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a b s t r a c t

We consider cop-win graphs in the binomial random graph G(n, 1/2). We prove that
almost all cop-win graphs contain a universal vertex. From this result, we derive that
the asymptotic number of labelled cop-win graphs of order n is equal to (1 + o(1))
n2n2/2−3n/2+1.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cops and Robbers is vertex-pursuit game played on a reflexive graph. There are two players, consisting of a set of cops
and a single robber. The game is played over a sequence of discrete time-steps or rounds, with the cops going first in the first
round and then playing alternate time-steps. The cops and the robber occupy vertices. When a player is ready to move in
a round they must move to a neighbouring vertex. Because of the loops, players can pass, or remain on their own vertex.
Observe that any subset of copsmaymove in a given round. The cops win if, after some finite number of rounds, one of them
can occupy the same vertex as the robber. This is called a capture. The robber wins if he can evade capture indefinitely. A
winning strategy for the cops is a set of rules that, if followed, result in a win for the cops. A winning strategy for the robber is
defined analogously.

If we place a cop at each vertex, then the cops are guaranteed towin. Therefore, theminimumnumber of cops required to
win in a graph G is a well-defined positive integer, named the cop number (or copnumber) of the graph G. We write c(G) for
the cop number of a graph G. If c(G) = k, then we say that G is k-cop-win. In the special case k = 1, we say that G is cop-win
(or copwin). Nowakowski and Winkler [10], and independently Quilliot [13], considered the game with one cop only; the
introduction of the cop number came in [1]. Many papers have now been written on cop number since these three early
works; see the surveys [2,8,9].

Since their introduction, the structure of cop-win graphs has been relatively well understood. In [10,13,14], a kind of
ordering of the vertex set – now called a cop-win or elimination ordering – was introduced which completely characterizes
such graphs. If u is a vertex, then the closed neighbour set of u, written N[u], consists of u along with the neighbours of u.
A vertex u is a corner if there is some vertex v, v ≠ u, such that N[u] ⊆ N[v]. We say that v is the parent of u, and that
u is the child of v. A graph is dismantlable if some sequence of deleting corners results in the graph with a single vertex.
For example, each tree is dismantlable, and, more generally, so are chordal graphs (that is, graphs with no induced cycles
of length more than 3). To prove the latter fact, note that a chordal graph contains a vertex whose neighbour set is a clique;
see, for example, West [16].
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The following theorem gives the main results characterizing cop-win graphs.

Theorem 1.1 ([10,13,14]).
(1) If u is a corner of a graph G, then G is cop-win if and only if G − u is cop-win.
(2) A graph is cop-win if and only if it is dismantlable.

From Theorem 1.1, cop-win (or dismantlable) graphs have a recursive structure, made explicit in the following sense. A
permutation v1, v2, . . . , vn of the vertices of G is a cop-win ordering if there exist vertices w1, w2, . . . , wn such that, for all
i ∈ [n] = {1, 2, . . . , n}, N[vi] ⊆ N[wi] in V (G) \ {vj : j < i} and vi ≠ wi. We use the notation v for a cop-win ordering,
and w for its parent sequence. Cop-win orderings are sometimes called elimination orderings, as we delete the vertices from
lower to higher index until only vertex vn remains.

We say that an event holds asymptotically almost surely (a.a.s.) if it holds with probability tending to 1 as n tends to
infinity. The probability of an event A is denoted by P(A).

Our goal is to investigate the structure of random cop-win graphs. The random graph model we use is the familiar
G(n, 1/2) probability space of all labelled graphs on n vertices, where each pair of vertices is joined with probability 1/2,
independently of the events for other pairs of vertices. Note that a given graph G on eG edges occurs with probability

P(G ∈ G(n, 1/2)) =


1
2

eG 
1 −

1
2

( n
2 )−eG

=


1
2

( n
2 )

