q is an extension of the polytope P̃ , i.e there exists an affine map
π : Re

→ Rm such that π(Q ) = P̃ . Let ci ∈ Re, i ∈ [m] and gi ∈ R be such that π(y)i = gi − ⟨ci, y⟩. Note that the inequality
⟨ci, y⟩ 6 gi is valid for Q , because π(Q ) ⊆ P̃ ⊆ Rm

+
.

Now, consider a system Cy 6 g of n linear inequalities describing Q such that the first m inequalities of this system are
⟨c1, y⟩ 6 g1, . . . , ⟨cm, y⟩ 6 gm, and a corresponding slack map τ : Re

→ Rn. Again, Q̃ := τ(Q ) is affinely isomorphic to Q .
Therefore, Q̃ is also an extension of P̃ . Indeed, the projection ρ : Rn

→ Rm to the firstm coordinates maps Q̃ onto P̃ , because
π = ρ ◦ τ (see Fig. 3).

By Lemma 2.4 there is a slack generating set {t1, . . . , tr} ⊆ Rn
+
for Q of size r . We claim that stripping the last n − m

coordinates of these vectors results in a slack generating set {ρ(t1), . . . , ρ(tr)} of the polytope P .
Indeed, consider a point x ∈ P and its slack vector σ(x) ∈ P̃ . Because P̃ ⊆ π(Q ) there is a point y ∈ Q such that

π(y) = σ(x). Because {t1, . . . , tr} is a slack generating set of Q , there exist nonnegative coefficients λ1, . . . , λr ∈ R+ such
that τ(y) =

r
k=1 λktk. From linearity of ρ and π = ρ ◦ τ , we have

σ(x) = π(y) = ρ(τ(y)) = ρ


r

k=1

λktk


=

r
k=1

λkρ(tk)

and thus P has a slack generating set {ρ(t1), . . . , ρ(tr)} of size r . �

Note that in Theorem 2.5 onemay take theminimum over the slack generating sets w.r.t. any fixed system of inequalities
describing P . In particular, all these minima coincide.

2.3. Non-negative factorizations

Again, let P = {x ∈ Rd
: Ax 6 b} be a polytope, where A ∈ Rm×d, b ∈ Rm. Let V = {v1, . . . , vn} ⊆ Rd denote any finite

set such that

P = conv(V ).

The slack matrix of P w.r.t. Ax 6 b and V is the matrix S = (Si,j) ∈ Rm×n
+ with

Si,j = bi −

Ai,⋆, vj


for all i ∈ [m], j ∈ [n].

Note that the slack representation P̃ ⊆ Rm of P (w.r.t. Ax 6 b) is the convex hull of the columns of S.
If the columns of a nonnegative matrix T ∈ Rm×r

+ form a slack generating set of P , then there is a nonnegative matrix
U ∈ Rr×n

+ with S = TU . Conversely, for every factorization S = TU of the slack matrix into nonnegative matrices T ∈ Rm×r
+

and U ∈ Rr×n
+ , the columns of T form a slack generating set of P .

Therefore, due to Theorem 2.5, constructing an extended formulation of size r for P amounts to finding a rank-r
nonnegative factorization of the slack matrix S, that is a factorization S = TU into nonnegative matrices T with r columns
and U with r rows. In particular, the following result follows, which is essentially due to Yannakakis [35] (he proved that
extension complexity and nonnegative rank are within a factor of two of each other, when the size of an extension is defined
as the sum of the number of variables and number of constraints defining the extension).

Theorem 2.6 (See Yannakakis [35]). The extension complexity of a polytope P (which is neither empty nor a single point) is equal
to the nonnegative rank of any of its slack matrices. In particular, all the slack matrices of P have the same nonnegative rank.

Remark 2.7. It is obvious from the definition that the extension complexity is monotone on extensions: if polytope Q is an
extension of polytope P , then xc(Q ) > xc(P). From Theorem 2.6, we see immediately that the extension complexity is also
monotone on faces: if polytope P has F as a face, then xc(P) > xc(F) because we can obtain a slack matrix of F from a slack
matrix of P by deleting all columns that correspond to points of P which are not in F .
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A nonnegative matrix T is the first factor in a nonnegative factorization of a slack matrix of P if and only if the columns
of T form a slack generating set of P . In order to characterize the second factors of such nonnegative factorizations, let us
consider an extension Q of P with projection π and some set V = {v1, . . . , vn} with P = conv(V ). A section is a map
s : V → Q such that π(s(x)) = x holds for all x ∈ V . Clearly, every extension possesses a section map.

Recall that (Rn)∗ denotes the dual vector space of Rn, which we here regard as the set of all row vectors of size n. For an
inequality ⟨c, y⟩ 6 g that is valid for Q , we construct a nonnegative row vector in (Rn)∗

+
(the nonnegative orthant in (Rn)∗),

whose jth coordinate equals g−

c, s(vj)


and call it the section slack covector associatedwith ⟨c, y⟩ 6 g w.r.t. set V . A setU of

nonnegative row vectors in (Rn)∗
+
is a complete set of section slack covectors if there is some extended formulation for P along

with some section such that U is precisely the set of section slack covectors associated with the inequalities in the extended
formulation. A nonnegative matrix U is the second factor in a nonnegative factorization of a slack matrix of P if and only if
the rows of U form a complete set of section slack covectors (both w.r.t. to the same set V with P = conv(V )). From this, one
in particular derives (again using Farkas’s Lemma) the following characterization, where the slack covector associated with
some valid inequality ⟨a, x⟩ 6 b for P = conv(V ) is the nonnegative row vector in (Rn)∗

+
whose jth coordinate is b −


a, vj


.

Proposition 2.8. A set U ⊆ (Rn)∗
+
is a complete set of section slack covectors for P = conv(V ) (with 1 6 |V | < ∞) if and only

if every slack covector associated with a valid inequality for P can be expressed as a nonnegative combination of the elements
of U.

2.4. Rectangle coverings

According to Theorem 2.6, finding lower bounds on the extension complexity of a polytope amounts to finding lower
bounds on the nonnegative rank of its slack matrices. Not surprisingly, determining the nonnegative rank of a matrix is a
hard problem from the algorithmic point of view. Indeed, it is NP-hard to decide whether the nonnegative rank of a matrix
equals its usual rank [34] (where, of course, the first is never smaller than the second).

One way to bound the nonnegative rank rank+(M) from below is to observe that a nonnegative factorization M = TU ,
where T has r columns and U has r rows, yields a representation

M =

r
k=1

T⋆,kUk,⋆

of M as a sum of r nonnegative rank-1 matrices T⋆,kUk,⋆. Denoting by supp(·) the support of a vector or of a matrix (i.e., the
subset of indices where the argument has a nonzero entry), we obviously have

supp(M) =

r
k=1

supp(T⋆,kUk,⋆)

since both T and U are nonnegative.
A rectangle is a set of the form I × J , where I and J are subsets of the row respectively column indices of M . A rectangle

covering of M is a set of rectangles whose union equals supp(M). It is important to notice that all the rectangles in any
rectangle covering of M are contained in the support of M . The rectangle covering number of M is the smallest cardinality
rc(M) of any rectangle covering ofM . Clearly, we have

rc(M) 6 rank+(M) (2)

for all nonnegative matricesM since

supp(T⋆,kUk,⋆) = supp(T⋆,k) × supp(Uk,⋆)

holds for each k ∈ [r]. In particular, when M = S is some slack matrix of the polytope P (neither empty nor a single point),
then by Theorem 2.6 we have

rc(S) 6 rank+(S) = xc(P).

Like rank+(S) = xc(P), the rectangle covering number rc(S) is actually independent of the actual choice of the slack
matrix S of P; see Lemma 2.10 below.

Let us call the support matrix suppmat(S) of S the 0/1-matrix arising from S by replacing all nonzero-entries by ones.
Clearly, we have rc(S) = rc(suppmat(S)). The rectangles that can be part of a rectangle covering of S are called 1-rectangles
because any such rectangle induces a submatrix of suppmat(S) that contains only one-entries.

Furthermore, any 0/1-matrix whose rows are indexed by some set F1, . . . , Fm of faces of P including all facets and whose
columns are indexed by some set G1, . . . ,Gn of nonempty faces of P including all vertices such that there is a one-entry at
position (Fi,Gj) if and only if face Fi does not contain face Gj is called a non-incidence matrix for P . Associating with every
inequality in Ax 6 b the face of P it defines and with every point in V the smallest face of P it is contained in, one finds
that the set of support matrices of slack matrices of P equals the set of non-incidence matrices of P (up to adding/removing
repeated rows or columns).

Clearly, adding a row or a column to a nonnegative matrix does neither decrease the rectangle covering number nor the
nonnegative rank. The following result on the rectangle covering number is easy to see.
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Lemma 2.9. The rectangle covering number remains unchanged if one adds a row or a column whose support is the union of the
supports of some existing rows or columns, respectively.

Now, we can prove that all non-incidence matrices, and thus all slack matrices, of a polytope (of dimension at least 1)
have the same rectangle covering number.

Lemma 2.10. All non-incidence matrices of a polytope (which is neither empty nor a single point) have the same rectangle
covering number.

Proof. Letting P denote the polytope in the statement of the lemma, consider a non-incidence matrixM for P . Every proper
face F of P contains exactly those faces of P that are contained in all facets of P that contain F . For the non-incidence matrix
M , this implies that the support of the row corresponding to F is exactly the union of the supports of the rows corresponding
to the facets containing F .

Similarly, every nonempty face G of P is contained in exactly those faces of P in which all vertices of G are contained. This
implies that the support of the column corresponding to G is exactly the union of the supports of the rows corresponding to
the vertices contained in F .

The result then follows from Lemma 2.9 because the rectangle covering number of M equals the rectangle covering of
the submatrix of M corresponding to the facets and vertices of P , and thus does not depend on M . (Notice that there might
be a row in M for F = P , but this row is identically zero.) �

Denoting by rc(P) the rectangle covering number of any non-incidence matrix for P , we have

rc(P) 6 xc(P). (3)

When studying the rectangle covering number, we may freely choose the non-incidence matrix we consider. The most
natural choice is the facet vs. vertex non-incidence matrix, since it appears as a submatrix of every non-incidence matrix.
(The rows of this 0/1-matrix are indexed by the facets, and the columns are indexed by the vertices. The entry corresponding
to a facet–vertex pair is 1 if and only if the facet does not contain the vertex.) Nevertheless, wewill sometimes consider non-
incidence matrices with more rows.

2.5. Rectangle coverings, Boolean factorizations and lattice embeddings

As mentioned before, a rank-r nonnegative factorization of a nonnegative matrixM can be regarded as a decomposition
ofM into a sum of r nonnegative rank-1matrices. Similarly, we can regard a rectangle covering of a Boolean (or 0/1-) matrix
M with r rectangles as a rank-r Boolean factorization, that is a factorizationM = TU expressingM as the Boolean product of
two Boolean matrices T with r columns and U with r rows. Furthermore, a rank-r Boolean factorization of a Boolean matrix
M is equivalent to an embedding of the relation defined by M into the Boolean lattice 2[r] (that is, the set of all subsets of
[r], partially ordered by inclusion), in the sense of the following lemma.

Lemma 2.11. Let M be a m × n Boolean matrix. Then M admits a rank-r Boolean factorization M = TU if and only if there are
functions f : [m] → 2[r] and g: [n] → 2[r] such that Mij = 0 if and only if g(j) ⊆ f (i) for all (i, j) ∈ [m] × [n].

Proof. This follows immediately by interpreting the ith row of the left factor T as the incidence vector of the complement of
the set f (i) and the jth column of the right factor U as the incidence vector of the set g(j). �

From Lemma 2.11, we can easily conclude a first lattice-combinatorial characterization of the rectangle covering number
rc(P) of a polytope P by takingM to be a non-incidence matrix of P .

Theorem 2.12. Let P be a polytope with dim(P) > 1. Then rc(P) is the smallest r > 1 such that L(P) embeds into 2[r].

For a given poset, the smallest number r such that P embeds into the Boolean poset 2[r] is known as the 2-dimension of
the poset (see e.g., [17] and the references therein). We note that, independently, Gouveia et al. [15] have found a similar
connection.

Proof of the Theorem 2.12. Let F1, . . . , Fm denote the facets of P , let v1, . . . , vn denote the vertices of P and let M denote
the facet vs. vertex non-incidence matrix for P .

Suppose first that rc(P) 6 r , that is, M has a rank-r Boolean factorization. From maps f and g as in Lemma 2.11, we
define a map h from L(P) to 2[r] by letting h(F) :=


i:F⊆Fi

f (i). It is clear that F ⊆ G implies h(F) ⊆ h(G). Now assume
h(F) ⊆ h(G). Pick a vertex vj of F . We have Mij = 0 and thus g(j) ⊆ f (i) for all facets Fi containing F . Hence, g(j) ⊆ h(F).
Because h(F) ⊆ h(G), we have g(j) ⊆ f (i) and thus Mij = 0 for all facets Fi containing G. Since vj is arbitrary, this means
that every facet containing G contains all vertices of F , which implies F ⊆ G. Therefore, h is an embedding.

Next, if h is an embedding of L(P) into 2[r], we can simply define f (i) := h(Fi) and g(j) := h({vj}). These maps satisfy
the conditions of Lemma 2.11; henceM has a rank-r Boolean factorization and rc(P) 6 r . The theorem follows. �

We immediately obtain a second lattice-combinatorial characterization of the rectangle covering number of a polytope.
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Corollary 2.13. The rectangle covering number rc(P) of a polytope P with dim(P) > 1 is equal to the minimum number of facets
of a polytope Q into whose face lattice L(Q ) the face lattice L(P) of P can be embedded.

Corollary 2.13 follows from Theorem 2.12 and Lemma 2.14 below.

Lemma 2.14. If Q is a polytope with r > 2 facets then there is an embedding of L(Q ) into 2[r].

Proof. We denote by G1, . . . ,Gr the facets of Q , and define a map h from L(Q ) to 2[r] by letting h(G) := {k ∈ [r] | G ⊈ Gk}

for all faces G of Q . It is easily verified that h is an embedding. �

The embedding L(P) → L(Q ) given by Corollary 2.13 is not always meet-faithful. It is unclear whether requiring that
the embedding be meet-faithful would give a (much) better bound.

Remark 2.15. Similarly to the extension complexity, the rectangle covering number is easily shown to be monotone on
extensions and on faces. If the polytope Q is an extension of the polytope P , then we may infer, e.g., from Proposition 2.1
and Corollary 2.13 that rc(Q ) > rc(P). Moreover, by reasoning on the slack matrices directly, we see that rc(P) > rc(F)
whenever polytope P has F as a face.

3. Upper bounds on the rectangle covering number

In this section, we discuss some examples of polytopes for which small rectangle coverings can be found, as well as
methods for constructing such rectangle coverings. These examples illustrate cases where the rectangle covering bound
shows its limitations. Cases where the rectangle covering bound can be successfully applied to obtain interesting lower
bounds on the extension complexity are discussed in Section 5.

3.1. The perfect matching polytope

The perfect matching polytope Pmatch(n) is defined as the convex hull of characteristic vectors of perfect matchings in the
complete graph K n

= (Vn, En). A linear description of the perfect matching polytope Pmatch(n) is as follows [9]:

Pmatch(n) = {x ∈ REn : x(δ(v)) = 1 for all v ∈ Vn, x(δ(S)) > 1 for all S ⊆ Vn, 3 6 |S| 6 n − 3, |S| odd
xe > 0 for all e ∈ En },

where δ(S) denotes all edges in the graph with exactly one endpoint in S, δ(v) := δ({v}), and x(F) :=


e∈F xe for all edge
sets F ⊆ En. Currently, no polynomial-size extension is known for the perfect matching polytope Pmatch(n). Moreover, it
was shown that under certain symmetry requirements no polynomial-size extension exists [35,22]. On the other side it
is possible that a non-symmetric polynomial-size extension for the perfect matching polytope can be found [22]. In this
context any non-trivial statement about the extension complexity of Pmatch(n) is interesting.