,

which does not depend on G. Thus, G(n, 1/2) is in fact a uniform probability space over all labelled graphs on n vertices. We
heavily use this interpretation of G(n, 1/2) in the proof of our main result, Theorem 2.1, stated below. We expect results
analogous to Theorem 2.1 (that is, with 2 replaced by 1/p) for other constants p ∈ (0, 1) and p = p(n) tending to zero with
n. (The argument for p = p(n) tending to 1 needs to be modified when the expected number of universal vertices is Ω(1);
see [11].) However, this seems not to be an interesting research direction in the theory of random graphs, where we usually
focus on investigating typical properties that hold a.a.s. in G(n, p). Therefore, studying bounds for the cop number that hold
a.a.s. are of interest, and a number of papers have been published on this topic (see, for example [3,6,15,12] and the recent
monograph [5]). We focus on G(n, 1/2) in this paper since it gives the typical structure of a cop-win graph. Therefore, from
now on our probability space is always taken to be G(n, 1/2).

2. Main results

A vertex is universal if it is joined to all others. Let cop-win be the event that the graph is cop-win, and let universal be
the event that there is a universal vertex. If a graph has a universal vertex w, then it is cop-win; in a certain sense, graphs
with universal vertices are the simplest cop-win graphs. The probability that a random graph is cop-win can be estimated
as follows:

P(cop-win) ≥ P(universal) = n2−n+1
− O(n22−2n+3)

= (1 + o(1))n2−n+1. (2.1)
Surprisingly, this lower bound is in fact the correct asymptotic value for P(cop-win). Our main result is the following
theorem.

Theorem 2.1. In G(n, 1/2), we have that

P(cop-win) = (1 + o(1))n2−n+1.

Using Theorem 2.1, we derive the asymptotic number of labelled cop-win graphs.

Corollary 2.2. The number of cop-win graphs on n labelled vertices is

(1 + o(1))2(
n
2 )n2−n+1

= (1 + o(1))n2n2/2−3n/2+1.

It also follows that almost all cop-win graphs contain a universal vertex, a fact not obvious a priori.

Corollary 2.3.
P(universal | cop-win) = 1 − o(1).

We prove Theorem 2.1 in the next section. We finish this section with some notation that will be used in the proof. The
degree of a vertex u is written deg(u). We let ∆(G) denote themaximum degree of G (or just ∆ if G is clear from context). The
co-degree of a vertex u in a graph of order n is n − 1 − deg(u).

3. Proofs of main results

To prove Theorem 2.1, we bound the probability of cop-win for graphs of maximum degree at most n−2. Since the proof
for ∆ = n − 2 has a different flavour than the one for ∆ ≤ n − 3, we prove it independently.
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Theorem 3.1.
(a) For some ϵ > 0, we have that

P(cop-win and ∆ ≤ n − 3) ≤ 2−(1+ϵ)n.

(b) P(cop-win and ∆ = n − 2) ≤ 2−(3−log2 3)n+o(n).

Theorem 2.1 follows immediately from Theorem 3.1 and (2.1).

Proof of Theorem 3.1(a). Let G be a random graph drawn from the G(n, 1/2) distribution. We study the probability that
∆ ≤ n − 3, and that there exists a permutation v = (v1, v2, . . . , vn) and a sequence of vertices w = (w1, w2, . . . , wn)
which are a cop-win ordering and associated parent sequence forG, respectively.We show that this event holdswith extreme
probability (wep), which means that the probability it holds is at most 2−(1+ϵ)n for some ϵ > 0. Observe that, if we can show
that a polynomial number of events holds wep, then the same is true for a union of these events.

We partition the set of all such pairs (v,w) into a four groups, and show that for each group the property holds wep.
Actually, we refine some of the groups to specify the degree sequence of the parents. Moreover, we usually focus on the
initial segments of v andw of length cn, where c ∈ (0, 1) is a constant. We state the partition we consider before moving to
the proof that each group yields an event that holds wep.

(1) There exist v and w having

s = |{wi : i ≤ 0.05n}| > s0 = 17.

In other words, there is a cop-win ordering whose vertices in their initial segments of length 0.05n have more than 17
parents.

(2) There exist v and w having s ≤ s0 and wi with co-degree di > n2/3 for all i ≤ 0.05n. That is, there is a cop-win ordering
whose vertices in their initial segments of length 0.05n have at most 17 parents, each of which has co-degree more than
n2/3.