The non-incidence matrix M (w.r.t. the above system of constraints and the characteristic vectors of perfect matchings)
of the perfect matching polytope has Θ(n2) rows corresponding to the non-negative constraints and Θ(2n) rows
corresponding to the inequalities indexed by odd subsets of vertices of K n. A facet corresponding to some odd set S and
a vertex corresponding to some matching are non-incident if and only if the matching has more than one edge in δ(S).

Lemma 3.1. The rectangle covering number rc(Pmatch(n)) is O(n4).

Proof. The non-zero entries in rows corresponding to the non-negative constraints can be trivially covered by O(n2)
1-rectangles of height one. Less obvious is the fact that the non-zero entries corresponding to the odd-subset inequalities
can be covered by O(n4) 1-rectangles [35]. For this one considers the rectangles Re1,e2 = Ie1,e2 × Je1,e2 indexed by unordered
pair of edges e1, e2, where the set Ie1,e2 consists of all odd sets S such that e1, e2 ∈ δ(S) and the set Je1,e2 consists of all the
matchings containing both edges e1, e2. �

Thus in the case of Pmatch(n) we cannot obtain any lower bound better than O(n4) solely by reasoning on rectangle
coverings.

3.2. Polytopes with few vertices on every facet

We consider a polytope P with n vertices such that every facet of P contains at most k vertices, and its facet vs. vertex
non-incidencematrixM . Each row ofM has atmost k zeros, and at least n−k ones.We nowprove that the rectangle covering
number of such a polytope is necessarily small.

Proposition 3.2. If P is a polytope with n vertices and at most k vertices on each facet, then rc(P) = O(k2 log n).

Before giving the proof, we state the following lemma that is the main ingredient of the proof.
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Lemma 3.3. Let M be the 0/1 matrix with rows indexed by {S ⊆ [n] : |S| 6 k} and columns indexed by {T ⊆ [n] : |T | 6 ℓ},
where ℓ 6 k 6 n, such that the entry MS,T is non-zero if and only if the sets S, T are disjoint. Then rc(M) = O((k + ℓ)eℓ(1 +

k/ℓ)ℓ log n).

Proof. Consider rectangles IV × JV , V ⊆ [n], where IV := {S ⊆ [n] : S ⊆ V , |S| 6 k} and JV := {T ⊆ [n] : T ∩V = ∅, |T | 6
ℓ}. Obviously, every rectangle IV × JV , V ⊆ [n] is contained in supp(M).

Pick a set V ⊆ [n] by selecting the points from [n] independently with probability p, for some p ∈ [0, 1]. For a fixed pair
(S, T ) of disjoint sets S, T ⊆ [n] with |S| 6 k and |T | 6 ℓ, the probability to be covered is at least

q := pk(1 − p)ℓ,

thus choosing the probability p equal to k
k+ℓ

to maximize the value q we get

q =


k

k + ℓ

k 
1 −

k
k + ℓ

ℓ

> e−ℓ


ℓ

k + ℓ

ℓ

.

Now, let us bound the natural logarithm of the expected number of entries from supp(M) which are not covered if we
choose independently r such rectangles. An upper bound on this quantity is:

ln

(n + 1)k(n + 1)ℓ(1 − q)r


6 (k + ℓ) ln(n + 1) + r ln(1 − q)
6 (k + ℓ) ln(n + 1) − rq

6 (k + ℓ) ln(n + 1) − re−ℓ


ℓ

k + ℓ

ℓ

.

If the above upper bound for the logarithm of the expected number of not covered entries from supp(M) is negative,
we can conclude that there exists a rectangle cover for the matrix M of size r . Thus there exists a rectangle cover of size
O((k + ℓ)eℓ(1 + k/ℓ)ℓ log n). �

Proof of Proposition 3.2. Let M be the facet vs. vertex non-incidence matrix of P . It suffices to show that rc(M) =

O(k2 log n). We may extendM by adding extra rows in order to obtain a matrix in which each binary vector of size nwith at
most k zeros appears as a row. Obviously, this operation does not decrease rc(M). The result then follows from Lemma 3.3
by taking ℓ := 1. �

The most natural case where Proposition 3.2 applies is perhaps when P is a simplicial d-dimensional polytope with n
vertices. For such a polytope there is a rectangle covering of the non-incidence matrix with O(d2 log n) rectangles.

3.3. The edge polytope

The edge polytope Pedge(G) of a graph G is defined as the convex hull of the incidence vectors in RV (G) of all edges of G.
Thus Pedge(G) is a 0/1-polytopewith |E(G)| vertices in RV (G). Consider a stable set S of G. Denoting byN(S) the neighborhood
of S in G, we see that the inequality

x(S) − x(N(S)) 6 0 (4)

is valid for Pedge(G). It can be shown [20] that these inequalities, together with xv > 0 for v ∈ V (G) and x(V (G)) = 2, form
a complete linear description of Pedge(G).

3.3.1. A sub-quadratic size extension for all graphs
The following lemma provides an upper bound not just on the rectangle covering number of Pedge(G), but also on the

extension complexity of Pedge(G).

Lemma 3.4. For every graph G with n vertices there exists an extension of the edge polytope Pedge(G) of size O(n2/ log n).

Proof. LetH denote a biclique (i.e., complete bipartite graph)with bipartitionW ,U . The edge polytope P(H) ofH has a linear
description of sizeO(|V (H)|). Namely, in addition to the equalities x(W ) = 1 and x(U) = 1, the linear description consists of
the nonnegativity constraints xv > 0 for v ∈ V (H). From any covering of the edges of G by bicliquesH1, . . . ,Ht (withHi ⊆ G
for all i),we can construct an extension of Pedge(G)of the sizeO(t+|V (H1)|+· · ·+|V (Ht)|)using disjunctive programming [1].
Since t 6 |V (H1)| + · · · + |V (Ht)| and since there is such a covering with |V (H1)| + · · · + |V (Ht)| = O(n2/ log n) [32] the
lemma follows. �
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3.3.2. Dense graphs
For two matrices A and B of the same size, denote by A � B the entry-wise (or Hadamard) product: (A � B)i,j = Ai,jBi,j. The

following statements are easy to verify.

Lemma 3.5. (a) For any nonnegative real matrices we have rank+(A � B) 6 rank+(A) rank+(B).
(b) For any real matrices we have rc(A � B) 6 rc(A) rc(B).

Let G be a graph with n vertices. We denote S(G) the set of all independent sets of G. The slack matrix of Pedge(G) has
two types of rows: those which correspond to inequalities of the form (4) for S stable in G, and those which correspond to
nonnegativity inequalities xv > 0 for v ∈ V (G). LetM be the support of the submatrix of the slackmatrix of Pedge(G) induced
by the rows corresponding to stable sets S; letM(1) be the S(G) × E(G)-matrix withM(1)

S,e = 1 if e ∩ S = ∅ and 0 otherwise;
and letM(2) be the S(G) × E(G)-matrix withM(2)

S,uv = 1 if u or v has a neighbor in S. Then we have

M = M(1) � M(2). (5)

Lemma 3.6. For the matrix M(2) defined above we have rc(M(2)) 6 n.

Proof. For each v ∈ V (G), define a 1-rectangle Iv × Jv . The set Iv consists of all stable sets that contain a neighbor of v, and
the set Jv consists of all edges incident to v. These n rectangles define a rectangle covering ofM(2). �

Now, we can prove an upper bound on rc(P(G)).

Proposition 3.7. Denoting by α(G) the stability number of G, the support of the slack matrix of the edge polytope of G admits a
rectangle cover of size

O(α(G)3n log n).

Proof. Lemma 3.3 for ℓ := 2 and k := α(G) implies rc(M(1)) = O(α(G)3 log n). The result follows by combining Lemmas 3.5
and 3.6. �

Combining Turán’s Theorem [31], which states that |E(G)| > |V (G)|2

2α(G)
, with Proposition 3.7, we obtain the final result of this

section: there exists a nontrivial class of graphs for which the rectangle covering number cannot prove a strong Ω(|E(G)|)
lower bound on the extension complexity.

Corollary 3.8. The support of the slack matrix of the edge polytope of G admits a rectangle cover of size o(|E(G)|) if

α(G) = o


n

log n

1/4


. �

4. Rectangle covering number and communication complexity

The aim of communication complexity is to quantify the amount of communication necessary to evaluate a functionwhose
input is distributed among several players. Since its introduction by Yao in 1979 [36], it became a part of complexity theory. It
was successfully applied, e.g., in the contexts of VLSI design, circuit lower bounds and lower bounds on data-structures [24].

Two players Alice and Bob are asked to evaluate a Boolean function f : A×B → {0, 1} at a given input pair (a, b) ∈ A×B,
where A and B are finite sets. Alice receives the input a ∈ A and Bob receives the input b ∈ B. Both players know the
function f to be evaluated, but none of the players initially has any information about the input of the other player. They
have to cooperate in order to compute f (a, b). Both players can perform any kind of computation. It is only the amount
of communication between them which is limited. In a deterministic protocol, Alice and Bob will exchange bits until one
of them is able to correctly compute f (a, b). The deterministic communication complexity of the function f is the minimum
worst-case number of bits that Alice and Bob have to exchange in order to evaluate f at any given input pair (a, b).

The function f can be encoded via its communicationmatrixM = M(f ) that hasMi,j = f (ai, bj), where ai is the ith element
of A and bj is the jth element of B. It is known [35] that a deterministic protocol of complexity k for f yields a decomposition of
M as a sum of at most 2k rank-one 0/1-matrices, implying rank+(M) 6 2k. In order to apply this for constructing extensions,
via Theorem 2.6, it is necessary for the slack matrix to be binary.

Let G be a graph. The stable set polytope Pstab(G) is the 0/1-polytope in RV (G) whose vertices are the characteristic vectors
of stable sets of G. Because the maximum stable set problem is NP-hard, it is unlikely that a complete description of Pstab(G)
will be found for all graphs G. However, some interesting classes of valid inequalities for Pstab(G) are known. For instance, for
every clique K of G, the clique inequality


v∈K xv 6 1 is valid for Pstab(G). By collecting the slack covectors of each of these

inequalities w.r.t. the vertices of Pstab(G), we obtain a 0/1-matrix M = M(G). This matrix is the communication matrix
of the so-called clique vs. stable set problem (also known as the clique vs. independent set problem). Yannakakis [35] found
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a O(log2 n) complexity deterministic protocol for this communication problem. When the clique inequalities together with
the non-negativity inequalities form a complete linear description of Pstab(G), that is, when G is perfect [4], one obtains an
extension of size 2O(log2 n)

= nO(log n) for Pstab(G), where n denotes the number of vertices of G. For general graphs, M is not
a slack matrix of Pstab(G) but a proper submatrix. Hence rank+(M) only gives a lower bound on the extension complexity
of Pstab(G).

Consider again a Boolean function f : A × B → {0, 1} and a deterministic protocol for computing f . Fix an input pair
(a, b). Given the transcript of the protocol on input pair (a, b), each the players can verify independently of the other player
if the part of the transcript that he/she is responsible for is correct. The transcript is globally correct if and only if it is correct
for both of the players. Thus one way to persuade each player that, say, f (a, b) = 1 is to give them the transcript for (a, b).
If the complexity of the given deterministic protocol is k, then the players can decide whether f (a, b) = 1 or not based on a
binary vector of size k (the transcript). This is an example of a nondeterministic protocol. We give a formal definition in the
next paragraph.

In a nondeterministic protocol, both players are given, in addition to their own input a and b, a proof that is in the form of a
binary vector π of size k (the same for both players). The players cannot communicate with each other. Each of them checks
the proof π , independently of the other, and outputs one bit, denoted by VA(a, π) or VB(b, π). The result of the protocol is
the AND of these two bits, that is, V (a, b, π) := VA(a, π) ∧ VB(b, π). The aim of the protocol is to prove that f (a, b) = 1. In
order to be correct, the protocol should be sound in the sense that if f (a, b) = 0 then V (a, b, π) = 0 for all proofs π , and
complete in the sense that if f (a, b) = 1 then V (a, b, π) = 1 for some proof π . The nondeterministic complexity of f is the
minimum proof-length k in a nondeterministic protocol for f . Letting M = M(f ) denote the communication matrix of f , it
is well-known that the nondeterministic complexity of f is ⌈log(rc(M))⌉; see e.g. [24].

While Yannakakis proved that the deterministic communication complexity of the clique vs. stable set problem is
O(log2 n), the exact deterministic and nondeterministic communication complexities of the clique vs. stable set problem
are unknown. The best result so far is a lower bound of 6

5 log n − O(1) on the nondeterministic complexity obtained by
Huang and Sudakov [18]. They also made the following graph-theoretical conjecture that, if true, would improve this bound
to Ω(log2 n).

Recall that the biclique partition number of a graph G is the minimum number of bicliques (that is, complete bipartite
graphs) needed to partition the edge set of G. Recall also that the chromatic number χ(G) of G is the minimum number of
parts in a partition of the vertex set of G into stable sets.

Conjecture 4.1 (Huang and Sudakov [18]). For each integer k > 0, there exists a graph G with biclique partition number k and
chromatic number at least 2c log2 k, for some constant c > 0.

This conjecture would settle the communication complexity of the clique vs. stable set problem. In terms of extensions,
the result of Huang and Sudakov implies a Ω(n6/5) lower bound on the worst-case rectangle covering number of stable set
polytopes of graphs with n vertices. Moreover, if true, the Huang–Sudakov conjecture would imply a nΩ(log n) lower bound.

5. Lower bounds on the rectangle covering number

In this section, we give lower bounds on the rectangle covering number, and apply them to prove results about the
extension complexity of polytopes. Our general strategy is to focus on a specific submatrix of the slack matrix and then
use simple structural properties of the support of the submatrix. Although much of the underlying geometry is lost in the
process, we can still obtain interesting bounds, which are in some cases tight. Also, we compare the bounds to each other
whenever possible anduseful.We remark thatmost of the bounds discussedhere are knownbounds on thenondeterministic
communication complexity of Boolean functions. Nevertheless, they were never studied in the context of polyhedral
combinatorics.

5.1. Dimension and face counting

Lemma 5.1. Suppose the 0/1-matrix M has h distinct rows. Then rc(M) > log h.

Proof. Since deleting rows does not increase the rectangle covering number, we may assume that M has exactly h rows,
which are all distinct.

We proceed by contradiction, i.e., we assume that there is a collection R of rectangles that covers M and contains less
than log h rectangles. Each such rectangle is of the form I × J , where I is a set of row indices and J is a set of column indices
such thatMi,j = 1 whenever i ∈ I and j ∈ J .

For every row-index i ∈ [h], let Ri denote the set of all rectangles I × J from R such that i ∈ I . Since the number of
rectangles in R is less than log h, there are two distinct row-indices i and i′ such that Ri and Ri′ are equal. Because the
rectangles in R form a covering of the matrix M , it follows that the ith row and the i′th row of M have the same set of
one-entries and are thus equal, a contradiction. �
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Obviously, the same statement holds with ‘‘rows’’ replaced by ‘‘columns’’. It is well-known [14] that the binary logarithm
of the number of faces of a polytope P is a lower bound for the number of facets in an extension of P . This number is in fact
also a lower bound on the rectangle covering number of P . Furthermore, the following chain of inequalities holds.

Proposition 5.2. For a full-dimensional polytope P in Rd with f faces, we have

d + 1 6 log f 6 rc(P).