(3) There exist v andw having 2 ≤ s ≤ s0, and at least one parent has co-degree di ≤ n2/3 for some i ≤ 0.05n. That is, there
is a cop-win ordering whose initial segments of length 0.05n have between 2 and 17 parents, and at least one parent
has co-degree at most n2/3.

(4) There exist v and w having s = 1. In other words, there exists w ∈ V (G) with co-degree between 2 and n2/3, such that
wi = w for i ≤ 0.05n.

Group (1). Set c = 0.05, and suppose that there exist v and w with the property we consider in this group. Let
wa1 , wa2 , . . . , was (where wai ∈ [n] for i ∈ [s]) be s > s0 distinct parents of corresponding children va1 , va2 , . . . , vas (where
vai ∈ [cn] for i ∈ [s]). We would like to have the set of all of those vertices (both parents and children) distinct. All parents
and all children are different but, of course, it can happen that vai = waj for some i ≠ j. However, since each parent can be
a child only once (recall that all children are distinct), we must have at least ⌈s/2⌉ disjoint parent/child pairs. Let

X = V (G) \ ({vi : i ∈ [cn]} ∪ {wi : i ∈ [cn]}).

Note that X contains at least (1−2c)n vertices. SinceN[vi] ⊆ N[wi] inG\{v1, v2, . . . , vi−1}, the following eventQ (vi, wi, X)
holds: no vertex x ∈ X is adjacent to vi but not adjacent to wi.

Thus, this implies that there exist s (where s0 < s ≤ n), a set C of cn vertices, a function p : C → V (we interpret p(v) as
telling us the parent of v), and ⌈s/2⌉mutually disjoint pairs (zi, p(zi)) such thatQ (zi, p(zi), X)holds for i ∈ {1, 2, . . . , ⌈s/2⌉},
with

X = V (G) \ (C ∪ {p(zi) : i ∈ {1, 2, . . . , ⌈s/2⌉}}).

The number of configurations we need to consider is at most

n
 n
cn

 n
s


scn ≤ n2n2n2cn log2 s

= 2(2+c log2 s)n+o(n). (3.1)

For each configuration, we need to estimate the probability that the corresponding event holds. The probability that, for
a given i, the event Q (zi, p(zi), X) holds is at most

3
4

n−2cn

= 2− log2(4/3)(1−2c)n.

Moreover, since parent/child pairs are mutually disjoint, the events Q (zi, p(zi), X) are mutually independent. Hence, the
probability in question can be estimated from above by

2− log2(4/3)(1−2c)(s/2)n+o(n). (3.2)

Thus, by (3.1) and (3.2), the property holds wep if, say, s is chosen such that

2 + c log2 s − log2(4/3)(1 − 2c)(s/2) < −1.1;
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that is, s is a sufficiently large constant that depends on c but does not depend on n. In particular, if c = 0.05, then s ≥ 18
works.
Group (2). As wementioned above, a polynomial multiplicative term is not going to affect a result that holdswep. Thus, there
is no problem at this point to introduce co-degrees of all parents for the initial segment under consideration in this group.

We estimate the number of configurations we consider in this group. Fix parents for the initial segment of length 0.05n
(O(ns0)-many) and their degrees and neighbourhoods (O((2n)s0)-many). Fix the initial segment of v of length 0.05n (O(n!)-
many) and assignment of parents (O(sn0)-many). The total number of configurations is, therefore,

2O(n log2 n). (3.3)

Since every parent has co-degree larger than n2/3, v1 cannot be adjacent to at least n2/3 non-neighbours of w1, v2 has to
avoid n2/3

− 1 non-neighbours of w2 (note that v1 is perhaps a non-neighbour of w2), v3 avoids n2/3
− 2 vertices, and so

on. Note that edges of all parents are exposed at this point, so we should focus on children in the first segment that are not
parents for any other child in this segment. Since there are at most s0 = O(1) parents, this causes no problem; we do not
consider these vertices. For a given configuration, the probability is at most