Proof. The first inequality follows by induction on d. For the second inequality, consider a slack matrix for P with f rows
with the ith row being the slack covector of any inequality defining the ith face of P . The support matrix M of this slack
matrix has f distinct rows. The conclusion now follows from Lemma 5.1. �

5.2. The rectangle graph

Consider a real matrix M . The rectangle graph of M , denoted by G(M), has the pairs (i, j) such that Mi,j ≠ 0 as vertices.
Two vertices (i, j) and (k, ℓ) of G(M) are adjacent if no rectangle contained in supp(M) can be used to cover both (i, j) and
(k, ℓ). This last condition is equivalent to asking Mi,ℓ = 0 or Mk,j = 0. The following result will allow us to interpret most
lower bounds on rc(M) in terms of graphs. We omit the proof because it is straightforward.

Lemma 5.3. For every real matrix M, we have rc(M) = χ(G(M)). �

5.3. Clique number and fooling sets

The clique number ω(G(M)) of the rectangle graph of a realmatrixM is a lower bound to its chromatic number and hence,
by Lemma 5.3, a lower bound on the rectangle covering number of M . A clique in G(M) corresponds to what is known as
a fooling set: a selection of non-zeros in the matrix such that no two of them induce a rectangle contained in supp(M). As
is customary, we denote the clique number of a graph G by ω(G). Analogously, we denote the clique number of G(M) by
ω(M). We can also define the clique number ω(P) of a polytope P as ω(M), for any non-incidence matrix M of P . The next
proposition shows that ω(P) is well-defined.

Proposition 5.4. The clique number ω(M) is independent of the non-incidence matrix M chosen for the polytope P.

Proof. Consider any non-incidence matrix M for P and a fooling set of size q := ω(M). It suffices to show that the
facet–vertex non-incidence matrix of P has a fooling set of size q as well. By reordering rows and columns ofM if necessary,
wemay assume that the fooling set is (F1,G1), . . . , (Fq,Gq). Thus, F1, . . . , Fq and G1, . . . ,Gq are faces of P satisfying: Fi ⊉ Gi
for all i ∈ [q], and Fi ⊇ Gj or Fj ⊇ Gi for all i, j ∈ [q] with i ≠ j. We assume that our fooling set is chosen to maximize the
number of Fi’s which are facets, plus the number of Gi’s which are vertices.

If every Fi is a facet and every Gi is a vertex, we are done because then our fooling set is contained in the facet vs. vertex
submatrix of M . Otherwise, w.l.o.g., there exists an index i such that Fi is not a facet. Let i′ be such that Fi′ is a facet with
Fi′ ⊇ Fi but at the same time Fi′ ⊉ Gi. If i′ > q then we can replace (Fi,Gi) by (Fi′ ,Gi) in the fooling set, contradicting the
choice of the fooling set. Otherwise, i′ 6 q and the fooling set contains a pair of the form (Fi′ ,Gi′). Since Fi′ ⊉ Gi′ , we have
Fi ⊉ Gi′ . Moreover, Fi′ ⊉ Gi by choice of Fi′ . This contradicts the fact that (Fi,Gi), . . . , (Fq,Gq) is a fooling set. �

In this section, by constructing large fooling sets, we can give lower bounds on the extension complexity for a number of
examples, including cubes (in Section 5.3.2) and the Birkhoff polytope (in Section 5.3.3). But before we do that, we will take
a look at the limitations of the clique number as a lower bound for the rectangle covering number. We show that the clique
number of the rectangle graph is always O(d2) for d-dimensional polytopes, and O(d) for simple polytopes.

5.3.1. Limitations of the clique number as a lower bound on the rectangle covering number
Here we give some upper bounds on the sizes of fooling sets. In some cases, these bounds immediately render useless

the fooling set approach to obtain a desired lower bound for the rectangle covering number or the extension complexity of
a polytope. We start with an easy upper bound based on the number of zeros per row.

Lemma 5.5. If every row of M contains at most s zeros, then ω(M) 6 2s + 1.

Proof. If M has a fooling set of size q, then the submatrix of M induced by the rows and columns of the entries belonging
to the fooling set contains at least q(q − 1)/2 zeros. In particular, one row of the submatrix has at least (q − 1)/2 zeros. By
hypothesis, (q − 1)/2 6 s, that is, q 6 2s + 1. �

If every vertex of a polytope is contained in at most s facets, or if every facet of a polytope contains at most s vertices,
then ω(P) = O(s). In particular, for simple or simplicial polytopes, the fooling set lower bound is within a constant factor of
the dimension.

We now give dimensional upper bounds on ω(M). Dietzfelbinger et al. [7] show the following.
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Lemma 5.6 (Dietzfelbinger et al. [7]). For every fieldK and for every 0/1-matrixM, there is no fooling set larger than rankK(M)2.

Although the rank of the non-incidence matrixM of a polytope can be substantially larger than its dimension (this is the
case already for polygons), we can nevertheless prove the following by techniques similar to those of [7].

Lemma 5.7. For every polytope P of dimension d, we have ω(P) 6 (d + 1)2.

Proof. Without loss of generality, assume that P is full-dimensional. Let M be a non-incidence matrix for P = {x ∈

Rd
: Ax 6 b} = conv({v1, . . . , vn}), and q := ω(P). By reordering if necessary, we may assume that (1, 1), . . . , (q, q)

are the vertices of a maximum clique of the rectangle graph of M . Let zi := (bi, −Ai,⋆) ∈ Rd+1, i = 1, . . . , q, and
tj := (1, vj) ∈ Rd+1, j = 1, . . . , q. These vectors have the following properties:

zi, tj

> 0 for all i, j = 1, . . . , q;

⟨zi, ti⟩ > 0 for all i = 1, . . . , q;
zi, tj


= 0 or


zj, ti


= 0 for all i, j = 1, . . . , qwith i ≠ j.

(6)

Now consider the following 2q rank-one matrices: zitTi for i = 1, . . . , q and tjzTj for j = 1, . . . , q. Taking the usual inner
product for matrices ⟨A, B⟩ =


i,j AijBij = Tr(ATB), if i ≠ j, we have

zitTi , tjzTj

= Tr(tizTi tjz

T
j ) = Tr(zTj tiz

T
i tj) = (zTj ti)(z

T
i tj) =


zj, ti

 
zi, tj


= 0

but 
zitTi , tizTi


= ⟨zi, ti⟩ ⟨zi, ti⟩ > 0.

This implies that thematrices z1tT1 , . . . , zqtTq are linearly independent. Sincewe have q linearly independent (d+1)×(d+1)-
matrices, we conclude that q 6 (d + 1)2. �

Remark 5.8. From a construction due to Dietzfelbinger et al. [7], we can infer the existence of a d-dimensional polytope P

with ω(P) = Ω


d

log 4
log 3

. It is an open question which of these bounds can be improved.

We conclude this subsection with an example where the fooling set or clique number bound is particularly bad. Consider
the vertex-facet non-incidence-matrix of a convex polygon with n vertices. This is a n×n 0/1-matrixM withMi,j = 0 if and
only if i is equal to j or j + 1 modulo n. We have ω(M) 6 5, by Lemma 5.5, whereas rc(M) > log n by Proposition 5.2.

5.3.2. The cube
We now apply the fooling set technique to show that d-cubes are ‘‘minimal extensions’’ of themselves. A combinatorial

d-cube is a polytopewhose face lattice is isomorphic to that of the unit cube [0, 1]d. Compare the result of this proposition to
the lower bound one can obtain as the binary logarithm of the number of faces, Proposition 5.2, which is d log(3) ≈ 1.585 d.

Proposition 5.9. If P is a combinatorial d-cube then xc(P) = 2d.

Proof. We obviously haveω(P) 6 xc(P) 6 2d. Below, we prove that equality holds throughout by constructing a fooling set
of size 2d, implying ω(P) > 2d. Since ω(P) only depends on the combinatorial type of P , we may assume that P = [0, 1]d.
To define our fooling set, we carefully select for each facet-defining inequality of P a corresponding vertex. The vertex
corresponding to the inequality xi > 0 is the vertex vi defined as follows:

(vi)j :=


1 if 1 6 j 6 i
0 if i < j 6 d.

For the inequality xi 6 1, take the vertex wi defined as follows:

(wi)j :=


0 if 1 6 j 6 i
1 if i < j 6 d.

One can check that none of the facets of the cube is incident with its corresponding vertex, but that for any two facets at
least one of the corresponding vertices is incident to one of them. �

5.3.3. The Birkhoff polytope
The nth Birkhoff polytope is the set of doubly stochastic n × n matrices or, equivalently, the convex hull of all n × n

permutation matrices. Let P denote the nth Birkhoff polytope. For n = 1, P is a point (and xc(P) is not defined). For n = 2, P
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is a segment and therefore xc(P) = ω(P) = 2. For n = 3, P has 9 facets and 6 vertices, thus xc(P) 6 6. As is easily verified,
the facet vs. vertex non-incidence matrix for P has a fooling set of size 6. Hence, xc(P) = ω(P) = 6.

Proposition 5.10. For n > 4, the extension complexity of the Birkhoff polytope is n2.

Proof. The Birkhoff polytope P is defined by the nonnegativity inequalities xi,j > 0, i, j ∈ [n]0 = {0, . . . , n − 1} (starting
indices from zero will be a bit more convenient for our treatment), and the equations


i xi,j = 1, j ∈ [n0],


j xi,j = 1, i ∈

[n0]. This trivially implies that xc(P) 6 n2. To give a lower bound on the extension complexity, we construct a fooling set of
size n2 in the facet vs. vertex non-incidence matrix of P .

For this, for every inequality xi,j > 0, we define one vertex vi,j such that (vi,j)i,j > 0 by giving a permutation π of [n]0.
Namely, letπ(i) := j andπ(i+1) := j+1 (all indices are to be understoodmodulo n). Moreover, we takeπ(k) := i+j+1−k
whenever k ∉ {i, i + 1}. This defines a permutation, and thus a vertex vi,j of P .

Now, we show that this family of inequality–vertex pairs is a fooling set. By contradiction, let us assume that for two
different inequalities xi,j > 0 and xi′,j′ > 0 we have both (vi,j)i′,j′ = 1 and (vi′,j′)i,j = 1. Letting π and π ′ denote the
permutations of [n]0 associated to vi,j and vi′,j′ respectively, this means that π(i′) = j′ and π ′(i) = j. Because (i, j) ≠ (i′, j′),
we conclude that i+ j+ 1− i′ = j′ or (i′, j′) = (i+ 1, j+ 1), and at the same time i′ + j′ + 1− i = j or (i, j) = (i′ + 1, j′ + 1).
Because 2 ≠ 0 and 3 ≠ 0 modulo n, these conditions lead to a contradiction. �

The Birkhoff polytope can also be described as the convex hull of the characteristic vectors of all perfect matchings of a
complete bipartite graph with n vertices on each side of the bipartition. The nth bipartite matching polytope is the convex
hull of all (not necessarily perfect) matchings of a complete bipartite graph with n vertices on each side. Let P denote the
nth bipartite matching polytope. For n = 1, P is a segment and xc(P) = ω(P) = 2. For n = 2, P has 8 facets and 7 vertices,
thus xc(P) 6 7. We leave to the reader to check that ω(P) > 7, thus xc(P) = ω(P) = 7. For n = 3, P has 15 facets and 34
vertices, thus xc(P) 6 15. It can be checked that P has a fooling set of size 15; hence xc(P) = ω(P) = 15. (To the inequality
xi,j > 0 we associate the matching {(i, j), (i+ 1, j+ 1)} if i ≠ j and {(i, j), (k, ℓ), (ℓ, k)} if i = j and k, ℓ denote the two other
elements of {0, 1, 2}. To the inequality


j xi,j 6 1 we associate the matching {(i + 1, i + 1), (i + 2, i)}. To the inequality

i xi,j 6 1 we associate the matching {(j + 1, j + 1), (j, j + 2)}.) As before, all computations are done modulo n = 3. For
n > 4, an argument similar to the one in the proof of Proposition 5.10 shows the following.

Proposition 5.11. For n > 4, the bipartite matching polytope has extension complexity n2
+ 2n.

Proof (sketch). Again, the given number is a trivial upper bound. To construct a fooling set of this size, for the nonnegativity
inequalities, we take the perfect matchings constructed in the proof of the previous proposition. In addition, for the
inequalities


i xi,j 6 1, we take the vertex wj with (wj)k+1,k = 1 for all k ≠ j; for the inequalities


j xi,j 6 1, we take

the vertex ui with (ui)k,k+1 = 1 for all k ≠ i. �

5.4. Independence ratio, rectangle sizes, and generalized fooling sets

Denote by α(G) the maximum cardinality of an independent vertex set in G. The number |G|

α(G)
is a lower bound on the

chromatic number (|G| stands for the number of vertices inG). Moreover, taking induced subgraphsmay improve the bound:
The number

ι(G) := max
U⊆V (G)
U≠∅

|U|

α(G[U])
,

where G[U] denotes the subgraph of G induced by the vertices in U is sometimes called the independence ratio of G, and is
also a lower bound on the chromatic number of G.

In the context of the rectangle covering number, these bounds are known under different names. The following lemmas
will make that clear. We leave the easy proofs to the reader.

Lemma 5.12. For a real matrix M, the maximum number of entries in a rectangle contained in supp(M) equals α(G(M)). �

The concept of generalized fooling sets has been proposed by Dietzfelbinger et al. [7] as a lower bound on the
nondeterministic communication complexity of a Boolean function. In the graph-coloring terminology, a k-fooling set is
an induced subgraph H of G(M) for which α(H) 6 k holds. If a k-fooling set on s entries of supp(M) can be found, then,
clearly, s/k is a lower bound on the rectangle covering number. Their generalized fooling set lower bound on the rectangle
covering number is then just the supremum of all these fractions s/k, and it coincides with the independence ratio.

Whereas the fooling set/clique lower bound can be arbitrarily bad (see the example at the end of Section 5.3.1), this
is not the case for the independence ratio. The following is true for general graphs (Lovász [26, Theorem 7]). It has been
rediscovered by Dietzfelbinger et al. [7] for the rectangle graphs of 0/1-matrices. Lovász’ argument (specialized from the
more general setting of hypergraph coverings he in fact considers) proceeds by analyzing the following greedy heuristic for
coloringG: pick amaximumstable set S1 inG, then amaximumstable set S2 inG−S1, and so on. Denoting bywk themaximum
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number of nodes inG containing no stable set of size larger than k and by ti the number of stable sets of exactly size iproduced
by the greedy heuristic, one finds that

k
i=1 iti 6 wk holds for all k = 1, . . . , α = α(G). Adding up these inequalities scaled

by 1/k(k + 1) for k < α and by 1/α for k = α one obtains the upper bound
α−1

i=1
1

i(i+1)wi +
1
α
wα = O (ι(G) log (|G|)) on

the number
α

i=1 ti of stable sets generated by the greedy procedure.

Lemma 5.13. For all graphs G, we have χ(G) = O (ι(G) log(|G|)). �

5.4.1. The cube revisited
We now give an alternative proof of Proposition 5.9, based on the independence number of G(P) instead of the clique

number.
2nd Proof of Proposition 5.9. The maximal rectangles contained in supp(M) of the facet vs. vertex non-incidence matrix
M are among those of the form I × J , where I is a collection of facets of P that does not contain a pair of opposite facets and
J = J(I) is the set of those vertices of P that belong to none of the facets in I . If q denotes the cardinality of I , the size of such
a rectangle is precisely q · 2d−q. Indeed, q of the coordinates of the vertices of J are determined by J , while the other d − q
coordinates are free, which implies |J| = 2d−q.