2−(n2/3−s0)−(n2/3−s0−1)−(n2/3−s0−2)−···−2−1
= 2−Ω(n4/3),

which tends to zero fast enough when compared to (3.3) so that the property we consider holds wep.
Group (3). Set c = 0.05, and suppose that there exist v andwwith the property we consider in this group. This implies that
there exists a vertex wi ∈ V with small co-degree (di ≤ n2/3). Moreover, there exists a set of vertices C with |C | = cn,
vj ∈ C , and wj ∈ V (G) \ {vj, wi} such that the event Q (vj, wj, V (G) \ (C ∪ {wj, wi})) holds. (See the argument for Group
(1) for the definition of Q (·, ·, ·).) There are only two differences between the argument here and the one used in Group
(1). First, this time the size of X is (1 − c)n + O(1), not (1 − 2c)n as before. Second, we only investigate neighbourhoods of
vertices vj, wj, wi in order to estimate the probability that the event in question holds, not ⌈s/2⌉ pairs as before.

Using the Stirling formula (which states that n! ∼
√
2πn(n/e)n), we find that the number of configurations is at most

nn2/3
 n
n2/3

  n
cn


n2

= 2− log2(cc (1−c)1−c )n+o(n). (3.4)

Suppose first that vj ≠ wi (that is, all the vertices vj, wj, wi are distinct). Hence, the desired probability can be estimated
from above by

2−n+12− log2(4/3)(1−c)n+O(1), (3.5)

where 2−n+1 corresponds to the edges incident with the vertex wi. Observe that the term in (3.5) tends to zero fast enough
when compared to (3.4) for the event to hold wep. (Note that not every c ∈ (0, 1) works this time. However, one can check
that it is the case for, say, c < 0.07.) If vj = wi, then the situation is even better. Sincewj has to be adjacent to all neighbours
of vj = wi in V (G) \ (C ∪ {wj, wi}) (that is, all vertices in V (G) \ (C ∪ {wj, wi}) but, perhaps, O(n2/3) of them), we estimate
the probability by

2−n+12−(1−c)n+O(n2/3) < 2−n+12− log2(4/3)(1−c)n+O(1),

and the assertion holds in this case.
Group (4). Suppose that wi = w for i ≤ cn(1 + o(1)) for some c ∈ [0.05, 1], and the first child v̄ with parent w̄ = wj ≠ w
occurs if j = cn(1 + o(1)). (Note that we cannot have one parent only, since ∆ ≠ n − 1.) Moreover, we can insist that w
is used as a parent for as long as possible; that is, until we get the property that all remaining vertices that are in N[w] are
adjacent to at least one of the non-neighbours N̄[w] of w, so that the new parent, w̄, has to be introduced.

This implies that there exist a set C of cn(1 + o(1)) vertices and vertices w, v̄, w̄ ∈ V (G) \ C (possibly, v̄ = w) such
that the following events hold. The co-degree of w is d, 2 ≤ d ≤ n2/3, every vertex in C is adjacent to w but not to any of
co-neighbours of w, and every vertex in V (G) \ (C ∪ N̄[w] ∪ {v̄, w̄}) is adjacent to at least one co-neighbour of w. Moreover,
the event Q (v̄, w̄, V (G)\ (C ∪{w, v̄, w̄})) holds. (See the argument for Group (1) for the definition of Q (·, ·, ·).) The number
of configurations to consider can be bounded from above by

2− log2(cc (1−c)1−c )n+o(n). (3.6)

Suppose first that v̄ ≠ w. The probability can be bounded from above by

2−n2−dcn(1+o(1))2− log2(4/3)(1−c)n+o(n),

which is enough when compared to (3.6) for the event to hold wep for any c ∈ (0.05, 0.25) ∪ (0.25, 1] or d ≥ 3. (Note that
for c = 1/4 and d = 2 we get that the event holds with probability at most 2−n+o(n) only, not wep.) Similarly as in Group
(3), the situation is better if v̄ = w, since then w̄ has to be adjacent to almost all vertices in V (G) \ (C ∪ {w, v̄, w̄}).