As is easily verified, q2d−q is maximum for q ∈ {1, 2}. Hence, the maximum size of a rectangle in supp(M) is thus 2d−1. It
follows that 2d rectangles are necessary to cover all the ones inM , because there are 2d · 2d−1 ones in M . �

5.4.2. Polytopes with few vertices on every facet
As we have seen in Lemma 5.5 above, the chances of obtaining a good lower bound based on fooling sets are poor if the

matrix has few zeros in each row. A similar result is true for generalized fooling sets.

Lemma 5.14. Let M be a real matrix with at most s zeros per row and let U be a k-fooling set in M. Then |U|/k, namely, the lower
bound on rc(M) given by U, is at most 2k2s.
Proof. Let U be a set of vertices of G(M) which is a k-fooling set, i.e. the subgraph H of G(M) induced by U has α(H) 6 k. By
Turán’s theorem, we have

|E(H)| >
|U|

2

2k
.

Each edge of H links two entries of M in distinct rows and columns such that at least one of the two other entries in the
2 × 2 rectangle spanned by these entries is zero. We say that this (these) zero(s) are responsible for the edge. Thus for each
edge of H there is at least one responsible zero (and at most two responsible zeros), located in the rectangle spanned by U .
Since every row or column contains at most k elements of U , each zero in the rectangle spanned by U is responsible for at
most k2 edges of H . Hence, the number of edges in H is at most k2 times the number of zeros in the rectangle spanned by U .
Thus, since U covers at most |U| rows, which together contain at most |U|s zeros, we have

|E(H)| 6 k2|U|s,

and we conclude that
|U|

k
6 2k2s. �

5.5. Fractional chromatic number

Another well-studied lower bound for the chromatic number of a graph is the fractional chromatic number. This number
can be defined in several equivalent ways. The most convenient is probably the following: χ∗(G) is the solution of the
following linear program:

min

S

xS (7a)
S:v∈S

xS > 1 for every vertex v of G (7b)

xS > 0 for every stable set S of G, (7c)
where the sums extend over all stable sets S of the graph G. In the context of nondeterministic communication complexity,
this bound is well-known; see for example [23] or [24] and the references therein. In particular, it is known that χ(M) =

O(χ∗(G(M) log |G(M)|)). The following known fact from graph coloring (see e.g. [30, p. 1096]) improves this slightly.

Lemma 5.15. For all graphs G, it is true that χ(G) 6 (1 + lnα(G))χ∗(G). �

Clearly, if integrality conditions are imposed on the variables in the linear program (7) defining χ∗(G), then the optimal
value is the chromatic number χ(G).
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5.6. Neighborly d-polytopes with Θ(d2) vertices

Suppose d is even and let k := d/2. Consider a neighborly polytope P in Rd with vertex set V := vert(P). Let n := |V |

denote the number of vertices of P . We assume that n = Θ(d2) = Θ(k2), that is, k and d are both Θ
√

n

.

Consider a non-incidence matrix that has one row for each facet, as well as one row for each (k − 1)-face, and one row
per vertex. Let M denote the submatrix induced on the rows that correspond to the (k − 1)-faces. Thus the rows of M are
indexed by the k-subsets of V (that is, the vertex sets of (k−1)-faces of P), and the columns ofM are indexed by the elements
of V (that is, the vertices of P). The entry ofM for k-set F ⊆ V and vertex v ∈ V is 1 if v ∉ F and 0 otherwise. It follows from
Lemma 2.10 and the monotonicity of the rectangle covering number on submatrices that xc(P) > rc(M).

Proposition 5.16. Let n, k be positive integers and M denote the
 n
k


× n matrix defined above. Then rc(M) =

Ω


min


n, (k+1)(k+2)

2


.

Proof. The maximal rectangles of M are of the form I × J , where J is a subset of V of size at most n − k and I = I(J) is the
collection of all k-sets F such that F ⊆ V − J . We define a cover as a collection J = {J1, . . . , Jt} of subsets of V , each of size
at most n − k, such that the corresponding rectangles cover M . This last condition can be restated as follows: for each pair
(F , v) with v ∉ F there exists an index ℓ ∈ [t] with v ∈ Jℓ and F ⊆ V − Jℓ.

Consider a cover J = {J1, . . . , Jt}. For a vertex v ∈ V , consider the collection J(v) of sets in J that contain v. There are
two cases. First, it could be that {v} ∈ J(v). In this case, by removing v from the other sets in J(v), we may assume that
J(v) = {{v}}. That is, the other sets of J do not contain v. Otherwise, all sets in J(v) contain at least one element distinct
from v. In this case, it should not be possible to find a k-set F contained in V − {v} that meets all sets in J(v), because
otherwise J would not cover the pair (F , v). In particular, there are at least k + 1 sets in J(v).

Let X denote the set of the vertices v such that {v} ∈ J, and let s := |X |. Pick distinct vertices v1, v2, . . . , vk+1 in V − X .
This can be assumed to be possible because otherwise V − X has at most k vertices. If V − X is empty, then clearly the cover
is trivial and t > n. Else V −X contains an element v and, because all sets in J(v) are contained in V −X , one can easily find
a k-set F ⊆ V − {v} such that (F , v) is not covered by J.

For all ℓ ∈ [k + 1], it holds that the number of sets in J that contain vℓ and none of the vertices v1, . . . , vℓ−1 is at least
k + 2 − ℓ. Otherwise, we could find k + 1 − ℓ elements in V − {v1, . . . , vℓ} that, added to {v1, . . . , vℓ−1}, would define a
k-set F ⊆ V − {vℓ} such that (F , vℓ) is not covered by J.

Now, the number of sets in J is at least

s + (k + 1) + k + (k − 1) + · · · + 1 = s +
(k + 1)(k + 2)

2
>

(k + 1)(k + 2)
2

.

The first term counts the number of singletons in J, the second the number of sets containing v1, the third the number of
sets containing v2 but not v1, and so on. �

When n = Θ(k2), it follows from Proposition 5.16 that the minimum number of rectangles needed to cover M is Θ(n).
Therefore, in this case the minimum number of facets in an extension of P is Θ(n). Note that the binary logarithm of the
total number of faces is in this case Θ(d log n) = Θ(d log d). In conclusion, neighborly d-polytopes with Θ(d2) vertices
give a family of polytopes such that the rectangle covering number is super-linear in both the ‘‘dimension’’ and the ‘‘binary
logarithm of the number of faces’’ bounds.

6. Concluding remarks

We conclude this paper with some open problems. We begin by reiterating the first open problem in Yannakakis’s
paper [35]. Bounding the rectangle covering number seems to be the currently best available approach to bound the
extension complexity of specific polytopes. (The new bound on the nonnegative rank proposed by Gillis and Glineur [13]
does not lead to improvements for slackmatrices.) Can one find other bounds? In particular, for a given polytope P , consider
the smallest number of facets of a polytope Q into whose face lattice the face-lattice of P can be embedded meet-faithfully.
Does this number improve substantially on the rectangle covering bound? Or is it always bounded by a polynomial in the
rectangle covering bound for P?

For some polytopes the rectangle covering number even yields optimal or near-optimal lower bounds on the extension
complexity as we have demonstrated in this paper for cubes, Birkhoff polytopes, and neighborly d-polytopes with Θ(d2)
vertices. However, for other polytopes such as the perfect matching polytope, the rectangle covering bound seems rather
useless. For instance, for sufficiently irregular n-gons in R2, the extension complexity is bounded from below by Ω

√
n

,

while the rectangle covering number is O(log n) [12].
In all the examples we have found so far, the rectangle covering number is always polynomial in d and log n, where d

denotes the dimension and n the number of vertices. Can one find polytopes for which the rectangle covering number is
super-polynomial in d and log n?

As mentioned above, it is true that ω(M) 6 (rankA + 1)2 for every matrix A whose support is M , and Dietzfelbinger
et al. [7] constructed a family of matricesM with rank(M)log 4/ log 3 6 ω(M). Which of the two bounds can be improved?
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In view of our result on the extension complexity of neighborly d-polytopes with n vertices, it is natural to ask whether
the bound Ω(d2) can be improved for d = o

√
n

.

Finally, in the absence of better lower bounds on the extension-complexity, it would be interesting to know the rectangle
covering bound of the perfect matching polytope. As mentioned above, it is O(n4). Even a small improvement on the trivial
lower bound Ω(n2) would be interesting.

7. Final note

After submitting this paper, our third open problemwas solved by Fiorini et al. [11]. They prove among other things that
the rectangle covering number of the cut polytope is super-polynomial in the dimension and logarithm of the number of
vertices of the polytope.

Acknowledgments

We are grateful to the referees whose comments lead to significant improvements in the presentation of the material.

References

[1] E. Balas, Disjunctive programming and a hierarchy of relaxations for discrete optimization problems, SIAM J. Algebr. Discrete Methods 6 (1985)
466–486.

[2] LeRoy B. Beasley, Thomas J. Laffey, Real rank versus nonnegative rank, Linear Algebra Appl. 431 (12) (2009) 2330–2335.
[3] A. Ben-Tal, A. Nemirovski, On polyhedral approximations of the second-order cone, Math. Oper. Res. 26 (2) (2001) 193–205.
[4] V. Chvátal, On certain polytopes associated with graphs, J. Combin. Theory Ser. B 18 (1975) 138–154.
[5] M. Conforti, G. Cornuéjols, G. Zambelli, Extended formulations in combinatorial optimization, 4OR 8 (1) (2010) 1–48.
[6] D. de Caen, D.A. Gregory, N.J. Pullman, The Boolean rank of zero-one matrices, in: Proceedings of the Third Caribbean Conference on Combinatorics

and Computing (Bridgetown, 1981), Cave Hill Campus, Barbados, 1981. Univ. West Indies, pp. 169–173.
[7] M. Dietzfelbinger, J. Hromkovič, G. Schnitger, A comparison of two lower-bound methods for communication complexity, Theoret. Comput. Sci. 168

(1) (1996) 39–51. 19th International Symposium on Mathematical Foundations of Computer Science (Košice, 1994).
[8] Faun C.C. Doherty, J. Richard Lundgren, Daluss J. Siewert, Biclique covers and partitions of bipartite graphs and digraphs and related matrix ranks of

{0, 1}-matrices, in: Proceedings of the Thirtieth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton,
FL, 1999), volume 136, 1999, pp. 73–96.

[9] J. Edmonds, Maximummatching and a polyhedron with 0, 1 vertices, J. Res. Natl. Bur. Stand. 69B (1965) 125–130.
[10] Y. Faenza, S. Fiorini, R. Grappe, H.R. Tiwary, Extended formulations, non-negative factorizations and randomized communication protocols.

arXiv:1105.4127, 2011.
[11] S. Fiorini, S.Massar, S. Pokutta, H.R. Tiwary, R. deWolf, Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds,

in: Proc. STOC 2012, 2012 pp. 95–106.
[12] S. Fiorini, T. Rothvoß, H.R. Tiwary, Extended formulations for polygons. arXiv:1107.0371, 2011.
[13] N. Gillis, F. Glineur, On the geometric interpretation of the nonnegative rank. arXiv:1009.0880, 2010.
[14] M.X. Goemans, Smallest compact formulation for the permutahedron. Manuscript, 2009.
[15] João Gouveia, Pablo A. Parrilo, Rekha Thomas, Lifts of convex sets and cone factorizations, Math. Oper. Res. arXiv:1111.3164, 2012+ (in press).
[16] D.A. Gregory, N.J. Pullman, Semiring rank: boolean rank and nonnegative rank factorizations, J. Comb. Inf. Syst. Sci. 8 (3) (1983) 223–233.
[17] M. Habib, L. Nourine, O. Raynaud, E. Thierry, Computational aspects of the 2-dimension of partially ordered sets, Theoret. Comput. Sci. 312 (2–3)

(2004) 401–431.
[18] H. Huang, B. Sudakov, A counterexample to the Alon–Saks–Seymour conjecture and related problems. arXiv:1002.4687, 2010.
[19] V. Kaibel, Extended formulations in combinatorial optimization, Optima 85 (2011) 2–7.
[20] V. Kaibel, A. Loos, Finding descriptions of polytopes via extended formulations and liftings. Chap. 4 of: Combinatorial Optimization - ISCO2010: Recent

Progress. Ridha Mahjoub (ed.) Wiley-ISTE, 2011 (in press). arXiv:1109.0815.
[21] V. Kaibel, K. Pashkovich, Constructing extended formulations from reflection relations, in: Proc. IPCO 2011, 2011, pp. 287–300.
[22] V. Kaibel, K. Pashkovich, D.O. Theis, Symmetry matters for the sizes of extended formulations, in: Proc. IPCO 2010, 2010, pp. 135–148.
[23] M. Karchmer, E. Kushilevitz, N. Nisan, Fractional covers and communication complexity, SIAM J. Discrete Math. 8 (1) (1995) 76–92.
[24] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge University Press, Cambridge, 1997.
[25] Cony M. Lau, Thomas L. Markham, Factorization of nonnegative matrices. II, Linear Algebra Appl. 20 (1) (1978) 51–56.
[26] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math. 13 (4) (1975) 383–390.
[27] R.K. Martin, Using separation algorithms to generate mixed integer model reformulations, Oper. Res. Lett. 10 (3) (1991) 119–128.
[28] K. Pashkovich, Symmetry in extended formulations of the permutahedron. arXiv:0912.3446, 2009.
[29] T. Rothvoß, Some 0/1 polytopes need exponential size extended formulations. arXiv:1105.0036, 2011.
[30] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency. Vol. B, in: Algorithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003,

Matroids, trees, stable sets, Chapters 39–69.
[31] P. Turán, On an extremal problem in graph theory, Mat. és Fzikiai Lapok 48 (1941) 436–452.
[32] Z. Tuza, Covering of graphs by complete bipartite subgraphs: complexity of 0–1 matrices, Combinatorica 4 (1984) 111–116.
[33] F. Vanderbeck, L.A. Wolsey, Reformulation and decomposition of integer programs, in: M. Jünger, et al. (Eds.), 50 Years of Integer Programming

1958–2008, Springer, 2010, pp. 431–502.
[34] S.A. Vavasis, On the complexity of nonnegative matrix factorization, SIAM J. Optim. 20 (3) (2009) 1364–1377.
[35] M. Yannakakis, Expressing combinatorial optimization problems by linear programs, J. Comput. System Sci. 43 (3) (1991) 441–466.
[36] A.C. Yao, Some complexity questions related to distributed computing, in: Proc. STOC 1979, 1979, pp. 209–213.
[37] G.M. Ziegler, Lectures on Polytopes, in: Graduate Texts in Mathematics, vol. 152, Springer-Verlag, Berlin, 1995.

http://arxiv.org/1105.4127
http://arxiv.org/1107.0371
http://arxiv.org/1009.0880
http://arxiv.org/1111.3164
http://arxiv.org/1002.4687
http://arxiv.org/1109.0815
http://arxiv.org/0912.3446
http://arxiv.org/1105.0036

	Combinatorial bounds on nonnegative rank and extended formulations
	Introduction
	Projections and derived structures
	Lattice embeddings
	Slack representations
	Non-negative factorizations
	Rectangle coverings
	Rectangle coverings, Boolean factorizations and lattice embeddings

	Upper bounds on the rectangle covering number
	The perfect matching polytope
	Polytopes with few vertices on every facet
	The edge polytope
	A sub-quadratic size extension for all graphs
	Dense graphs


	Rectangle covering number and communication complexity
	Lower bounds on the rectangle covering number
	Dimension and face counting
	The rectangle graph
	Clique number and fooling sets
	Limitations of the clique number as a lower bound on the rectangle covering number
	The cube
	The Birkhoff polytope

	Independence ratio, rectangle sizes, and generalized fooling sets
	The cube revisited
	Polytopes with few vertices on every facet

	Fractional chromatic number
	Neighborly  d -polytopes with  Θ (d2)  vertices

	Concluding remarks
	Final note
	Acknowledgments
	References