It remains to consider the case c = 1/4 and d = 2. Using our extra knowledge that every vertex in V (G) \ (C ∪ N̄[w] ∪

{v̄, w̄}) is adjacent to at least one of the two co-neighbours of w, we obtain the extra multiplicative factor of (3/4)3n/4+o(n),
which is enough for the event to hold wep. �
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Now, we are ready to prove the second part of Theorem 3.1.

Proof of Theorem 3.1(b). First, we deduce from Theorem 3.1(a) a rough upper bound for the probability that the graph is
cop-win: there exists ϵ > 0 such that

P(cop-win) ≤ P(cop-win and ∆ ≤ n − 3) + P(∆ ≥ n − 2)
≤ 2−(1+ϵ)n

+ n22−n+1

≤ 2−n+o(n). (3.7)

The vertex set of every cop-win graphwith∆ = n−2 can be partitioned as follows: it must have a vertexw of degree n−2,
a (unique) vertex v which is not adjacent to w, a set B of vertices adjacent to v (and also to w), and a set A of vertices that
are not adjacent to v (but adjacent to w). We claim that the graph induced by B is cop-win.

By Theorem 1.1, we can dismantle all vertices in A (usingw as a parent), leaving us with the cop-win subgraphH induced
by v,w, and B. If B contains one vertex only, then the graph induced by B is clearly cop-win. Otherwise, either Bhas a universal
vertex in G (and so the graph induced by B is cop-win and we can dismantle all remaining vertices of B), or B must have a
corner (since if there is no universal vertex in B, you cannot dismantle either v or w but H is cop-win). In either case, we can
dismantle some vertex x in B, so that the following properties hold.

(1) H − x is a cop-win subgraph induced by v, w, and B \ {x},
(2) v and w are joined to all of B \ {x}.

Hence, by (1) and (2) we may use induction to dismantle B starting from the subgraph H . Moreover, the same sequence of
vertices can be used to dismantle the graph induced by the set B, since all the parents were in B. Therefore, B is cop-win.

Finally, we estimate the number of labelled cop-win graphs with ∆ = n− 2. There are n choices for w, n− 1 choices for
v, and 2n−2

=
n−2

i=0


n−2
i


choices for A. The probability that w and v have the correct neighbourhoods is 2−n+12−n+1. If

|A| = i, then the probability that the graph induced byB is cop-win is atmost 2−n+2+i+o(n) using (3.7) (note that |B| = n−2−i,
and that there are no other restrictions on B except that the subgraph it induces is cop-win). Thus,

P(cop-win and ∆ = n − 2) ≤ n2
n−2
i=0


n − 2

i


2−n+12−n+12−n+2+i+o(n)

= 2−3n+o(n)
n−2
i=0


n − 2

i


2i

= 2−3n+o(n)(1 + 2)n−2

= 2−(3−log2 3)n+o(n). �

4. Discussion

For an integer k > 1, determining the asymptotic behaviour of the function Fk(n), the number of labelled k-cop-win
graphs of order n, remains an open problem. The limited current understanding of graphs with cop number 2 or higher is
themain stumbling block. For example, there are no elementary analogues of cop-win orderings for higher k. An elimination
ordering characterization of k-cop-win graphs for k > 1 was given in [7], although it becomes exponentially more complex
as k increases (in particular, an ordering is given of vertices in the (k+1)th strong power of the graph). Nevertheless, wemay
conjecture that almost all k-cop-win graphs have a dominating set of cardinality k, whichwould generalize our Theorem 2.1,
and imply that

Fk(n) = 2o(n)(2k
− 1)n−k2


n−k
2


= 2n2/2−(1/2−log2(1−2−k))n+o(n).

In [4,6], it has been shown that the cop number of G ∈ G(n, 1/2) is a.a.s. equal to (1 + o(1)) log2 n. Hence, we have
that Fk(n) = o(2(

n
2 )) unless k = (1 + o(1)) log2 n. Another problem is whether Fk(n) is unimodal: is there a function

K = K(n) = (1 + o(1)) log2 n such that, for n large enough, Fk(n) ≤ Fk+1(n) for k ≤ K , and Fk(n) ≥ Fk+1(n) for k > K?
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